Page 1 of 2

Day & Date Time: 03:00	e: Frida D PM	ay, 05-01-2024 To 05:30 PM		(,	Max. Marks: 60
Instruction	n s: 1) 2)	All questions are co Figure to right indic	ompulsory. ate full marks.			
Q.1 A)	Fill in 1) L	the blanks by choose the blanks by choose the distributed a) not Binomial c) $B(n-1, n-p)$	oosing correct al as <i>B</i> (<i>n</i> , <i>p</i>). The d b) d)	lterr distri)	natives given below bution of $Y = n - X$ B(n - 1, p) B(n, 1 - p)	w. 08 is
	2) L	et X be distributed a) $Exp (Mean \theta)$ c) $U (0, 1)$	as <i>Exp</i> (<i>Mean</i> θ) b) d)	.Th) 1) 1	en distribution of Y = Exp (Mean 1) U (0,θ)	= <i>X</i> /θ is
	3) 4	a) $P(X \ge \alpha + x) =$ b) $P(X \ge \alpha + x) =$ c) $P(X \le \alpha + x) =$ d) $P(X \le \alpha + x) =$	$ \begin{array}{l} X \text{ is said to be sym} \\ = P(X \ge \alpha - x) \\ = P(X \le \alpha - x) \\ = P(X \le \alpha - x) \\ = P(X \ge \alpha - x) \end{array} $	nme	tric about point α if	
	4) l	a) $E[\sqrt{X}] \le \sqrt{E(X)}$ b) $E = [\sqrt{X}] = \sqrt{E}$	b) d)) _)	$E[\sqrt{X}] \ge \sqrt{E(X)}$ None of these	
	5) \	Vhich of the followin a) $U(0, θ)$ c) $N(0, σ^2)$	ng is not a scale fa b) d)	amil))	y? U(0,1) Exp(θ)	
	6) L c	et <i>X</i> and <i>Y</i> be inde istribution. Then Va a) 1/6 c) 4	pendent random v ar(X + Y) is equal b) d)	varia l to _)	ables each having th 5/2 6	ne <i>U</i> (0,1)
	7) L c	et X and Y be two istribution of $Z = X$ a) exponential c) Laplace	<i>iid</i> random variab — Y is b) d))	with $pdf f(x) = 2_e^{-1}$ beta Cauchy	$x^{-2x}, x \ge 0.$ The
	8) S (Suppose $X_{1,}X_{2}, \dots, X_{i}$ $Tov(X_{i}, X_{j}), i = j = 1$ (a) $n p_{i}$ (c) $n p_{i} p_{j}$	_k is a multinomial 1,2, , <i>k</i> , <i>i ≠ j</i> is _ b) d)	ran))	dom variate then _n p _i p _j n ² p _i p _j	

M.Sc. (Semester - I) (New) (NEP CBCS) Examination: Oct/Nov-2023 STATISTICS **Distribution Theory (2329101)**

Seat No.

Set P

Fill in the blanks.

- 1) If Z is standard normal variate then mean of Z^2 is _____.
- 2) The *pdf* of random variable *X* is $f(x) = 2x, 0 \le x \le 1$ then P(X = 0.5) is _____.
- 3) Let *X* and *Y* be two independent Poisson random variates with means 1 and 2 respectively then variance of (2X + 3Y) is _____.
- 4) The *PGF* of Poisson distribution with mean λ is given by _____.

Q.2 Answer the following (Any Six)

B)

- a) Define cumulative distribution function (c.d.f.) of a random variable *X*.
- **b)** Define a symmetric random variable.
- c) Define location family.
- d) State Holder's inequality.
- e) Define moment generating function (MGF) of random variable *X*.
- f) State the relation between distribution function of a continuous random variable and uniform random variable.
- g) Define Marshall-Olkin bivariate exponential distribution.
- **h**) Define multinomial distribution.

Q.3 Answer the following. (Any Three)

- **a)** Let *X* follows N(0,1) distribution. Find the distribution of $Y = X^2$.
- **b)** Define scale family of distributions. Examine which of the following are in scale family.
 - i) $X \sim N(0, \sigma^2)$
 - ii) $X \sim U(0, \theta)$
- c) Let *F* be a distribution function of a random variable *X*. Examine whether $[F(x)]^2$ and 1 F(x) are distribution functions.
- d) Derive the pdf of smallest order statistic based on a random sample of size n from a continuous distribution with pdf f(x) and cdf F(x).

Q.4 Answer the following. (Any Two)

- a) State and prove Markov's inequality.
- **b)** Let X is a non-negative random variable with $pmf P(X = x) = P_x$, x = 1,2,...

then show that

$$E(X) = \sum_{x=1}^{\infty} P[X \ge x]$$

 \sim

c) Let X has B(n, p) distribution. Obtain the *PGF* of X. Hence obtain its mean and variance.

Q.5 Answer the following. (Any Two)

- a) Define multinomial distribution. Obtain its MGF. Hence or otherwise obtain its variance-covariance matrix.
- **b)** Let *X* and *Y* are jointly distributed with pdf

 $f(x,y) = \begin{cases} k \ (x+2y), 0 < x < 2, 0 < y < 1 \\ 0, \ otherwise \end{cases}$

Find marginal distributions of X and Y.

c) Let (X, Y) has $BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Obtain the marginal distributions of *X*.

SLR-ER-1

12

12

12

Seat	
No.	

M.Sc. (Semester - I) (New) (NEP CBCS) Examination: Oct/Nov-2023 **STATISTICS** Estimation Theory (2329102)

Day & Date: Sunday, 07-01-2024 Time: 03:00 PM To 05:30 PM

Instructions: 1) All questions are compulsory.

2) Figure to right indicate full marks.

Q.1 Choose the correct alternative. A)

C)

- A sufficient statistic contains all the information which is contained 1) in
 - a) population
 - b) sample none of the above parameter d)

b)

d)

Suppose *T* sufficient for θ . Then g(T) is sufficient for $g(\theta)$ if 2)

- g is a real valued function a)
- *q* is one-to-one function c)
- $U(0,\theta)$ is a member of 3)
 - one parameter exponential family. a)
 - Pitman family. b)
 - power series family. c)
 - d) none of the above

4) Cramer-Rao inequality with regards to the variance of an unbiased estimator provides _____.

- lower bound b) a) asymptotic variance c)
 - upper bound d) **Fisher information**

g is a continuous function

q is a bounded function.

- If an estimator T_n of population parameter θ converges in probability to θ as 5) *n* tends to infinity is said to be
 - a) sufficient b) efficient
 - c) consistent d) unbiased
- 6) The MLE of parameter θ is a statistic which _____.
 - is sufficient for parameter for θ a)
 - b) maximizes the likelihood function L
 - is a solution of $\frac{\partial \log L}{\partial \theta} = 0$ C)
 - d) is always unbiased
- Let T_n be an unbiased estimator of θ . Then_____. 7)
 - a) T_n^2 is unbiased estimator of θ^2 .
 - $\sqrt{T_n}$ is unbiased estimator of $\sqrt{\theta}$. b)
 - c) e^{T_n} is unbiased estimator of e^{θ}
 - d) $3T_n + 4$ is unbiased estimator of $3\theta + 4$
- Prior distribution is the 8)
 - distribution of parameter θ . a)
 - b) distribution of sample X.
 - conditional distribution of X given θ . c)
 - conditional distribution of θ given X d)

Max. Marks: 60

B) Fill in the blanks.

- 1) If the distribution of T(X) is independent of θ then statistic T(X) is said to be _____ statistic
- 2) Let $X_1, X_2, ..., X_n$ is a random sample of size *n* from $U(0, \theta)$ distribution then MLE of θ is _____.
- 3) Bayes estimator of a parameter under absolute error loss function is_____.
- 4) Bhattacharya bound is the generalization of _____ inequality.

Q.2 Answer the following. (Any Six)

- a) Define one parameter exponential family of distributions.
- **b)** Define sufficient statistic.
- c) Define maximum likelihood estimator (MLE).
- d) State Lehmann-Schffe theorem.
- e) Define Fisher information in a single observation and in n iid observations.
- f) State Neyman-Fisher factorization theorem.
- g) Define consistent estimator.
- h) Define Pitman family of distributions.

Q.3 Answer the following. (Any Three)

- a) Let random variable X has $U(0, \theta), \theta > 0$ distribution. Show that distribution of X is complete.
- **b)** Let X_1 and X_2 are iid Poisson (λ). Using the definition of sufficient statistic, examine whether $X_1 + X_2$ to be sufficient statistics for λ .
- c) Show that Poisson distribution belong to power series family.
- **d)** Find Cramer-Rao lower bound (CRLB) for the variance of unbiased estimator of θ based on random sample of size *n* from $f(x, \theta) = \theta e^{-\theta x}, x \ge 0, \theta > 0$.

Q.4 Answer the following. (Any Two)

- a) Describe the method of maximum likelihood estimation for estimating an unknown parameter.
- **b)** Let $X_1, X_2, ..., X_n$ is a random sample of size *n* from exponential distribution with mean θ . Obtain MLE of θ . Show that it is unbiased estimator of θ .
- c) Let $X_1, X_2, ..., X_n$ be a random sample from $U(0, \theta), \theta > 0$. Obtain two consistent estimators for θ .

Q.5 Answer the following. (Any Two)

- a) State and prove Rao-Blackwell theorem.
- **b)** Let $X_1, X_2, ..., X_n$ be a random sample of size n from $U(0, \theta), \theta > 0$. Find UMVUE of (i) θ and (ii) θ^2 .
- **c)** Let $\{T_n\}$ be a sequence of estimators such that $E(T_n) = \theta$ and $Var(T_n) \to 0$ as $n \to \infty$ then show that T_n is consistent for θ .

SLR-ER-2

04

12

12

12

				Statistical Mathem	atics	s (2329107)	
Day Time	& Da e: 03:	te: Tu 00 PN	iesda /I To	ay, 09-01-2024 05:30 PM			Max. Mark
Instr	uctio	ons: 1 2	l) All 2) Fig	Questions are compulsory. Jure to right indicate full marks	6.		
Q.1	A)	Cho 1)	o se If th natu a) c)	the correct alternative. ere exists one to one corresp ural numbers, then the given s Perfect set Countable set	onde set is b) d)	ence between given set a Good set Uncountable set	and set of
		2)	Whi a) b) c) d)	ich of the following sequences Sequence of constant term Monotonic increasing seque Monotonic decreasing seque Oscillatory sequence	s of re ince ence	eal numbers do always o	converge?
		3)	lf ∑a) c)	$\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n$ -1 Infinity	∞ a _n = b) d)	= 1 Zero	
		4)	A cơ a) c)	onvergent sequence Have Only one limit Atmost n limits	b) d)	Atmost two limits Infinite limits	
		5)	A C a) c)	auchy sequence of real numb Convergent Oscillatory	bers i b) d)	s always Divergent None of these	
		6)	The a) c)	smallest sub-space containin Superclass of <i>S</i> Subset of <i>S</i>	ng fin b) d)	ite set of vectors (<i>S</i>) is _ Span of <i>S</i> Basis of <i>S</i>	·
		7)	A se a) c)	et of vectors containing a null Not necessarily dependent Necessarily independent	vecto b) d)	or is Necessarily dependent A vector space	t
		0)	If m.	unchar of columns is loss than		her of rows then the pa	atrix ia

Seat	
No.	

M.Sc. (Semester - I) (New) (NEP CBCS) Examination: Oct/Nov-2023 **STATISTICS**

~~~~~ - - -. .

If number of columns is less than number of rows, then the matrix is 8) called as

- a) Horizontal matrix
- b) Vertical matrix d) Column matrix
- c) Row matrix
- Fill in the blanks. B)
 - If all the elements below the diagonal are zero, then such matrix is 1) called as
 - If AB is invertible then $(AB)^{-1} = \dots$. 2)
 - If determinant of a square matrix is zero, then such matrix is called 3) as
 - The inverse of identity matrix is _____. 4)

lax. Marks: 60

08

04

SLR-ER-3

Set Ρ

Q.2 Answer the following. (Any Six)

- a) Define orthogonal matrix.
- b) Define a square matrix.c) Define a square matrix.
- c) Define a skew-symmetric matrix.
- d) Define convergence limit of a sequence.
- e) Define bounded sequence.
- f) Define geometric series.
- **g)** Define infimum of a set.
- **h)** Define ratio test of convergence.

Q.3 Answer the following. (Any Three)

- a) Show that every monotonic bounded above sequence of real numbers converges.
- b) Define and illustrate limit superior of a sequence of real numbers.
- c) Reduce the following matrix to a row-reduced form and hence determine its rank.

$$A = \begin{bmatrix} 1 & 3 & 8 \\ 5 & 2 & 1 \\ 7 & 6 & 1 \end{bmatrix}$$

d) Define and illustrate rank of a matrix.

Q.4 Answer the following. (Any Two)

a) Define limit superior and limit inferior of a sequence. Find the same for the following sequence, hence verify its convergence.

$$S_n = 2 + \frac{(-1)^n}{n}, n \in \mathbb{N}$$

- **b)** Obtain the Riemann integration of $f(x) = 3x, x \in (0,2)$.
- c) Examine the convergence of p-series for various values of p.

Q.5 Answer the following. (Any Two)

- a) Define vector space and subspace. State the conditions needed to verify whether a subset of a vector space is a subspace.
- **b)** Prove: For any vector in \underline{u} vector space $V, 0, \underline{u} = \underline{0}$
- c) How the independence of vectors is examined? Also verify whether following set is a set of independent vectors.

$$S = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \end{pmatrix} \right\}$$

12

12

12

Set

M.Sc. (Semester - I) (New) (NEP CBCS) Examination: Oct/Nov-2023 **STATISTICS**

Research Methodology in Statistics (2329103)

Day & Date: Thursday, 11-01-2024 Time: 03:00 PM To 05:30 PM

Instructions: 1) All Questions are compulsory.

2) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative.

- 1) Research can be defined as
 - a) scientific and systematic search for pertinent information on a specific topic
 - b) a search for knowledge
 - c) systematized effort to gain new knowledge
 - d) All the above
- A research study undertaken to gain familiarity with a phenomenon or to 2) achieve new insights into it is termed as
 - a) exploratory research study b) descriptive research studies
 - c) diagnostic research studies d) All of the above

3) The is that which utilizes historical sources like documents, remains, etc. to study events or ideas of the past.

- a) Historical research
- b) Diagnostic research c) Longitudinal research d) One point research
- Decisions regarding what, where, when, how much, by what means 4) concerning an inquiry or a research study constitute a
 - a) Research design
- d) Descriptive research
- _ concerns with the question of how many items are to be observed 5) and how the information and data gathered are to be analyzed.
 - a) observational design b) the sampling design
 - d) the operational design c) the statistical design
- The regression estimator is appropriate in a situation where 6)
 - a) Regression of Y on X is linear and line passes through origin
 - b) Regression of Y on X is linear and line does not pass through origin
 - c) Regression of Y on X is non-linear and passes through origin
 - d) Regression of Y on X in non-linear and does not passes through origin
- 7) In sampling with probability proportional to size, the units are selected with probability proportion to _
 - a) Size of the unit
- b) Size of the population d) None of these
- c) Size of the sample
- Which of the following estimators is generally biased? 8)
 - b) Des Raj a) Horvitz - Thompson
 - c) Heartly Ross d) Ratio

Max. Marks: 60

- - b) Sampling design

04

12

12

12

12

B) Fill in the blanks.

- 1) The process of examining the truth of a statistical hypothesis, relating to some research problem, is known as _____.
- 2) Under _____ scheme, ratio estimator exactly becomes unbiased.
- 3) A random start automatically fixes the subsequent selection of sample units in _____ sampling method.
- 4) In SRSWR, _____ is unbiased estimator of population variance.

Q.2 Answer the following. (Any Six)

- **a)** Define descriptive research.
- **b)** Define quantitative research.
- c) Define applied research.
- d) Define extraneous variable.
- e) What is meant by sampling error?
- f) Define cluster sampling.
- **g)** Define judgement sampling.
- h) Differentiate between SRSWR and SRSWOR.

Q.3 Answer the following. (Any Three)

- a) Discuss response and non-response errors.
- **b)** Describe stratified sampling.
- c) Describe criteria of a good research.
- d) Discuss experimental and control group.

Q.4 Answer the following. (Any Two)

- a) With usual notations, prove that in simple random sampling, the bias of \overline{y}_l is $Bias(\overline{y}_l) = -cov(\overline{x}, b)$.
- b) Obtain Horvitz Thompson estimator for population mean for PPSWOR method.
- c) Discuss research methods and research methodology.

Q.5 Answer the following. (Any Two)

- a) Discuss the need of research design.
- **b)** Explain the significance of report writing.
- c) Explain Lahiri's method in detail.

Seat							-	_
No.							Set	Ρ
	M.Sc.	. (Seme	ster - I) (Old) (CB	CS) Exa	min	ation: Oct/No	v-2023	
			SIAI Real Analysi	ISTICS is (MSC	1610)1)		
Day & F)ate [.] F	riday 05.	.01-2024			.,	Max Marks	· 80
Time: 0	3:00 PI	M To 06:0	00 PM				Max. Marke	. 00
Instruc	tions:	1) Q. No. 2) Attemp 3) Figure	1 and Q. No 2 are co ot any three questions to right indicate full m	mpulsory from Q. I narks.	No. 3	to Q. No. 7		
Q.1 A) Ch	oose the	correct alternative.					10
_ ,	1)	The se	t of limit points of the	set (0,2] i	is:			
		a) (0,2)		b)	(0,2]		
		c) [0,2])		d)	[0,2]		
	2)	Set of a	all rationals is					
		a) Cou	ntable		b)	Uncountable		
		c) Finit	e		d)	None of the abo	ove	
	3)	A set is	s compact if and only	if it is bou	Indec	and		
		a) Sem	ni open		b)	Open Sami alagad		
		C) Clos	sea		a)	Semi closed		
	4)	Least	upper bound is also ca	alled as _				
		a) Infin	num t point		d)	Supremum		
	-				u)			
	5)	The se	$t\left\{\left(8+\frac{(-1)^{N}}{n}\right), n \in N\right\}$	nas	_ limi	t point.		
		a) One			b)	Two		
		c) Zero)		d)	Four		
	6)	A sequ	ence $S_n = (-1)^n$, $n \in$	<i>N</i> is	se	quence.		
		a) Dive	ergent		b)	Convergent		
		c) Osc	illatory		d)	none of these		
	7)	A supe	rset of uncountable s	et is alwa	ys	·		
		a) Cou	ntable or may not be count:	ahla	d)	Uncountable		
	•				u)			
	8)	A funct	ion f(x)= x-3 on (-1,1) IS forentiable				
		b) Con	tinuous as well as un	entiable	5			
		c) Diffe	erentiable but not con	tinuous				
		d) Neit	her continuous nor di	fferentiab	le			
	9)	Riema	nn integral is a particu	ular case	of			
		a) Rier	nann- John integral					
		b) Rier	nann-Lebesgue integ	ral				
		c) Rier	nann-Stieltje's integra	a l				
	40			1				
	10)	The lin	hit of sequence $S_n = \frac{1}{n}$	$\frac{1}{n^2}$, $n \in N$ i	s	·		
		a) 0			b)	1		
		c) 100			d)	2		

06

16

B) Fill in the blanks.

- 1) Every subset of countable set is _____.
- 2) A finite set with n elements has _____ number of limit points.
- 3) If for a geometric series, common ratio r > 1, then series _____.
- 4) Greatest lower bound of a set is also called as _____.
- 5) The function $f(x) = -x^2 + 2x + 3$ has maximum at point x= _____.
- 6) The union of two closed sets is _____.

Q.2 Answer the following.

- a) Construct a bounded set of real numbers with exactly three limit points.
- **b)** Prove or disprove:
 - i) A subset of open set is always open.
 - ii) A subset of closed set is always closed.
- c) Define and illustrate:
 - i) Limit point of a set
 - ii) Interior point of a set.
- **d)** What is meant by absolute convergence of a series? Does it imply regular convergence?

Q.3 Answer the following.

- a) Prove or disprove: Countable union of countable sets is always Countable 08
- b) Let A be an open subset of R. Then show that every point of A is also its08 limit point.

Q.4 Answer the following.

- a) When do you say a set is countable? Show that set of real numbers IR is uncountable.
- b) When a series of real numbers is said to be convergent? Discuss ratio test
 08 and comparison test of convergence.

Q.5 Answer the following.

- a) Define Cauchy sequence. Show that a sequence is convergent if and only if **08** it is a Cauchy sequence.
- **b)** Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^n}$. **08**

Q.6 Answer the following.

- a) Define continuous function. Show that every continuous function is Riemann 08 integrable.
- b) Define limit superior and limit inferior of a sequence. Find the same for the following sequences, hence verify their convergence.

i)
$$S_n = 2 + \frac{(-1)^n}{n}, n \in N$$

ii)
$$S_n = \sin \frac{n\pi}{2}, n \in N$$

Q.7 Answer the following.

- a) Show that the set of all rationals is countable.
- b) Discuss the convergence of a geometric series with common ratio r. 08

M.Sc. (Semester - I) (Old) (CBCS) Examination: Oct/Nov-2023 STATISTICS

Linear Algebra & Liner Models (MSC16102)

Day & Date: Sunday, 07-01-2024 Time: 3:00 PM To 6:00 PM

Seat

No.

Instructions: 1) Question no. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7.3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative:

- 1) If v_1, v_2, v_3 are three vectors such that $4v_1 + 2v_2 + v_3 = 0$, then
 - a) v_1, v_2, v_3 are linearly dependent vectors
 - b) v_1, v_2, v_3 are linearly independent vectors
 - c) Need to verify other linear combinations to check independence
 - d) None of these
- 2) What is the dimension of the vector space R^2 over the field R?
 - a) 1 b) Infinite
 - c) 2 d) 4
- 3) If *A* is an non-empty subset of *B* and *B* is set of independent vectors, then the vectors in *A* are _____.
 - a) Independent vectors
 - b) May or may not be independent vectors
 - c) Dependent vectors
 - d) None of these

4) If determinant of a square matrix is zero, then such matrix is called as

- a) Zero matrix b) Insignificant matrix
- c) Non-singular matrix d) None of these
- 5) If for a 3×3 matrix *A*, the determinant (|A|) is zero, then ____.
 - a) Rank (A) = 1 b) Rank (A) < 3
 - c) Rank (A) = 3 d) None of these
- 6) Le B any real matrix and A be its inverse then
 - a) BA = I b) AB = I
 - c) Both (a) and (b) d) None of these
- 7) If A and B are two matrices of order $n \times n$ with ranks r_1 and r_2 , then_____
 - a) Rank $(AB) = r_1 + r_2$
 - b) Rank $(AB) > r_1 + r_2$
 - c) $\operatorname{Rank}(AB) \ge r_1 + r_2 n$
 - d) Rank $(AB) \leq r_1 + r_2$

c) Scalar matrix

- 8) If transpose of the given matrix is equal to the matrix itself, then it is called____.
 - a) Orthogonal matrix b) Symmetric matrix
 - d) Identity matrix

Max. Marks: 80

10

SLR-ER-8

Set

06

16

- 9) Vectors whose direction remains unchanged even after applying liner transformation with the matrix are called?
 - a) Minor of a matrix
- b) Eigen values
- c) Cofactor matrix d) Eigen vectors
- 10) Which of the following is true for Gauss-Markov model
 - a) $Y = X\beta + \varepsilon$ b) $E(\varepsilon) = 0$
 - c) $cov(\varepsilon) = \sigma^2 I$ d) All of these

B) Fill in the blanks.

- The set of all linear combinations of a finite set of vectors (S) is called as _____.
- 2) If transpose of the given matrix is equal to the identity matrix, then given matrix must be _____
- 3) Linear combinations of estimable functions are _____.
- The matrix with only one column is called as _____.
- 5) In the system of linear equations AX = b with unique solution, the matrix A is _____.
- 6) The eigen values of a 2 × 2 matrix A are 3 and x. If |A| = 12, the value of x must be _____.

Q.2 Answer the following

- a) Write a note of vector space.
- **b)** Define and illustrate:
 - i) Symmetric matrix
 - ii) Skew-symmetric matrix
- c) Define inverse and g-inverse of a matrix.
- d) Write a note on minor and cofactor of an element of a matrix.

Q.3 Answer the following.

- a) How Gram-Schmidt orthogonalisation is performed to obtain orthogonal vectors?
- **b)** Let V be a vector space and $S \subset V$, then show that he span of vectors in S is **08** a subspace of V.

Q.4 Answer the following.

a) When a set of vectors is said to be linearly independent vectors? Check
 08 whether following set is a set of linearly independent vectors-

$$A = \left\{ \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\5 \end{pmatrix} \right\}$$

b) Show that every matrix can be written a sum of symmetric and skewsymmetric matrices. 08

Q.5 Answer the following.

- a) Show that the rank of a matrix is unaltered by multiplication with a nonsingular matrix.
- b) State and prove necessary and sufficient condition for estimability of linear parametric functions.

Q.6	An: a)	swer the following. Find inverse and g-inverse for the below matrix: $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 7 \\ 7 & 1 & 3 \end{bmatrix}$	08
	b)	Show that the below equations are consistent. Also solve them. x + y + z = 6 x + 2y + 3z = 14 x + 4y + 7z = 30	08
Q.7	An	swer the following.	
	a)	Describe echelon form of a matrix. Show that rank of an echelon matrix is equal to the number of non-zero rows in the matrix.	08
	b)	Define- i) Non-singular matrix ii) Rank of a matrix Show that all non- singular matrices of order n have same rank.	08

	M.So. (Somootor	
No.		
Seat		

M.Sc. (Semester - I) (Old) (CBCS) Examination: Oct/Nov-2023 STATISTICS Distribution Theory (MSC16103)

Day & Date: Tuesday, 09-01-2024 Time: 03:00 PM To 06:00 PM

Instructions: 1) Question Nos. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative.

- 1) If the distribution function of two dimensional random variates X and Y is denoted by F(x, y), then _____.
 - a) $-1 \le F(x, y) \le 1$ b) $0 \le F(x, y) \le 1$ c) $-\infty \le F(x, y) \le \infty$ d) $0 \le F(x, y) \le \infty$

2)	Which of the following is a scale family?
----	---

a)	$U(0,\theta)$	b)	$N(0,\sigma^2)$
c)	$Exp(\theta)$	d)	All the above

3) A random variable X is symmetric about point α then _____.

- a) $f(\alpha + x) = f(\alpha x)$ b) $f(\alpha + x) = f(x - \alpha)$ c) $f(\alpha + x) = -f(\alpha + x)$ d) none of these
- 4) Let X be distributed as $U(0,\theta)$. Then distribution of $Y = X/\theta$ is _____. a) $U(0,1/\theta)$ b) $U(0,\theta)$ c) U(0,1) d) $Exp(Mean \theta)$
- 5) Suppose *X* is N(0,1) and *Y* is chi-square with *n* degrees of freedom. Which of the following is always correct?
- a) $E[X^2 + Y] = 1 + n$ b) $X/\sqrt{\frac{Y}{n}}$ is t_n c) $X^2 + Y$ is χ^2_{n+1} d) Var[X + Y] = 1 + 2n6) If $\mu_1' = 2, \mu_2' = 8$ and $\mu_3 = 3$ then value of μ_3' is _____. a) 45 b) 35 c) 25 d) 15
- 7) If X > 0 then _____
 - a) $E[\sqrt{X}] = \sqrt{E(X)}$ b) $E[\sqrt{X}] \ge \sqrt{E(X)}$ c) $E[\sqrt{X}] \le \sqrt{E(X)}$ d) none of these
- 8) The probability generating function (PGF) of geometric distribution with parameter *p* is $P_X(S) =$ ____.
 - a) p/(1-qS)c) p/(1-q/S)b) q/(1-pS)d) q/(1-p/S)
- 9) Let (X_1, X_2, X_3) have a trinomial distribution with parameters (15,0.4,0.4,0.2). Then the conditional distribution of X_1 given $X_2 = 5$ is _____.
 - a) B(15,2/3) b) B(10,2/3)
 - c) B(15,0.4) d) B(10,0.4)

SLR-ER-9

Max. Marks: 80

Set P

06

16

08

- 10) Let $X_1, X_2, ..., X_n$ be a random sample from $pdf f_X(x)$ and $Y_1 \leq Y_2 \leq \cdots \leq Y_n$ be its order statistics. If pdf of Z is $n[1 - F_X(z)]^{n-1}f_X(z)$ then Z is _____. a) Y_1 c) $Y_n - Y_1$ b) Y_n d) sample median

Fill in the blanks: B)

- The distribution of the first order statistic in $f(x; \theta) = \theta e^{-\theta x}$, x > 0 is 1)
- 2) Let X and Y be independent random variables each having the U(0,1)distribution. Then Var(X + Y) is equal to
- If X is symmetric about α then $(X \alpha)$ is symmetric about 3)
- 4) Let X and y be two independent Poisson random variates with means 1 and 2 respectively then variance of (2X + 3Y) is _____.
- If Z is standard normal variate then mean of Z^2 is _____ 5)
- The *pdf* of random variable *X* is $f(x) = 2x, 0 \le x \le 1$ then P(X = 0.5)6) is .

Q.2 Answer the following.

- a) Define location family. Give one example illustrating it.
- **b)** Suppose *X* has $N(\mu, \sigma^2)$ distribution. Find the distribution of $Y = e^x$.
- c) Define a symmetric random variable. State any two properties of the same.
- **d)** If F_1 and F_2 are distribution functions and $0 < \alpha < 1$, show that $F = \alpha F_1 + (1 - \alpha)F_2$ is a distribution function.

Q.3 Answer the following.

- Define distribution function of bivariate random variate (X, Y). State and 08 a) prove its important properties.
- **b)** Define convolution of two random variables. Let *X* and *Y* are independent **08** standard exponential random variables. Find the p.d.f of X + Y using convolution.

Q.4 Answer the following.

- a) State and prove Holder's inequality.
- **b)** Let X is a non-negative random variable with $pmf P(X = x) = P_x, x = 1, 2, ...$ **08**

then show that $E(X) = \sum_{i=1}^{\infty} P[X \ge x].$

Q.5 Answer the following.

- a) Define probability generating function (PGF) of a random variable. Explain **08** how it is used to obtain moments of a distribution.
- **b)** Let X has B(n, p) distribution. Obtain the PGF of X. Hence obtain its mean **08** and variance.

Q.6 Answer the following.

- a) Define multinomial distribution. Obtain its MGF. Hence or otherwise obtain its 08 variance-covariance matrix.
- **b)** Derive the pdf of smallest order statistic based on a random sample of size 08 n from a continuous distribution with pdf f(x) and cdfF(x).

80

Q.7 Answer the following.

- a) Let (X, Y) has $BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \rho)$. Obtain the conditional distribution of Y given X = x.
- **b)** Let *X* and *Y* are jointly distributed with pdf $f(x,y) = \begin{cases} k(x+2y), 0 < x < 2, 0 < y < 1\\ 0, otherwise \end{cases}$ Find marginal distributions of *X* and *Y*.

Page **3** of **3**

Seat No. M.Sc. (Semester - I) (Old) (CBCS) Examination: Oct/Nov-2023 **STATISTICS** Estimation Theory (MSC16104)

Day & Date: Thursday, 11-01-2024 Time: 03:00 PM To 06:00 PM

Instructions: 1) Q. Nos.1 and 2 are compulsory.

2) Attempt any three guestions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Choose the correct alternative. A)

c)

7)

a)

b)

C)

d)

- An unbiased estimator of θ based on random sample of size *n* from a 1) distribution having pdf $f(x, \theta) = 1/\theta, 0 < x < \theta$ is .
 - sample median sample mean b) a)
 - largest observation double of sample mean c) d)
- Which of the following is not a member of one-parameter exponential 2) family of distributions?
 - a) Bernoulli $(1, \theta)$ Normal(θ , 1)
- d)

3) Suppose $f(x, \theta)$ is pdf of random variable X for which differentiation under integral sign is permissible. Then $E\left(\frac{\partial \log f(x,\theta)}{\partial \theta}\right)$ is

- equal to Fisher information a)
- c) less than one
- The denominator of Cramer-Rao inequality gives 4)
 - a) lower bound b) upper bound
 - amount of information none of the above c) d)

A statistic T(X) for θ is said to be ancillary if 5)

- The distribution of T(X) is independent of θ a)
- T(X) is independent of θ b)
- c) T(X) is dependent of θ
- d) The distribution of T(X) is depends on θ
- Let X_1, X_2, \ldots, X_n are random variables having joint $pdf f_{\theta}(x_1, x_2, \ldots, X_n)$, 6) $\theta \in \Theta$, then Fisher information $I(\theta)$ about θ contained in the observations x is given by $(2^2 \log x)$ · · 2 b)

a)
$$E_{\theta}\left(\frac{\partial^2 \log_{e} f_{\theta}(\underline{x})}{\partial \theta^2}\right)$$

c) $E_{\theta}\left(\frac{\partial \log_{e} f_{\theta}(\underline{x})}{\partial \theta}\right)^2$

Prior distribution is the

distribution of parameter θ

conditional distribution of X given θ

conditional distribution of θ given X

distribution of sample X

$$E_{\theta}\left(-\frac{\partial^2 \log_{\mathrm{e}} f_{\theta}(\underline{x})}{\partial \theta^2}\right)$$

None of the above d)

Max. Marks: 80

10

Set

- b) Cauchy $(1, \theta)$
- $Poisson(\theta)$
- - less than zero b) d) equal to zero

	8)	Baye a) c)	es estimator of a parameter ι posterior mean posterior mode	under al b) d)	psolute error loss function is posterior median posterior variance	
	9)	lf T ₁ then	is sufficient statistic for θ and an improved estimator of θ i	l T ₂ is a n terms	n unbiased estimator of θ , of its efficiency is	
		a) c)	$E(T_1T_2)$ $E(T_1/T_2)$	b) d)	$E(T_1+T_2)$ $E(T_2/T_1)$	
	10)	Reg a) b) c) d)	ularity conditions of Cramer-F integrability of functions differentiability of functions both integrability and differe neither integrability nor diffe	Rao ine ntiabilit <u>y</u> rentiabi	quality are related to / of functions lity of functions	
B)	Fill i	in the	blanks.			06
,	1)	Let X estim	X_1, X_2 is a random sample from the from the from the formation of λ is	n Poiss	on (λ) distribution. Moment	
	2) 3)	Let X Cram	X_1, X_2 be a random sample from ner-Rao inequality with regard	m $U(0, 0)$	θ), $\theta > 0$. MLE of θ is e variance of an unbiased	
	4)	Supp	bose T_n sufficient for θ . Then g function.	$g(T_n)$ is	sufficient for $g(\theta)$ if $g(.)$ is	
	5)	The I	MLE of parameter θ is a statistic	stic that	the likelihood function <i>L</i> .	
	6)	Bhatt	tacharya bound is the genera	lization	of the	
Δne	wor t	ha fal	lowing			16
a) b)	Defir State	ne pov e Basu	ver series distribution. Give a u's theorem. Illustrate the app	in exam olicabilit	ple of the same. y of Basu's theorem with	10
c)	exan Let ra	nple. andon plete	n variable X has $B(n, \theta)$ distri	bution.	Show that distribution of <i>X</i> is	
d)	Defir	ne ML	E. Show that an MLE, if exist	s, is a f	unction of sufficient statistic.	
Ans	wer t	he fol	lowing.			
a)	Defin	ne one	e parameter exponential fami	ly of dis	tributions. Obtain a minimal	08
b)	Usin	a the	definition of sufficient statistic	. exami	ne whether $X_1 + X_2$ is	08
,	suffic Poiss	cient fo son di	or Poisson parameter λ base stribution.	d on rai	ndom sample X_1, X_2 on	
Ans	wer t	he fol	lowing.			
a) b)	Desc Let X Find	cribe n $X_1, X_2,$	nethod of moments and method $U(0, \theta), \theta > 0$.	nod of m	ninimum chi-square.	08 08
	1) 2)	Mome MLE (ent estimator θ of θ .			
Ans	wer t	he fol	lowing.			
a)	Obta	in Bha	attacharya bound under regu	larity co	nditions to be stated. Obtain	08
b)	Let X	X_1, X_2	bound as a special case of E \dots, X_n be jid Poisson (λ) rand	dom var	iarya bound. iables. Show that redularity	08

Q.2

Q.3

Q.4

Q.5

b) Let $X_1, X_2, ..., X_n$ be iid Poisson (λ) random variables. Show that regularity conditions are satisfied. Obtain the C-R lower bound for variance of unbiased estimator of λ .

Q.6 Answer the following.

- a) State and prove Rao Blackwell and Lehmann-Scheffe theorems. 08
- **b)** Use Rao-Blackwell theorem to derive *UMVUE* of $P(X_1 = 0)$ based on sample **08** $X_1, X_2, ..., X_n$ from Poisson $(\lambda), \lambda > 0$ distribution.

Q.7 Answer the following.

- a) Define prior and posterior distributions. Illustrate with one example for each 08 of them.
- **b)** Let $X_1, X_2, ..., X_n$ is a random sample from $B(1, \theta)$ distribution and prior density of θ is $B_1(\alpha, \beta)$. Assuming squared error loss function, find the Bayes estimator of θ .

	IV	.50.	(Semester - I) (Old) (CBCS) STATIST	ICS	23
			Statistical Computi	ng (MSC16108)	
Day Time	& Dat : 03:(te: Frid 00 PM	day, 29-12-2023 To 06:00 PM	Max	. Marks: 80
Instr	uctio	o ns: 1) 2 3) Q. Nos. 1 and. 2 are compulsory) Attempt any three questions from) Figure to right indicate full marks	۲. n Q. No. 3 to Q. No. 7 s.	
Q.1	A)	Cho 1)	ose the correct alternative: introduced the Jackknife a) Newton-Raphson c) Fisher	method. b) Quenouille d) Efron	10
		2)	In bootstrap resampling r a) SRSWR c) Stratified	nethod is used. b) SRSWOR d) Systematic	
		3)	When applying Simpson's 3/8 th should be a) odd c) at least 6	rule the number of sub-intervals b) even d) multiple of 3	
		4)	Let $X \sim U(0,1)$ then the cumulative a) Gamma c) $U(3,2)$	the distribution function $F_x(X)$ has b) $U(2,3)$ d) $U(0,1)$	
		5)	In EM algorithm 'M' stands for _ a) Minimax c) Maximization	b) Multivariate d) Multinomial	
		6)	The two point Gauss - Legendre a) $\int_{-1}^{1} f(x)dx \cong f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$ b) $\int_{-1}^{1} f(x)dx \cong f\left(\frac{-1}{\sqrt{3}}\right) - f\left(\frac{1}{\sqrt{3}}\right)$	e quadrature formula is $\frac{1}{\sqrt{3}}$) + E(I) $\frac{1}{\sqrt{3}}$) + E(I)	
			c) $\int_{-1}^{1} f(x)dx \cong f\left(\frac{-1}{\sqrt{3}}\right) + f(0)$ d) $\int_{-1}^{1} f(x)dx \cong \frac{\pi}{2}f\left(\frac{-1}{\sqrt{2}}\right) + \frac{\pi}{2}$	$f\left(\frac{1}{\sqrt{2}}\right) + E(I)$ $f\left(\frac{1}{\sqrt{2}}\right) + E(I)$	
		7)	EM is used to obtain estin a) Maximum Likelihood c) Moment	nator. b) Unbiased d) None of these	

Seat	
No	

M Sc I) (Old) (CBCS) Examination: Oct/Nov-2023 10 - 4 - 14

SLR-ER-11

Set P

		8)	The steepest ascent method is used to find of the given function.a) minimumb) maximumc) nominal leveld) mean	
		9)	For $f(x) = -x^2$ with $x_0 = 3$ and $\alpha = 0.5$, the maximum value of the given function using steepest ascent method is a) 1 b) 3 c) 0 d) -3	n
		10)	Latent variable is defined as a) a variable which is not directly observed b) quantitative variable c) qualitative variable d) None of these	
	B)	Fill i	in the blanks.	06
		1)	In Bootstrap resampling technique, from original sample of size <i>n</i> , we	
		2)	In EM algorithm 'E' stands for	
		3)	If $U_i \sim U(0,1)$ then, $Z = \sum_{i=1}^{n} U_i - 6$ Follows distribution.	
		4)	To generate single random number from bivariate exponential, it	
		5)	Acceptance - Rejection method used to	
		6)	Bootstrap is a technique.	
			ha falla - taa	
Q.2	Ans a) b) c) d)	wer th Desc Desc State What	ne following. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. e advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types.	16
Q.2 Q.3	Ans a) b) c) d) Ans a)	wer th Desc Desc State What wer th Expla	 ne following. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types. he following. ain theory of importance sampling with application to reduce Monte 	16 08
Q.2 Q.3	Ans a) b) c) d) Ans a) b)	wer th Desc Desc State What wer th Expla Carlo What	ne following. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. e advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types. he following. ain theory of importance sampling with application to reduce Monte o error. t is acceptance rejection $(A - B)$ method of random number.	16 08 08
Q.2 Q.3	Ans a) b) c) d) Ans a) b)	wer the Desc Desc State What What Expla Carlo What gene $N(\mu, \phi)$	ne following. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. e advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types. he following. ain theory of importance sampling with application to reduce Monte to error. t is acceptance rejection $(A - R)$ method of random number eration? Derive an algorithm for generating random numbers from σ^2).	16 08 08
Q.2 Q.3 Q.4	Ans a) b) c) d) Ans a) b)	wer the Desc Desc State What What Expla Carlo What gene $N(\mu, c)$ wer the	ne following. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. e advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types. he following. ain theory of importance sampling with application to reduce Monte t is acceptance rejection $(A - R)$ method of random number eration? Derive an algorithm for generating random numbers from σ^2). he following.	16 08 08
Q.2 Q.3 Q.4	Ans a) b) c) d) Ans a) b) Ans a)	wer the Desc Desc State What What Expla Carlo What gene $N(\mu, \phi)$ wer the Desc Illustr	ne following. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. e advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types. he following. ain theory of importance sampling with application to reduce Monte to error. t is acceptance rejection $(A - R)$ method of random number erration? Derive an algorithm for generating random numbers from σ^2). he following. cribe linear congruential method of random number generation. rate with example.	16 08 08 08
Q.2 Q.3 Q.4	Ans a) b) c) d) Ans a) b) Ans a) b)	wer the Desc Desc State What What Expla Carlo What gene $N(\mu, \phi$ wer the Desc Illustre State distribution	The following. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. a advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types. The following. ain theory of importance sampling with application to reduce Monte to error. t is acceptance rejection $(A - R)$ method of random number eration? Derive an algorithm for generating random numbers from σ^2). The following. cribe linear congruential method of random number generation. rate with example. and prove the result for generating random numbers from Poisson bution.	16 08 08 08 08
Q.2 Q.3 Q.4 Q.5	Ans a) b) c) d) Ans a) b) Ans a) b) Ans	wer the Desc Desc State What What Expla Carlo What gene $N(\mu, \alpha)$ wer the Desc Illustrice State distribution	ne rollowing. cribe Monte Carlo integration technique. cribe the Newton - Raphson method of finding the correct root. e advantages and disadvantages of bootstrap technique. t do you mean by gradient search method? Define its types. he following. ain theory of importance sampling with application to reduce Monte to error. t is acceptance rejection $(A - R)$ method of random number eration? Derive an algorithm for generating random numbers from σ^2). he following. cribe linear congruential method of random number generation. rate with example. and prove the result for generating random numbers from Poisson bution. he following.	16 08 08 08
Q.2 Q.3 Q.4 Q.5	Ans a) b) c) d) Ans a) b) Ans a) b) Ans a)	wer the Desc Desc State What What Expla Carlo What gene $N(\mu, c)$ wer the Desc Illustr State distrill wer the Let X export is unl	Performance for the following. The following. The following. The following. The following. The following. The following. The following is a comparison of the following. The following the	16 08 08 08 08

Q.6 Answer the following.

- a) What is EM algorithm? When we use EM algorithm? Illustrate with example. 08
- b) What is convolution of statistical distribution? State and prove the result of **08** convolution for Poisson distribution.

Q.7 Answer the following.

- a) State and prove the result for generating random numbers from discrete
 08 uniform distribution.
- **b)** Let $X \sim U(0,1)$ and $Y \sim U(0,1)$. Define Z = X + Y, obtain the distribution of Z **08** using convolution theorem.

No.							001	
	М.	Sc. (\$	Semester	- II) (New) (C STA	BCS) E TISTIC	Exar S	nination: Oct/Nov-2023	
			P	Probability Th	neory (MS	C16201)	
Day & Time:	& Date 11:0	e: Moi 0 AM	nday, 18-12- To 02:00 PM	-2023 M			Max. Marks	s: 80
Instru	uctio	ns: 1) 2) 3)	Q. Nos. 1 a Attempt any Figure to rio	nd 2 are compu y three question ght indicate full	ulsory. ns from C marks.	Q. No	o. 3 to Q. No. 7	
Q.1	A)	Choo 1)	b se the corr If for a r.v. 2 a) Good r c) Degene	rect alternative $X, X(\omega) = c$, a contract X. erate r.v.	e. onstant f	for al b) d)	ll ω , then r.v. X is called Conjugate r.v. Concave r.v.	10
		2)	The largest a) powers c) sample	field of subsets set class	s of Ω is (calle b) d)	d as Universal set none of these	
		3)	If <i>P</i> is a pro (φ is empty a) Zero c) 0.5	bability measur ' set)	e define	d on b) d)	(Ω, \mathbb{A}) , then $P(\varphi) =$ One 0.3325	
		4)	Lebesgue r a) 0 c) k	neasure of a sir	ngleton s	et {k b) d)	} is 1 None of these	
		5)	A class is a a) Numbe c) Sets	collection of ers		b) d)	Alphabets none of these	
		6)	The <i>σ</i> - field called a) Standa c) Closed	l generated by th Ird σ - field I σ - field	he interv	vals c b) d)	of the type $(-\infty, x), x \in R$ is Borel σ - field None of these	
		7)	If a random a) X^+ is in c) $ X $ is ir	i variable <i>X</i> is in itegrable itegrable	tegrable	, the b) d)	n <i>X</i> is integrable all of these	
		8)	If X and Y a a) $E(X).E$ c) $E(X) -$	are independent $C(Y) = E(Y)$: variable	es, th b) d)	ten $E(X + Y) = $ E(X) + E(Y) E(X)/E(Y)	
		9)	The limit of a) Limit in c) Limit	suprema seque iferior	ence is c	alled b) d)	l as Limit superior None of these	
		10)	If a r.v. X is $\varphi_x(t)$ of X a) Real c) Comple	symmetric abo is ex	ut zero, ⁻	then b) d)	the characteristic function doesn't exist None of these	

SLR-ER-13 Set P

	B) Fill in the blanks.			06
		1)	A well-defined collection of sets is called as	
		2)	If A is empty set, then $P(A) = $	
		3)	If Ω contains 3 elements, then the largest field of subsets of Ω contains sets.	
		4)	A non-empty class contains at least sets.	
		5)	If for events A and $B, A \cup B = \Omega$ then these events are called as	
		6)	If <i>P</i> is a probability measure defined on (Ω, A) , then $P(\Omega) = $	
Q.2	Ans	swert	the following.	16
	a)	Prov	e that inverse mapping preserves all set relations.	
	b)	Defii mea	ne conditional probability measure. Show that it is also a probability sure.	
	C)	Prov	e or disprove: Arbitrary union of fields is a field.	
	d)	Defii prob	ne mixture of two probability measures. Show that mixture is also a pability measure.	
Q.3	Ans	swert	the following.	
	a)	Prov	we that collection of sets whose inverse images belong to a σ - field, is a	08
	h)	Defi	a 0 - IIEIU. ne field and σ_{-} field. Show that there exist classes which are field but	08
	D)	not a	τ - field.	00
Q.4	Ans	swer 1	the following.	
	a)	Defii varia	ne expectation of simple random variable. If X and Y are simple random ables, prove the following:	08
		I)	E(X + Y) = E(X) + E(Y)	
		II) ;;;)	E(cX) = c E(X), where c is a real number.	
	h)	III) Disc	If $\lambda > 0$ a.s., then $E(\lambda) > 0$.	08
	D)	DISC	uss Dorer 0 - Heid. Find the Dorer sets.	00
Q.5	Ans	swer t	the following.	•••
	a)	Sho	w that Probability measure is a continuous measure.	80
	D)	Defii	ne convergence in probability and convergence in distribution. Also	08
		piov	e that convergence in probability implies convergence in distribution.	
Q.6	Ans	swer 1	the following.	
	a)	Defin	ne the characteristic function of a random variable. Also state its	80
	b)	Prov	ision medicinand uniqueness properly. We that expectation of a random variable Y exists if and only if $F(Y)$	08
	5)	exist	Is.	00
Q.7	Ans	swert	the following.	
	a)	Find	the characteristic function for binomial distribution.	08
	b)	State	e and prove Yule-Slutsky results.	08

ns: 1) 2) 3)	Q. N Atte Figu	los. 1 and. 2 are compulsory. mpt any three questions from Q re to right indicate full marks.	. No.	3 to Q. No. 7	
Cho (1)	ose t If <i>i</i> a a) b) c) d)	he correct options. and <i>j</i> are communicating states, State <i>j</i> is also persistent State <i>j</i> is transient State <i>j</i> is may or may not be p None of these	and ersis	state <i>i</i> is persistent, then tent	10
2)	lf pe a) c)	riod of a state is one, then the s Uniperiodic Periodic	state b) d)	is called as Aperiodic None of these	
3)	lf { <i>N</i> a) c)	(<i>t</i>)} is a counting process, then 0 10	N(0) b) d)) = 1 2.71	
4)	lf { <i>N</i> a) c)	$\{t(t)\}$ is a Poisson process with p λ t	baran b) d)	heter λ , then $E(N(t)) = $ λt λ^2	
5)	The at tir a) b) c) d)	process $\{X(t), t > 0\}$, where $X(t)$ ne t , is an example of st discrete time continuous state discrete time discrete state spaceton continuous time continuous state continuous time discrete state	t) = ocha spac ace ate sp spac	number of particles in a room stic process. e pace e	
6)	For a) c)	a persistent state 'í' the ultimate 1 0.5	first b) d)	return probability $F_{ii} = $ 0 0.33	
7)	In a a) c)	Branching process if $E(X_1) = n$ n^m	ı, the b) d)	$n E(X_n) = \underline{\qquad}.$ m^n None of these	
8)	Whie a) c)	ch of the following are class pro Persistency Transientness	pertie b) d)	es? Periodicity all of these	
9)	The alwa a)	row sum of every row of a trans ays Two	b)	probability matrix (TPM) is Zero	

	Stochastic Processes	(MSC16202)
Day & Date: Tuesday,	19-12-2023	

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2023 **STATISTICS**

Time: 11:00 AM To 02:00 PM

Seat

No.

Instruction

Q.1 A)

c) Non-negative d) One SLR-ER-14

Max. Marks: 80

Set P

		10) A finite Markov chain which contains only one communication class is called as							
		a) irreducible Markov chain b) reducible Markov chain c) finite Markov chain d) None of these							
	B)	Fill in the blanks	06						
		1) Recurrent state is also called as							
		 For a TPM of a reducible Markov chain, the row sum is 							
		 4) If two states are communicating with each other and one of them is transient, then the other one must be 							
		 5) For a symmetric random walk, probability 'p' of positive jump is 6) The probability of ultimate return for a transient state is 							
Q.2	Ans	wer the following	16						
	a)	Define and illustrate Markov chain.							
	D)	time domain.							
	c)	Write a short note on Mean recurrent time of a state.							
	d)	Discuss probability of first return for a state.							
Q.3	Ans	wer the following							
	a)	Explain Gamblers ruin problem. Obtain the probability that starting with i	80						
	h)	units the Gamblers fortune will reach N before reaching zero. Verify the states of random walk model for persistency as well as for	08						
	~)	periodicity							
Q.4	Ans	nswer the following							
	a)	Prove that, Markov chain is completely specified by one step t.p.m. and	80						
	h)	Initial distribution Describe dambler's dame. If a dambler starts the dame with initial amount	08						
	,	'i', find his winning probability.	00						
Q.5	Ans	wer the following							
	a)	Define stationary distribution of a Markov chain. Find the same for a	08						
		[1, 2, 3], whose tprints $[1, 1, 2]$							
		$\left[\overline{2} \overline{2} 0\right]$							
		$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$							
		$\begin{vmatrix} 3 & 3 & 3 \\ 2 & 1 & 2 \end{vmatrix}$							
	b)	A Markov chain with state space $S = \{1, 2, 3\}$ has tom $\begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$	80						
	D)	A markov chain with state space $5 = \{1,2,5\}$ has tpin $\begin{bmatrix} 0.5 & 0.4 & 0.5 \\ 0.1 & 0.8 & 0.1 \end{bmatrix}$							
		It is known that the process has started with the state $X_0 = 2$ i) $P(X_1 = 2)$							
		ii) $P(X_2 = 3)$							

- iii) $P(X_0 = 1)$ iv) $P(X_3 = 2/X_1 = 1)$

Q.6 Answer the following

Q.7

a)	State and prove class property of periodicity.	08			
b)	If $\{N(t)\}$ is a Poisson process, then for $s < t$, obtain the distribution of $N(s)$, if it is already known that $N(t) = k$.	08			
Ans	Answer the following				

- Define pure birth process and obtain its probability distribution. 80 a) b)
 - Discuss stationary distribution of a Markov chain. Also give illustration. 80

a) b) c) d)	They are one and the same They are equivalent They are exactly opposite One cannot say anything abo	out it.	
The a) c)	expected value of the runs in 3.1 4.4	the se b) d)	equence <i>XYY XY X X</i> is 4 5.2
In Kı are _ a) c)	ruskal-Wallis test of <i>k</i> samples <i>k</i> <i>k</i> + 1	s, the b) d)	appropriate degrees of freedom k-1 n-k

Seat No.

> M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2023 **STATISTICS**

> > Theory of Testing of Hypotheses (MSC16203)

Day & Date: Wednesday, 20-12-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three guestions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 A) Fill in the blanks by choosing correct alternatives given below.

- Which of the following is a simple hypothesis for $N(\mu, \sigma^2)$? 1)
 - a) $H_0: \mu = 5, \sigma = 2$ $H_0: \mu = 10$ b)
 - c) $H_0: \mu = 0, \sigma > 1$ $H_0: \mu \neq 3, \sigma = 1$ d)
- Let $f_{\theta}, \theta \in \Theta = \{\theta_0, \theta_1\}$. Then MP test is based on _____. 2)
 - a) $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta$
 - b) $H_0: \theta_0 < \theta < \theta_1$ against $H_1: \theta \le \theta_0$ or $\theta > \theta_1$
 - c) $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$
 - d) $H_0: \theta \le \theta_0 \text{ or } \theta > \theta_1 \text{ against } H_1: \theta_0 < \theta < \theta_1$

An UMP test 3)

- a) is biased test b) is an unbiased test always exist c)
- Let X_1, X_2, \ldots, X_n are iid with $N(\theta, 1)$. Let $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$. 4) For any α , $0 < \alpha < 1$,
 - a) there does not exist a UMP level α test.
 - b) there exists a UMP level α test.
 - there exists a test with one sided. c)
 - d) none of these.

If λ is the likelihood ratio test statistic, which one of the following has 5) got its asymptotic distribution as χ^2 distribution?

a)	$\log_e(\lambda)$	b)	$\log_e(1/\lambda)$
c)	$\log_e(\lambda^2)$	d)	$\log_e(1/\lambda^2)$

- If, for a given α , $0 \le \alpha \le 1$, non-randomized Neyman-Pearson and 6) likelihood ratio test of a simple hypothesis against a simple alternative exists, then which one of the following is correct?
 - a) They ar
 - They ar b)

8)

- They ar c)
- d) One ca

7) The expecte 3.1

d) none of these Max. Marks: 80

06

16

- If n_1 and n_1 in Mann-Whitney test are large, the statistic U is 9) distributed with mean . a) $(n_1 + n_2)/2$ b) $(n_1 - n_2)/2$ c) $n_1 n_2/2$ d) $n_1 n_2$
- 10) If $\phi_1(x)$ and $\phi_2(x)$ are two test functions of size α each then size of $\lambda \phi_1(x) + (1 - \lambda) \phi_2(x)$ is _____. b)
 - a) α
 - c) 1

λα Not defined d)

B) Fill in the blanks.

- Level of significance is the probability of _____ type of error. 1)
- The distribution of statistic used in sign test is 2)
- The non-parametric test for goodness of fit of a distribution is 3)
- If all frequencies of classes are same, the value of Chi-square is 4)
- The range of Kendall's rank correlation τ is _____ (-1 to 1) 5)
- UMAU confidence intervals are obtained from tests. 6)

Q.2 Answer the following.

- Define monotone likelihood ratio (MLR) property. a)
- Distinguish between randomized and non-randomized tests. b)
- Describe signed-rank test in brief. C)
- d) State two sample U statistic theorem.

Q.3 Answer the following

- Define most powerful (MP) test. Show that MP test need not be unique 08 a) using suitable example.
- Obtain MP test of level α for testing $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1 (> \mu_0)$ **08** b) based on a random sample of size *n* from $N(\mu, \sigma^2)$, where σ^2 is known.

Q.4 Answer the following

- When a family of densities is said to have monotone likelihood ratio? Show 08 a) that the one-parameter exponential family of densities belongs to this class of MLR densities.
- Let $X_1, X_2, \ldots X_n$ be a random sample from $N(\theta, \sigma^2)$, where θ is known. 08 b) Obtain UMP level α test for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 > \sigma_0^2$

Q.5 Answer the following

- Explain the concepts of UMPU tests and show that MP and UMP tests of 08 a) size α are unbiased.
- Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from $U(0, \theta)$ distribution. b) 08 Obtain shortest length confidence interval for θ .

Answer the following. Q.6

- Define confidence set and UMA confidence set of level (1α) . Derive the **08** a) relationship between UMA confidence set and UMP test.
- Let X_1, X_2, \ldots, X_n be a random sample from exponential distribution with **08** b) mean θ . Consider the testing of hypothesis problem $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_0$. Find UMA $(1 - \alpha)$ level family of confidence sets corresponding to size α UMP test.

Q.7 Answer the following.

- a) Slate and prove a necessary and sufficient condition for a similar test to
 08 have Neyman structure.
- **b)** Derive LRT for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ based on a sample of **08** size *n* from $N(\mu, 1)$ distribution.

c)	Cluster sampling
d)	Stratified random sampling
Sar	npling error can be reduced by
a)	increasing the population
b)	decreasing the sample size
c)	increasing the sample size
d)	None of the above

d) None of these units within a cluster are same. In this situation, which sampling will

- A population is divided into clusters and it has been found that all the 6)
- 5) In simple random sampling the ratio estimator is . a) always unbiased b) always biased
- with probability proportional to a) size of the unit b) size of the sample c) size of the population None of these d)
- d) selection of any n units In sampling with probability proportional to size, the units are selected

b) selecting n units situated at equal intervals

a) selecting n continuous units

c) selection of n largest units

c) minimum variance unbiased

be adopted? a) SRSWOR

b) Systematic sampling

probability that units U_{21} and U_{22} are both in a sample is _____. a) 0 1/10 b) c) 1/20 d) 1/4003) Systematic sampling means

b)

d)

systematic

cluster

In linear systematic sampling of 20 units from a population of 200 units, the

Q.1 A) Multiple choice questions.

2)

4)

7)

a) random

c) purposive

Instructions: 1) Question no. 1 and 2 are compulsory.

Day & Date: Thursday, 21-12-2023 Time: 11:00 AM To 02:00 PM

Seat

No.

- Selection of Indian cricket team for the world cup is sampling. 1)

2) Attempt any three questions from Q. No. 3 to Q. No. 7.

3) Figure to right indicate full marks.

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2023 **STATISTICS** Sampling Theory (MSC16206)

SLR-ER-16

Set

Max. Marks: 80

06

16

- 8) Deming's technique is used to deal with _____.
 - a) sampling errors
 - c) non-sampling errors
- 9) Simple regression estimator of population total is given by _____.

b)

d)

non-response errors

None of the above

- a) $N[\bar{x} + b(\bar{X} \bar{y})]$ b) $N[\bar{x} + b(\bar{x} \bar{y})]$
- c) $N[\bar{y} + b(\bar{X} \bar{x})]$ d) $N[\bar{y} + b(\bar{x} \bar{y})J$

10) Non-response in survey means _____

- a) non availability of respondent
- b) non return of questionnaire by person
- c) refuse to give information by respondent
- d) All the above

B) Fill in the blanks.

- 1) The probability of drawing a unit at each subsequent draw remains same in _____ sampling scheme.
- 2) In the context of sampling the fraction n/N is called _
- 3) Variance of optimum allocation is always _____ that of proportional allocation.
- 4) Two stage sampling design is more efficient than single stage sampling if correlation between units in the first stage is _____.
- 5) Under SRSWOR sampling design, the bias of regression estimator of population mean \bar{Y}_{Reg} is given by _____.
- 6) If 100 students are selected out of 500, and 25 students are then selected from the selected 100 students. The procedure adopted is _____.

Q.2 Answer the following

- a) Give advantages of sampling method over census method.
- **b)** Define ratio estimator of population mean and obtain its expected value.
- **c)** Describe the Lahiri's method of selecting a probability proportional to size sample from a finite population of size N.
- **d)** What is two stage sampling? Give a practical example where two-stage sampling scheme may be adopted.

Q.3 Answer the following.

- a) Describe simple random sampling. In SRSWOR, show that the probability of **08** drawing a specified unit at every draw is the same.
- b) In SRSWOR, derive an unbiased estimator of a population mean and its sampling variance.

Q.4 Answer the following.

- a) What is proportional allocation? Derive the variance of the estimator of the population mean under this allocation.
- b) Define linear systematic sampling. Derive the sampling variance of the traditional unbiased estimator of a population mean under this scheme.

Q.5 Answer the following.

- a) Define a cluster sampling. Bring out similarities and differences between
 08 cluster sampling and stratified sampling.
- b) Define PPSWR sampling design. Obtain an unbiased estimator of population 08 total and its variance when PPSWR sample of size n is drawn from a population of size N.

Q.6 Answer the following.

- a) Define Horvitz-Thompson estimator of population mean and establish its unbiasedness under an arbitrary sampling design. Also derive its sampling variance.
- b) Develop Des Raj's ordered estimator of population mean based sample size
 08
 2. Show that it is unbiased.

Q.7 Answer the following.

- a) Define linear regression estimator for a population mean. Derive the approximate expression for bias of the estimator.
- **b)** Explain the problem of non-response and any one technique to deal with the **08** non-response.

ay & Dal me: 11:(e: Frie 00 AM	day, 05-01-2024 Max. Marks To 02:00 PM	: 80
structio	ns: 1) 2 3) Q. Nos. 1 and 2 are compulsory.) Attempt any three questions from Q. No. 3 to Q. No. 7) Figure to right indicate full marks.	
.1 A)	Cho 1)	ose the correct alternative If T_n is consistent of θ then a) T_n is consistent of θ^2 b) T_n is consistent of $\sqrt{\theta}$	10
		c) T_n is consistent of e^{θ} d) None of these	
	2)	 Consider the following statements: 1) Strong consistency implies weak consistency. 2) Weak consistency implies strong consistency. Which of the above statements is / are true? a) only 1 b) only 2 c) both 1 and 2 d) neither 1 nor 2 	
	3)	Let T_n be an unbiased and consistent estimator of θ then T_n^2 for θ^2 is a) unbiased and consistent both b) unbiased only c) consistent only d) neither unbiased nor consistent	
	4)	 Which one of the following is true for estimation of θ for U(0, θ) distribution by the MLE a) unbiased but not consistent b) consistent but not unbiased c) both consistent and unbiased d) neither consistent nor unbiased 	
	5)	Based on sample of size n from $N(\theta, 1)$ an estimator \overline{X}_n for θ isa) Unbiasedb) Consistentc) CANd) all the above	
	6)	 Exponential distribution with location parameter θ is a) one parameter exponential family b) Cramer family c) both (A) and (B) d) neither (A) nor (B) 	
	7)	 For sufficiently large sample size, with probability close to one, the likelihood equation admits a) no consistent solution b) unique consistent solution c) two consistent solutions d) more than two consistent solutions 	

Seat No.

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2023 **STATISTICS**

Asymptotic Inference (MSC16301)

Da Tir

Q.

d) more than two consistent solutions

SLR-ER-18

Set P

- 8) Let $X_1, X_2, ..., X_n$ be iid from Poisson (θ) and \overline{X}_n is CAN for θ . CAN estimator of $P_{\theta}(X = 1)$ is _____.
 - \bar{X}_n b) $e^{-\bar{X}_n}$

c) $\bar{X}_n e^{-\bar{X}_n}$ d) none of these

9) In LRT, under some regularity conditions on $f(x, \theta)$, the random variable $-2 \log \lambda(x)$ [where $\lambda(x)$ is likelihood ratio] is asymptotically distributed as _____.

a) chi-square

Normal

- b) exponential
- d) F-distribution

10) Mean squared error of an estimator T_n of θ is expressed as _____.

- a) $Var_{\theta}(T_n) + Bias$
- b) $Var_{\theta}(T_n) + [Bias]^2$
- c) $[Var_{\theta}(T_n)]^2 + [Bias]^2$ d) $[Var_{\theta}(T_n) + Bias]^2$

B) Fill in the blanks.

c)

a)

- 1) For Cauchy distribution with location parameter θ , consistent estimator of θ is _____.
- 2) The asymptotic distribution of Wald's statistic is _____.
- 3) In testing independence in a 2 × 3 contingency table, the number of degrees of freedom in χ^2 distribution is
- 4) The variance stabilizing transformation for normal population is _____.
- 5) Exponential family is _____ than Cramer family.
- 6) To investigate the significance difference between variances of several normally distributed populations _____ test is used.

Q.2 Answer the following

- a) Define
 - i) Weak consistency
 - ii) Strong consistency
- b) Give an example of consistent estimator which is not CAN.
- c) Describe Rao's score test. State its asymptotic distributions
- d) Let $X_1, X_2, ..., X_n$ be *iid* Poisson (λ). Show that sample mean \overline{X}_n is consistent for λ .

Q.3 Answer the following

- Define consistent estimator. State and prove invariance property of 08 a) consistent estimator of a real valued parameter θ Let X_1, X_2, \dots, X_n be *iid* from exponential distribution with mean θ . Obtain **08** b) consistent estimator for first and third quartiles. Answer the following Q.4 Show that sample distribution function at a given point is CAN for the 08 a) population distribution function at the same point. Let $X_1, X_2, ..., X_n$ be *iid* exponential with location θ . Examine whether $X_{(1)}$ is **08** b) CAN for θ Q.5 Answer the following Derive asymptotic distribution of Pearson's chi-square statistic. **08** a) Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from *N* (μ, σ^2). Obtain MLE b) **08**
 - of (μ, σ^2) . Show that it is CAN. Obtain its asymptotic variance-covariance matrix.

Q.6 Answer the following

- a) Explain variance stabilizing transformations and illustrate their use in large 08 sample estimation and tests.
- **b)** Based on random sample of size *n* from *N* (θ , σ^2), find variance stabilizing **08** transformation for *S*². Using this transformation, obtain $100(1 \alpha)\%$ confidence interval for σ^2 .

Q.7 Answer the following

- a) Derive Bartlett's test for homogeneity of variances of several normal **08** populations
- **b)** Let $X_1, X_2, ..., X_n$ be *iid* $B(1, \theta)$. Let $\phi(\theta) = \theta(1 \theta)$. Obtain CAN estimator for $\phi(\theta)$.

•	-		
Seat No.			Set P
	М.S	Sc. (S	emester - III) (New) (CBCS) Examination: Oct/Nov-2023 STATISTICS
			Multivariate Analysis (MSC16302)
Day & Time:	Date 11:0	e: Sur 0 AM	day, 07-01-2024 Max. Marks: 80 Fo 02:00 PM
Instru	ctio	ns: 1) 2) 3)	Q. Nos.1and 2 are compulsory. Attempt any Three questions from Q. No. 3 to Q. No. 7 Figures to the right indicate full marks.
Q.1	A)	Choo	se Correct Alternative. 10
	,	1)	A Wishart distribution has parameter/s. a) 1
		2)	Hotelling's T^2 is multivariate extension of
		2)	a) normal distribution b) chi-square distribution c) t-distribution d) F-distribution
		3)	The first principal component have variance.
			a) Least b) Largest c) Average d) none of these
		4)	A divisive hierarchical clustering method employs a strategy.
			a) Top-down b) Bottom-up c) Random d) None of these
		5)	Let X_1, X_2, \ldots, X_n be a random sample of size n from p-variate normal distribution with mean vector 0 and covariance matrix Σ . The MLE of Σ
			a) $\frac{1}{n}\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'$ b) $\frac{1}{n-1}\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'$
			c) $\frac{1}{n} \sum_{i=1}^{n} X_i X'_i$ d) $\sum_{i=1}^{n} X_i X'_i$
		6)	Principal components are a) orthogonal b) uncorrelated c) both (a) and (b) d) neither (a) nor (b).
		7)	Let random vector $X = (X_1, X_2, X_3)'$ follows $N_3(\mu, \Sigma)$, where $\mu' = [1, 2, 3]$ and $\Sigma = \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then $X_1 - X_2 + X_3$ follows distribution.
			a) $N(2,5/2)$ b) $N(0,2)$ c) $N(2,2)$ d) $N(2,3)$
		8)	As the distance between two populations increases, misclassification error
			a) Decreases b) Increases c) remains constant d) none of these

c) remains constant

SLR-ER-19

06

16

- 9) Let *X* be a random vector with covariance matrix Σ . A decrease in variances of *p* variables in *X* will lead to _____.
 - a) increase trace(Σ)
 - b) decrease trace(Σ)
 - c) does not affect trace(Σ)
 - d) nothing can be said

10)	Total variation explained by all principal components is _	that by
-	the original variables.	

a) equal to

- b) greater than
- c) less than d) none of these

B) Fill in the blanks.

- 1) Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from p-variate normal distribution with mean vector μ and covariance matrix Σ . The distribution of mean vector \overline{X} is
- 2) The mean vector of $(X_1 + X_2, X_1 X_2)$ is (10,0) then mean vector of $(X_1, 2X_1 X_2)$ is _____.
- 3) While applying _____ clustering algorithm, the distance between two clusters is taken to be the smallest distance between observations from two clusters.
- 4) A _____ is a graphical device for displaying clustering results.
- 5) If \overline{X} has $N_p(\mu, \Sigma)$ distribution then moment generating function of vector X is _____.
- 6) Let vector *Y* has $N_p(\mu, \Sigma)$ distribution. For a constant matrix $A_{q \times p}$ and vector $b_{q \times 1}$ the distribution of X = AY + b is _____.

Q.2 Answer the following.

- a) Describe singular and non-singular normal distribution.
- **b)** Find maximum likelihood estimator for $\underline{\mu}$ based on a random sample from multivariate normal distribution $N_P(\mu, \Sigma)$.
- c) Show that two p-variate normal vectors \underline{X}_1 and \underline{X}_2 are independent if and only if $cov(\underline{X}_1, \underline{X}_2) = 0$.
- d) Define variance-covariance matrix. State its properties.

Q.3 Answer the following.

- a) With usual notations, find the mean and variance-covariance matrix of 08 multivariate normal distribution.
- b) Obtain the characteristic function of multivariate normal distribution. 08

Q.4 Answer the following.

- a) Discuss the concept of discriminant analysis in detail.
- **b)** Find maximum likelihood estimator of Σ based on a random sample from **08** multivariate normal distribution $N_p(\mu, \Sigma)$.

Q.5 Answer the following.

- a) Discuss hierarchical and non-hierarchical clustering. Discuss agglomerative **08** clustering in detail.
- b) Explain the concept of clustering in brief. Discuss k-means clustering. 08

Q.6	Ans a) b)	 wer the following. Describe- 1) Single linkage 2) Complete linkage Illustrate with the help of an example. Derive expressions for principle components. Show that total variation explained by principal components is same as total variation in original variables. 	08 08
Q.7	Ans a) b)	wer the following. If $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$, them find the distribution of the following: 1) $\underline{a'} \underline{X}$, where \underline{a} is a p-dimensional vector of constants 2) \underline{AX} , where A is matrix of order $m \times p$ Obtain Fisher's discriminant function for two populations.	08 08

	Ρ	lanni	ng and Analysis of Indust	rial Experiments (MSC	(16303)
ay ime	& Da e: 11:	te: Tu 00 AM	esday, 09-01-2024 To 02:00 PM		Max. Marks: 80
nsti	ructio	o ns: 1 2 3	Question no. 1 and 2 are comp Attempt any three questions fro Figure to right indicate full mar	oulsory. om Q. No. 3 to Q. No. 7. ks.	
2.1	A)	Choo 1)	ose the correct alternative. In two replications of 2 ⁴ experiment a) 32 c) 64	nent total number of observ b) 16 d) 31	10 ations are
		2)	In one-fourth fraction of $2^7 \exp I = ABCD = CDEFG$. The aliase a) $CD, ABCDEFG, EFG$ c) $CD, ABCDEFG, CDEFG$	eriment with defining relation es of <i>AB</i> are b) <i>AB,CDEFG,CD</i> d) <i>ACDEFG,ABEFG,ABC</i>	ר D
		3)	A connected block design is a) always c) may or may not	orthogonal. b) never d) none of these	
		4)	 When the interaction effect AB a) the block effect and main e b) the block effect and interact c) the block effect and interact d) the block effect and interact 	<i>C</i> is confounded in 23 factor effect <i>A</i> are identical ction <i>AB</i> are identical ction <i>ABC</i> are identical ction <i>AC</i> are identical	ial design:
		5)	In a BIBD (v, b, r, k, λ) , which is a) $rv = bk$ c) $r(k-1) = \lambda(v-1)$	b) $N'N = (r - \lambda)I_v + \lambda E_v$ d) $b \ge v$	р? v
		6)	In principle block of a 2 ⁴ experi generator which of the following a) (1), <i>abcd</i> , <i>abc</i> , <i>abd</i> , <i>bcd</i> , <i>acd</i> b) (1), <i>ab</i> , <i>ac</i> , <i>ad</i> , <i>bc</i> , <i>bd</i> , <i>cd</i> , <i>abc</i> c) <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>abc</i> , <i>abd</i> , <i>bcd</i> , <i>acd</i> d) <i>ab</i> , <i>ac</i> , <i>ad</i> , <i>bc</i> , <i>bd</i> , <i>cd</i> , <i>abc</i> , <i>abd</i>	ment in two blocks with <i>ABC</i> g treatment is present? <i>l, bc, cd</i> cd	CD as
		7)	The two-way ANOVA model with a) $Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$ b) $Y_{ij} = \alpha_i \times \beta_i + \varepsilon_{ijk}$ c) $Y_{ij} = \mu - \alpha_i + \beta_j + \varepsilon_{ijk}$ d) $Y_{ij} = \mu + \alpha_i - \beta_j + \varepsilon_{ijk}$	thout interaction can be writ i = 1,2, v; j = 1,2, b i = 1,2, v; j = 1,2, b i = 1,2, v; j = 1,2, b i = 1,2, v; j = 1,2, b	ten as
		8)	In a BIBD, if number of treatme block, then BIBD is	ents is equal to the number of	of plots in a

- a) reduces to CRD b) reduces to RBD
- c) reduces to LSD d) none of these

Set P

No
NO.

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2023 STATISTICS

D

Т

Q

- 9) In one-way ANOVA model with v treatments, which of the following is not assumption of errors? a) errors are uncorrelated
 - b) errors have constant variance
 - d) errors have binomial distribution
- Smaller the experimental error 10) efficient the design. b) more
- a) Less c) equally

c) errors have mean zero

B) Fill in the blanks.

In partial confounding effects are confounded in replications. 1)

d) none of these

- In a RBD with 5 blocks and 4 treatments, number of plots in each block 2) is
- 3) ANOVA is statistical method of comparing of several populations.
- 4) A design in which main effects are confounded with 2-way interactions is Resolution design.
- The rank of estimation space in one-way ANOVA with v treatment is 5)
- The degrees of freedom corresponding to error in four replicate of 2^4 6) design are .

Q.2 Answer the following.

- a) Define one-way classification model. Derive least square estimates of parameters in one-way classification model.
- b) Write a short note on effects in factorial experiments.
- c) Define Total and Partial confounding. Illustrate any one type of confounding.
- **d)** Write lay out of 3^3 factorial experiment in single replicate.

Q.3 Answer the following.

	a) b)	Derive the test for testing treatments in one-way classification. Obtain half-fraction of 2 ⁶ experiments. Write its complete alias structure.	08 08
Q.4	Ans	swer the following.	•••
	a)	condition for orthogonality of a connected block design.	08
	b)	Describe analysis of 2 ⁿ factorial experiment.	08
Q.5	Ans	swer the following.	
	a) b)	Obtain half fraction of 2 ⁵ experiments. Write its consequences. Define resolution of design and minimum aberration design. Illustrate both.	08 08
Q.6	Ans	swer the following.	
	a)	Write 2 ⁵ experiments in four blocks. Explain analysis of confounded experiments.	80
	b)	Define one-way ANCOVA model. Derive test for testing hypothesis of treatment in one-way ANCOVA.	08
Q.7	Ans	swer the following.	
	a)	 Define 1) Orthogonal block design 2) Balanced block design 3) BIBD 	08
	b)	State and prove properties of $Q = T - NK^{-\delta}B$.	08

06

- Q
- Q

'	5	/	
Th∉ a) c)	e multicollinearity problem in error terms response variable values	regre b) d)	ession concerns the regressors regression coefficients
The of ¥ a) c)	e variance stabilizing transfo ′ is Poisson Normal	rmatio b) d)	on \sqrt{Y} is used when distribution Binomial none of these

Seat No.

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2023 **STATISTICS**

Regression Analysis (MSC16306)

Day & Date: Thursday, 11-01-2024 Time: 11:00 AM To 02:00 PM

Instructions: 1) Question Nos. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Multiple choice questions.

- The estimate of β in the regression model $Y = \alpha + \beta X + \varepsilon$ by method 1) of least squares is
 - a) biased
- b) unbiased
- c) inconsistent none of these d)
- 2) In a multiple linear regression model, the hat matrix is
 - a) Symmetric but not idempotent
 - b) idempotent but not Symmetric
 - c) Symmetric and idempotent
 - d) Skew-symmetric but not idempotent
- In a multiple linear regression model with $\varepsilon \sim N(0, \sigma^2 I)$, the distribution 3) of LSE $\hat{\beta}$ is
 - a) $N(\beta, H\sigma^2)$ b) $N(\beta, (I-H)\sigma^2)$
 - d) $N(\beta, (X'X)^{-1}\sigma^2)$ c) $N(\beta, \sigma^2 I)$
- 4) The difference between the observed value Y_i and corresponding fitted value \hat{Y}_i is called .
 - b) a) intercept error
 - c) residual d) none of these
- 5) Normal probability plots show
 - a) residuals plotted versus cumulative probability
 - b) residuals plotted versus observation numbers
 - c) residuals plotted versus predicted values
 - d) Y-values plotted versus X-values
- The coefficient of determination (R^2) is the square of correlation 6) coefficient between (where Y is response)
 - Y and its predicted value a) Y and hat matrix b) d) none of these
 - c) regressors

7)

8)

- The multicollinear
- c) response vari

10

Set

Max. Marks: 80

SLR-ER-21

- 9) Orthogonal polynomials are used to fit a polynomial model of _
 - a) first order in one variable b) second order in two variables
 - c) any order in one variable d) any order
 - ariable d) any order in two variables
- 10) Logistic regression model is an appropriate model when response variable is distributed as _____.
 - a) Poisson b) Binomial
 - c) Normal d) Gamma

B) Fill in the blanks:

- 1) In a simple linear regression model, the distribution of error term is assumed to be _____.
- Cochrane-Orkut method of parameter estimation is used in the presence of _____.
- 3) The model $y = \beta_0 x^{\beta_1}$ can be linearized by using _____ transformation.
- 4) The non-linear model transformed to an equivalent linear form is called _____ linear.
- 5) The joint points of pieces in polynomial fitting are usually called _____
- 6) In a multiple linear regression model with $\varepsilon \sim N(0, \sigma^2 I)$, the variance of residual vector *e* is _____.

Q.2 Answer the following

- a) State assumptions of error vector in multiple regression model.
- **b)** In a multiple linear regression model, show that the hat matrix is symmetric and idempotent.
- c) Describe eigen value analysis of matrix X'X method for detection of multicollinearity.
- d) Describe polynomial models in one variable and two variables.

Q.3 Answer the following.

- a) Describe multiple linear regression model. Stating the assumptions, obtain **08** mean and variance of least squares estimators of β .
- b) Discuss confidence interval for regression coefficient and prediction interval for future observation in the context of multiple linear regression.

Q.4 Answer the following.

- a) Discuss the concept of multicollinearity with suitable example. Discuss the examination of correlation matrix method for detection of multicollinearity.
- b) Describe forward selection method for variable selection and state its08 limitations.

Q.5 Answer the following.

- a) State the autocorrelation problem. Explain Durbin-Watson test for detecting utocorrelation. What are its limitations?
- b) Explain the residual plots. Outline the procedure of construction of normal probability plot and procedure for checking normality assumption.

Q.6 Answer the following.

- a) Define kth order polynomial regression model in one variable. Describe
 08 orthogonal polynomial to fit the polynomial model in one variable.
- b) Describe the least squares method for parameter estimation in non-linear regression. Discuss the same for $y = \theta_1 e^{\theta_2 x} + \varepsilon$.

Q.7 Answer the following.

- a) Define generalized linear model. Derive the maximum likelihood estimates of **08** the parameters in generalized linear model.
- b) Define logistic regression model. Derive the maximum likelihood estimates of **08** parameters involved in the single covariate logistic regression model.

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2023 STATISTICS

Data Mining (MSC16401)

Day & Date: Monday, 18-12-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Q. Nos.1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative.

- The class label of training tuples is not known and the number or set of classes to be learned is also not known in advance. Then it is known as:
 - a) Self learning
- b) Unsupervised learning
- c) Supervised learning d) None of these

2) _____ maps data into predefined groups.

- a) Regression c) Prediction
- b) Time series analysisd) Classification
- 3) An agglomerative hierarchical clustering method uses a ______ strategy.
 - a) Top-down

- b) Bottom-up
- c) Random
- d) None of these
- 4) In k-nearest neighbor algorithm, k stands for _____
 a) Number of neighbors that are investigated
 - b) Number of Iterations
 - c) Number of total records
 - d) Random number

5) In data mining, ANN stands for _____.

- a) Artificial Neural Network
- b) A-nearest neighbor
- c) Adjacent Neural Network
- d) None of these

6) Data used to verify performance of the built model is called _____.

- a) training data b) trained data
- c) testing data d) pre-analysis data
- 7) k-nearest neighbor method can be used _____.
 - a) only when class labels are qualitative
 - b) only when class labels are quantitative
 - c) Both (a) and (b)
 - d) None of these

Seat No.

Max. Marks: 80

06

16

08

8) Unlike in regression problem, the class label in classification problem is

a) numeric (ratio scale)

- b) Categorical
- c) Integer only
- d) Rational only
- In a feed- forward network, the connections between layers are 9) from input to output.
 - a) Bidirectional
- b) Unidirectional
- c) Multidirectional d) None of these

10) Data by itself is not useful unless _____.

- a) It is massive
- b) It is properly stated
- c) It is collected from diverse sources
- d) It is processed to obtain information

B) Fill in the blanks.

- Student learns things in the presence of a teacher. This is considered 1) as _____ learning.
- 2) In machine learning method, patterns are inferred from the unlabeled input data.
- The part of the entire data, which is used for building the model is 3) called as
- The problem of finding hidden structure in unlabeled data is called 4)
- Classification of new species to one of the earlier known families of 5) species is
- In data mining, SVM stands for _____. 6)

Q.2 Answer the following.

- What are the advantages of unsupervised learning? a)
- Discuss, with illustration, the concept of unsupervised learning. b)
- Why Bayes' classifier is called Naive classifier? c)
- Discuss accuracy and precision of a classifier. d)

Q.3 Answer the following. Discuss information gain in decision tree. **08** a) Describe decision tree classifier in detail. 80 b) Q.4 Answer the following. Discuss k-nearest neighbor classifier in detail. 08 a)

Write down the algorithm for Bayesian classifier. b)

Q.5 Answer the following.

- Discuss the different metrics for Evaluating Classifier Performance. 80 a) 08
- Discuss density based methods for unsupervised learning. b)

Q.6	Answer the following.					
	 a) Describe unsupervised learning. Also explain in detail, association and prediction. 		08			
	b)	Describe -	08			
	-	i) Sensitivity of a model				
		ii) Specificity of a model				
		Illustrate with the help of example.				
Q.7	Answer the following.					
	a)	Explain in detail, market basket analysis.	08			
	b)	Discuss characteristics of logistic regression.	08			

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Noc-2023 STATISTICS Industrial Statistics (MSC16402) Day & Date: Tuesday, 19-12-2023 Max. Marks: 80 Time: 03:00 PM To 06:00 PM Instructions: 1) Q. Nos. 1 and. 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks. Q.1 A) Fill in the blanks by choosing correct alternatives given below. 10 1) Quality is inversely proportional to
Industrial Statistics (MSC16402) Day & Date: Tuesday, 19-12-2023 Max. Marks: 80 Time: 03:00 PM To 06:00 PM Instructions: 1) Q. Nos. 1 and. 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks. Q.1 A) Fill in the blanks by choosing correct alternatives given below. 10 1) Quality is inversely proportional to
Day & Date: Tuesday, 19-12-2023Max. Marks: 80Time: 03:00 PM To 06:00 PMInstructions: 1) Q. Nos. 1 and. 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.10Q.1 A) Fill in the blanks by choosing correct alternatives given below. a) cost b) variability c) method101) Quality is inversely proportional to a) cost b) variability c) method102) Which of the following is useful in data collection activity? a) check sheet c) histogramb) control chart d) Pareto chart3) The S chart is preferred over R chart for a) small c) moderatesample sizes. large4) The use of warning limits used in control charts increases a) proportion of defectives c) risk of false alarms c) b) process capability5) The capability index C_p involves c) both μ and σ c) both μ and σ parameter(s) to be estimated. d) none of the above6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n_1 and n_2 units are checked
Instructions: 1) Q. Nos. 1 and. 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks. 10 Q.1 A) Fill in the blanks by choosing correct alternatives given below. 10 1) Quality is inversely proportional to
Q.1 A)Fill in the blanks by choosing correct alternatives given below.101)Quality is inversely proportional to a) costb)variabilityc)methodd)time2)Which of the following is useful in data collection activity? a)check sheetb)c)histogramd)Pareto chart3)The S chart is preferred over R chart for c)sample sizes. a)sample sizes. a)a)smallb)large regc)moderated)moderate to large4)The use of warning limits used in control charts increases a)proportion of defectives process capability c)c)risk of false alarmsd)process variability5)The capability index C_p involves c)parameter(s) to be estimated. a) only μ c)a)only μ c)b)only σ d)c)b)only σ c)b)d)none of the above6)In double sampling plan a) only two units are checked b) only tirst and last lot is checked c) only two samples of respective n_1 and n_2 units are checked
 Quality is inversely proportional to
 a) cost b) variability c) method d) time 2) Which of the following is useful in data collection activity? a) check sheet b) control chart c) histogram d) Pareto chart 3) The S chart is preferred over R chart for sample sizes. a) small b) large c) moderate d) moderate to large 4) The use of warning limits used in control charts increases a) proportion of defectives b) process capability c) risk of false alarms d) process variability 5) The capability index C _p involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n₁ and n₂ units are checked
 c) method d) time 2) Which of the following is useful in data collection activity? a) check sheet b) control chart c) histogram d) Pareto chart 3) The S chart is preferred over R chart for sample sizes. a) small b) large c) moderate d) moderate to large 4) The use of warning limits used in control charts increases a) proportion of defectives b) process capability c) risk of false alarms d) process variability 5) The capability index <i>C_p</i> involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective <i>n</i>₁ and <i>n</i>₂ units are checked
 2) Which of the following is useful in data collection activity? a) check sheet b) control chart c) histogram d) Pareto chart 3) The S chart is preferred over R chart for sample sizes. a) small b) large c) moderate d) moderate to large 4) The use of warning limits used in control charts increases a) proportion of defectives b) process capability c) risk of false alarms d) process variability 5) The capability index <i>C_p</i> involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective <i>n</i>₁ and <i>n</i>₂ units are checked
a) check sheet b) control chart c) histogram d) Pareto chart 3) The S chart is preferred over R chart for sample sizes. a) small b) large c) moderate d) moderate to large 4) The use of warning limits used in control charts increases a) proportion of defectives b) process capability c) risk of false alarms d) process variability 5) The capability index C_p involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n_1 and n_2 units are checked
3) The S chart is preferred over R chart for sample sizes. a) small b) large c) moderate d) moderate to large 4) The use of warning limits used in control charts increases a) proportion of defectives b) process capability c) risk of false alarms d) process variability 5) The capability index C_p involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n_1 and n_2 units are checked
4) The use of warning limits used in control charts increases a) proportion of defectives b) process capability c) risk of false alarms d) process variability 5) The capability index C_p involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n_1 and n_2 units are checked
 4) The use of Warning limits used in control charts increases a) proportion of defectives b) process capability c) risk of false alarms d) process variability 5) The capability index C_p involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n₁ and n₂ units are checked
c) risk of false alarms b) process oupdahily c) risk of false alarms d) process oupdahily for constraints of defectives b) process oupdahily c) beth μ and α c) both μ and σ d) none of the above for constraints of defectives b) only σ c) both μ and σ d) none of the above for constraints of defectives c) both μ and σ c) both μ and σ d) none of the above for constraints of the above fo
 5) The capability index C_p involves parameter(s) to be estimated. a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n₁ and n₂ units are checked
a) only μ b) only σ c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n_1 and n_2 units are checked
c) both μ and σ d) none of the above 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n_1 and n_2 units are checked
 6) In double sampling plan a) only two units are checked b) only first and last lot is checked c) only two samples of respective n₁ and n₂ units are checked
necessarily d) only two samples of respective n_1 and n_2 units are checked conditionally
7) The curve showing the probability of acceptance of a lot of quality p is
known as b) ASN curve
c) OC curve d) ARL curve
 In a demerit system, the unit will cause personal injury or property damage is classified as defect.
a) class A b) class B c) class C d) class D

Г

SLR-ER-24

06

16

- 9) If sample size inspected at each stage is one, sequential procedure is called
 - a) lot-by-lot sequential sampling
 - b) item-by-item sequential sampling
 - group sequential sampling c)
 - none of the above d)
- 10) An appropriate distribution of run length is
 - Bernoulli b)
 - c) geometric d) Poisson

B) Fill in the blanks

a) normal

- The control limits of the p chart are based on the assumption that the 1) number of nonconforming items follows _____ distribution.
- Usually 2σ limits are called as 2)
- 3) An out-of-control signal given by a control chart when the process is actually in-control, is called
- V-mask method is used to implement _____ chart. 4)
- 5) To determine location of a defect _____ SPC tool is used.
- In 'DMAIC', M stands for 6)

Q.2 Answer the following

- Describe process control and product control. a)
- Explain the use of Pareto chart with suitable example. b)
- Describe a single sampling plan for attributes. C)
- Explain producer's risk and consumer's risk. d)

Answer the following Q.3

- a) List seven SPC tools and explain in detail any two of them. **08**
- Outline the steps involved in the construction of \overline{X} and S charts. 08 b)

Answer the following Q.4

- What is an EWMA control chart? Explain the procedure of obtaining the 08 a) control limits of the same. 08
- b) Explain in detail demerit control chart.

Q.5 Answer the following

- Define process capability index C_p . Obtain (1α) level confidence interval 08 a) for the same.
- b) Define process capability index C_{pk} with necessary underlying assumptions 08 if any. State and prove its relationship with probability of nonconformance.

Q.6 Answer the following

- Explain the assumptions, construction and operation of Hotelling's T² 08 a) control chart.
- Explain the variable sampling plan when upper specification is given with **08** b) known standard deviation.

Q.7 Answer the following

- Describe six-sigma methodology and DMAIC cycle in detail. **08** a)
- b) Discuss nonparametric sign control chart to monitor location of a process. 80

Time	: 03:0	00 PM	Го 06:00 РМ
Instr	uctio	o ns: 1) 2) 3)	Question no. 1 and 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7. Figure to right indicate full marks.
Q.1	A)	Choc 1)	se the correct alternative.10In a parallel system, the system reliability is than the reliability10of single component in the system.10a) same asb) smaller thanc) larger thand) none of these
		2)	The i th component X _i of state vector is random variable.a) Geometricb) Bernoullic) Poissond) Normal
		3)	A series system is a special case of $k - out - of - n$ system when a) $k = 1$ b) $k = 2$ c) $k = n - 1$ d) $k = n$
		4)	If a distribution function $F(t)$ is IFRA if and only if its survival function $\overline{F}(t)$ satisfies that a) $\overline{F}(\alpha t) \ge \alpha \overline{F}(t)$ b) $\overline{F}(\alpha t) \ge [\overline{F}(t)]^{\alpha}$ c) $\overline{F}(\alpha t) \le \alpha \overline{F}(t)$ d) $\overline{F}(\alpha t) \le [\overline{F}(t)^{\alpha}$
		5)	For which of the following family, each member has non-monotonic failure rate? a) Exponential b) Weibull c) Lognormal d) Gamma
		6)	Which of the following rate function corresponds to DFR distribution? a) $h(t) = t$ b) $h(t) = e^{t}$ c) $h(t) = e^{-t}$ d) $h(t) = t e^{t}$
		7)	In survival analysis, the outcome variable is a) continuous b) discrete c) dichotomous d) none of the above
		8)	Actuarial method of estimation of survival function is used when data consists of a) only censored observations b) only uncensored observations c) complete data d) all the above

Soat	
Jeal	
No	
INO.	

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2023 **STATISTICS**

Reliability and Survival Analysis (MSC16403)

Day & Date: Wednesday, 20-12-2023

Page 1 of 3

SLR-ER-25

Set

0

Ρ

Max. Marks: 80

06

16

- The scaled TTT transform for exponential distribution with mean λ is _____. 9)
 - a) λt b) λ
 - c) 1 d) *t*
 - λ
- Which of the following distribution has no ageing property? 10)
 - a) lognormal b) exponential
 - c) gamma d) none of these

B) Fill in the blanks.

- Series system of *n* components has _____ minimal path sets. 1)
- IFRA property is preserved under _____. 2)
- The distribution of i^{th} component $\overline{X_i}$ of state vector is _____. 3)
- Study period is fixed in _____ censoring. 4)
- For a distribution with finite mean, the degree of estimability of mean 5)
- The survival function ranges between and . 6)

Q.2 Answer the following.

- a) Define reliability of component. Obtain the reliability of series system of n independent components.
- b) Define dual of a structure function. Show that dual of dual is primal.
- c) Describe Type-I censoring with one illustration.
- d) Define:
 - i) survival function
 - cumulative hazard function ii)

Q.3 Answer the following.

- a) Define coherent system. Show that k-out-of-n system is coherent system. 80 80
- **b)** For a coherent system with *n* components prove that:
 - $\phi(0) = 0$ and $\phi(1) = 1$ i) $\prod_{i=1}^{n} X_{i} \le \phi(X) \le \prod_{i=1}^{n} X_{i}$ ii)

Q.4 Answer the following.

- a) Define IFR and IFRA class of distributions. If $F \in$ IFR then show that 80 $F \in IFRA$.
- b) If failure time of item has Weibull distribution with distribution function 80 $F(t) = \begin{cases} 1 - e^{-(\lambda t)^{\alpha}}, & t > 0\\ 0, otherwise \end{cases}$

Examine whether it belongs to IFR or DFR.

Q.5 Answer the following.

- **a)** Define Poly function of order 2 (PF₂). Prove that if $f \in PF_2$ then $F \in IFR$. 80
- b) Discuss maximum likelihood estimation of parameters of a gamma 80 distribution under complete data.

Answer the following. Q.6

- a) Describe type II censoring. Obtain maximum likelihood estimate of mean of **08** the exponential distribution under type II censoring.
- b) Describe Kaplan-Meier estimator and derive an expression for the same. 80

Q.7 Answer the following.

- a) Describe Gehan's test for two sample testing problem in presence of censoring.
- b) Obtain the actuarial estimator of the survival function. Clearly state the assumption that you need to make. State Greenwood's formula for the variance of the estimator.

						SLR-ER	-26
Seat No.	t					Set	Ρ
	M.S	c. (S	emester Opt	- IV) (New) (CBC STATIS imization Technic	S) Ex FICS ques	amination: Oct/Nov-2023 (MSC16404)	L
Day a Time	& Da : 03:0	te: Th 00 PN	ursday, 21 I To 06:00	-12-2023 PM	•	Max. Marks	s: 80
Instr	uctio	ons: 1 2 3) Q. Nos.1 2) Attempt 3) Figures 1	and 2 are compulsor any Three questions f to the right indicate ful	y. from C II mark	0.No.3 to Q.No.7. (s.	
Q.1	A)	Cho 1)	ose corre For a give a) Max 2 c) Max 2	ct alternative. en <i>LPP</i> , if <i>Z</i> is objective Z = -Min Z Z = -Max Z	e func b) d)	tion, then Max Z = Min (-Z) None of these	10
		2)	An optima a) Alway b) Alway c) Alway d) None	al solution to an LPP _ /s corresponds to an e /s lies on the boundar /s exists of these	extrem y of fe	 he point of feasible region hasible region	
		3)	The dual a) an un c) a feas	has an infeasible solu bounded solution sible	tion, p b) d)	rimal has an infeasible solution None of these	
		4)	The size of principle of a) game c) game	of the payoff matrix of of inversion transpose	a gan b) d)	ne can be reduced by using the dominance rotation	
		5)	Dual simp	blex method is applica	ble to	those LPPs that starts with	
			a) an inf c) an inf	easible solution easible but optimum	b) d)	a feasible solution a feasible but optimum	
		6)	In an integ a) all de b) all de c) all de d) all de	ger linear programmin cision variables are in cision variables are re cision variables are co cision variables are no	ig prot tegers al nur omplez on-neç	olem s nbers x numbers gative	
		7)	Which of	the following is not as	sociat	ed with LPP?	

- a) Proportionalityc) Additivity Uncertainty b)
 - d) Divisibility

- 8) The right-hand side of a constraint in a primal problem appears in the corresponding dual as _____.
 - a) a coefficient in the objective function
 - b) a right-hand side of a constraint
 - c) an input-output coefficient
 - d) None of these

9) In quadratic programming problem constraints are _____.

- a) non-linear equation form
- b) non-linear inequality form
- c) linear inequality form

a) a solution is infeasible

- d) none of these
- 10) If two constraints do not intersect in the positive quadrant of the graph, then
 - b) a solution is unbounded
 - c) a solution is feasible d) a solution is degenerate

Q.1 B) Write true or false.

- 1) Feasible region may or may not be bounded.
- 2) In two phase simplex method the value of the objective function of phase-I cannot exceed zero.
- 3) For an LPP having n decision variables, there must be equal number of constraints.
- 4) Two phase simplex method is an alternative method to Big M method.
- 5) If only proper subset of the decision variables in a LPP are restricted to integer values the problem is known as mixed integer programming.
- 6) In a two-person zero sum game the optimal gain of two players is zero.

Q.2 Answer the following.

- a) Write a note on Dominance property.
- b) Write a note on Sensitivity analysis.
- c) Show that dual of dual is primal.
- d) Write a short note on Big-M method.

Q.3 Answer the following.

- a) Write down simplex algorithm to solve linear programming problem. 08
- b) Develop necessary Kuhn Tucker conditions for an optimal solution to a quadratic programming problem.

06

Q.4 Answer the following. Show that: i^{th} constraint in the primal is an equality if i^{th} dual variable is a) unrestricted sign. Describe effect of change in coefficients of objective function $c'_i s$ in b) sensitivity analysis. Q.5 Answer the following. a) Write down dual simplex algorithm. 80 **b)** Solve following game 80 Player B Player A $\begin{pmatrix} 10 & 5 & -2\\ 13 & 12 & 15\\ 16 & 14 & 10 \end{pmatrix}$ Q.6 Answer the following. Solve the following LPP a) *Maximize* $Z = -x_1 + 2x_2 - x_3$ sub to $3x_1 + x_2 - x_3 \le 10$ $-x_1 + 4x_2 + x_3 \le 6$ $x_2 + x_3 \le 4$ $x_1, x_2, x_3 \ge 0$ **b)** Explain Gomory's cutting plane method to solve integer programming 08 problem.

A now or the following Q.7

An	swer the following.	
a)	Use Branch and Bound method to solve following integer programming problem	08
	<i>Maximize</i> $Z = 7x_1 + 9x_2$, subject to constraints	
	$-x_1 + 3x_2 < 6$, $7x_1 + x_2 \le 35$, $x_2 \le 7$, $x_1, x_2 \ge 0$ and integers	
b)	i) State and prove weak duality theorem.	08
	ii) State and prove strong duality theorem.	

- **08**
- 08

08

SLR-ER-26

Seat	
No	

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2023 **STATISTICS** Time Series Analysis (MSC16407)

Day & Date: Friday, 22-12-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Question no. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative.

- The time series $X_t 0.5X_{t-1} = Z_{t-1}$, where $\{Z_t\} \sim WN(0, \sigma^2)$ is _____. 1)
 - a) causal only
 - b) invertible only
 - c) both causal and invertible both
 - d) none of these

2) The mean of a stationary process $X_t = \mu + \phi_1 X_{t-1} + Z_t$ where $\{Z_t\} \sim WN(0, \sigma^2)$ is _____.

b) $\mu + \phi$ a) 0 d) $u^2 + \phi$ c) μ

The variance of the process $X_t - 0.5X_{t-1} = Z_{t-1}$ where $\{Z_t\} \sim WN(0,1)$ 3)

- a) 4/3 b) 3/4 d) 1/2 c) 1/4
- Autoregressive process of order two can be represented as 4)
 - a) $X_t = \mu + \phi_1 X_{t-1} + \phi_2 X_{t-2} Z_t^*$
 - b) $X_t = \mu + \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t$
 - c) $X_t = \mu \times \phi_1 X_{t-1} + \phi_1 X_{t-1} \times Z_t$
 - d) $X_t = \mu + \phi_1 X_{t-1} + Z_t$
- The two-sided moving average method is defined as _____. 5)

a)
$$X_t = \frac{1}{2q} \sum_{j=0}^{q} X_{t-j}$$

b) $X_t = \frac{1}{2q} \sum_{j=-q}^{q} X_{t-j}$
c) $X_t = \frac{1}{(2q+1)} \sum_{j=-q}^{q} X_{t-j}$
d) $X_t = \frac{1}{(2q+1)} \sum_{j=0}^{q} X_{t-j}$

The singe exponential smoothing equation is . 6)

- a) $S_{t=\alpha}Y_{t-1} + (1-\alpha)S_{t-1}$ $t \ge 2$ b) $S_t = \alpha^2 Y_{t-1} + (1-\alpha)S_{t-1}$ $t \ge 2$
- c) $S_t = \alpha Y_{t-1} + (1-\alpha)^2 S_{t-1}$ $t \ge 2$
- d) $S_t = \alpha^2 Y_{t-1} + 2(1-\alpha)S_{t-1}$ $t \ge 2$

Set

Max. Marks: 80

SLR-ER-27

- 7) If there is trend and seasonal component present in the given series,
 - then method can be used.
 - a) Single exponential smoothing
 - b) Double exponential smoothing
 - c) Triple exponential smoothing
 - d) Quadratic smoothing
- 8) The parameters of AR(p) model can be estimated using equations.
 - b) Yule walker a) Lease square
 - c) Likelihood d) Geometric
- 9) The sample autocorrelation follows _____ distribution.
 - b) Asymptotic Normal d) E diatributi a) Student's t
 - c) Chi-square
- The process $X_t = \phi_1 X_{t-1} + Z_t$ where $\{Z_t\} \sim WN(0, \sigma^2)$ is causal process 10) if _____.

a)
$$|\phi_1| < 1$$

b) $|\phi_1| > 1$
c) $|\phi_1| = 1$
d) $|\phi_1| < 1.5$

$$\psi_1 = 1$$

- Fill in the blanks. The additive model of time series is given by . 1)
- 2) The ACF of AR (p) process is .
- 3) The smoothing parameter in single exponential method is selected such that, _____ is minimum.
- 4) method can be used to eliminate both trend and seasonality.
- 5) Causality is the property of in the process $\phi(B)X_t = \theta(B)Z_t$.
- 6) The causal representation of ARMA(p,q) process $\{X_t\}$ is _____.

Q.2 Answer the following.

B)

- a) Define weak stationary process and strong stationary process. Give one example each.
- b) Explain moving average as a method of elimination of trend only.
- c) Write a short note on single exponential smoothing.
- d) Write a short note on conditional heteroscedastic models.

Q.3 Answer the following.

- a) Define AR (1) process and hence obtain its partial autocorrelation function. 80
- **b)** Define ARMA (1,1) process. Obtain causal representation of the same 80 process.

Q.4 Answer the following.

- a) Describe the diagnostic checking methods in time series analysis. 80
- **b)** Verify whether the process $X_t + 0.6X_{t-1} = Z_t + 0.04Z_{t-1}$, is causal or not. 80 Hence derive its autocovariance function.

Q.5 Answer the following.

- **a)** Derive the expression for autocorrelation function *ARMA* (1,1) process. 80
- **b)** Derive the Yule Walker equations for parameter estimation in AR(p)**08** process.

Q.6 Answer the following.

a)	Explain Turning point test and Difference sign - test for testing trend.	08
b)	Describe analysis of $ARIMA(n, d, q)$ process.	08

b) Describe analysis of ARIMA(p, d, q) process.

Q.7 Answer the following.

- a) Explain moving average as a method of estimation and elimination of trend. 80 80
- b) Discuss in detail residual analysis in time series analysis.