

## Seat No.

## S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- N. B. : 1) Figures to extreme **right** indicates marks.
  - 2) Use of calculator is allowed.
    - 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
    - 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) The complementary function of  $(D-2)^2y = e^{2x}$  is
- - a)  $2C_1e^{2x}$  b)  $(C_1 + C_2x)e^x$  c)  $(C_1 + C_2x + C_3x^2)C^{2x}$  d)  $C_1e^{2x} + xC_2e^{2x}$
- 2) The particular integral of  $(D^2 + 2D + 1)y = \sqrt{x} e^{-x}$  is

  - a)  $\frac{2}{15}e^{x}x^{5/2}$  b)  $\frac{8}{15}e^{-x}x^{5/2}$  c)  $\frac{4}{15}e^{-x}x^{5/2}$  d)  $3e^{-x}x^{3/2}$

- 3) The solution of the differential equation  $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = 0$  is

  - a)  $x(C_1 \cos \log x + C_2 \sin \log x)$  b)  $x^2(C_1 \cos \log x + C_2 \sin \log x)$
  - c)  $C_1\cos^2 + C_2\sin^2$

- d)  $(C_1 + C_2 z) \cos z$
- 4) The solution of  $\sqrt{p} + \sqrt{q} = 2x$  is z =
  - a)  $(a + 2x)^3 + c$

b)  $\frac{(a+2x)^3}{6} + a^2y + c$ 

c)  $2(a + 2x)^3 + a^2v + c$ 

d) none of these



- 5) The solution of 2p + 3q = 1 is
  - a) 4(3x 2y, y 3z) = 0
- b) 4(3x + 2y, y + 3z) = 0

- c) 4(3x 2v, v z) = 0
- d) 4(3x + 2v, v 3z) = 0
- 6) If  $x_k = 3^k$ ,  $k \ge 0$ , then  $z(x_k) =$ \_\_\_\_ with |z| > 3.
  - a)  $\frac{1}{-2}$
- b)  $\frac{z}{z^{-3}}$  c)  $\frac{z-3}{z}$  d)  $\frac{z}{3-z}$

- 7) If  $z(x_{k}) = F(z)$  then  $z(a^{k}x_{k}) =$ \_\_\_\_
- a)  $F\left(\frac{a}{z}\right)$  b)  $F\left(\frac{z}{a}\right)$  c)  $\frac{1}{a}F\left(\frac{z}{a}\right)$  d)  $F(e^az)$
- 8) In the Fourier expansion of  $f(x) = 4 x^2$  in the interval (0, 2) the constant term is
  - a)  $\frac{4}{3}$

- b)  $\frac{8}{8}$
- c)  $\frac{16}{3\pi}$
- d) 0
- 9) The Fourier series of  $f(x) = 1 x^2$  in (-1, 1) contains
  - a) only sine terms

- b) only cosine terms
- c) both sine and cosine terms
- d) expansion does not exist
- 10) The Fourier cosine transform of  $f(x) = e^{-x}$ ,  $x \ge 0$  is \_\_\_\_
  - a)  $\frac{S}{1 + S^2}$

- b)  $\frac{1}{1+S^2}$  c)  $\frac{2}{\pi} \frac{1}{1+S^2}$  d)  $\sqrt{\frac{2}{\pi}} \cdot \frac{1}{1+S^2}$
- 11)  $L^{-1} \left| \frac{S-3}{S^2-6s+13} \right| =$ 
  - a) e<sup>3t</sup>cos2t
- b) e<sup>t</sup>cos3t
- c) e<sup>t</sup>cos6t
- d) e<sup>3t</sup>cos6t

- 12)  $L[e^{-t} \sin 4t] =$

- a)  $\frac{4}{S^2 + 17}$  b)  $\frac{S+1}{(S+1)^2 + 4^2}$  c)  $\frac{4}{(S-1)^2 + 4^2}$  d)  $\frac{4}{(S+1)^2 + 4^2}$
- 13) A unit normal to the surface 2xy = Z at the point (2, 1, 2) is \_\_\_\_\_
  - a)  $\frac{1}{\sqrt{21}}(2i+4j-k)$  b)  $\frac{1}{\sqrt{21}}(4i+2j)$  c)  $\frac{1}{3}(2i+4j-k)$  d) None of these

14) Find 'a' such that the vector field

 $\overline{F} = (ax + 4y^2z)i + (x^3sinz - 3y)j - (e^x + 4cos (x^2y))k$  is solenoidal

- a) a = 0
- b) a = 1
- c) a = 4
- d) a = 3



Seat No.

# S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

- N. B.: 1) Solve any three questions from each Section.
  - 2) Figures to the right indicate full marks.
  - 3) Use of calculator is allowed.

SECTION - I

2. a) Solve 
$$(D^3 - 1)y = (e^x + 1)^2$$
.

b) Solve 
$$(D^2 + 4)y = x \sin x$$
.

c) An electric circuit consists of an inductance L, a condenser of capacity C and an emf  $E = E_o \cos \omega t$ , so that the charge Q satisfies the differential equation  $\frac{d^2Q}{dt^2} + \frac{Q}{CL} = \frac{E_o}{L} \cos \omega t$ .

If 
$$\omega = \frac{1}{\sqrt{LC}}$$
 and initially  $Q = Q_0$  and the current  $i = i_0$  at  $t = 0$ , show that the charge at any time t is given by  $Q = Q_0 \cos \omega t + \frac{i_0}{\omega} \sin \omega t + \frac{E_0}{2L\omega} t \sin \omega t$ .

3. a) Solve the Legendre's equation

$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\log(1+x).$$

b) Solve 
$$z^2 = (p^2 + q^2 + 1)$$
.

c) Solve 
$$z^2(p^2 + q^2) = x^2 + y^2$$
.



4. a) Find the z-transform of the following functions:

5

i) 
$$x_k = \left(\frac{1}{4}\right)^{|k|}$$
 for all k.

- ii)  $x_k = \frac{ak}{k}, k \ge 1$
- iii) Find z-transform of unit step function U(k) = 1,  $k \ge 0$ .
- b) Find  $z^{-1} \left( \frac{z}{(z-3)(z-2)} \right)$  for 2 < |z| < 3.
- 5. Attempt any three:
  - a) Solve the following partial differential equation by the method of

separation of variables 
$$\frac{\partial z}{\partial x} = K \frac{\partial z}{\partial y}$$
.

- b) Solve  $(D^2 + 5D + 4)y = 3 2x$ .
- c) Solve  $xzp + yzq = z^2$ .
- d) Solve  $x^2 \frac{d^2y}{dx^2} 3x \frac{dy}{dx} + 4y = 2x^2$ .

SECTION - II

6. a) Find half range sine series for f(x), where

5

$$f(x) = \begin{cases} x & \text{for } 0 < x < \frac{\pi}{2} \\ (\pi - x) & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Hence deduce that  $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ...$ 

b) Find Fourier series for  $f(x) = x^2$  in  $(-\pi, \pi)$ .

4

7. a) Express the function  $f(x) = \begin{cases} \frac{\pi}{2} & \text{for } 0 < x < \pi \\ 0 & \text{for } x < \pi \end{cases}$  as Fourier sine integral.

Hence show that  $\int_{0}^{\infty} \frac{1 - \cos \pi \omega}{\omega} \cdot \sin \omega x = \frac{\pi}{2} \text{ when } 0 < x < \pi.$ 



3

4

3

3



- b) Find the Inverse Laplace transform of  $\frac{S}{(S^2 + 16)^2}$  by convolution theorem. 3
- c) Find Inverse Laplace transform of  $\frac{(S+29)}{(S+4)(S^2+9)}$  by partial fractions or otherwise.
- 8. a) Find the directional derivative of  $\phi = xy^2 + yz^3$  at (1, -1, 1) along:
  - i) The vector i + 2j + 2k
  - ii) Towards the point (2, 1, -1)
  - iii) Along the direction of normal to the surface  $x^2 + y^2 + z^2 = 9$  at (1, 2, 2). 5
  - b) For a constant vector  $\bar{\mathbf{a}}$  show that
    - i)  $\nabla(\overline{\mathbf{a}}\cdot\overline{\mathbf{r}})=\overline{\mathbf{a}}$
    - ii)  $\nabla \times (\overline{a} \times \overline{r}) = 2\overline{a}$ .

## 9. Attempt any 3:

- a) Solve by using Laplace Transform  $\frac{d^2y}{dx^2} + 25y = 10 \cos 5t$ , with y(0) = 2, y'(0) = 0.
- b) If the directional derivative of  $\phi = axy + byz + czx$  at (1, 1, 1) has maximum magnitude and in the direction parallel to x-axis, find the values of a, b and c.
- c) Find the Fourier series expansion of  $f(x) = \frac{1}{2}(\pi x)$  in  $(0, 2\pi)$ .
- d) If  $f_s(S) = \frac{e^{-as}}{S}$ , find f(x). Hence obtain the inverse Fourier sine

transform of  $\frac{1}{S}$ .



Max. Marks: 70

Seat No.

## S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- N. B. : 1) Figures to extreme **right** indicates marks.
  - Use of calculator is allowed.
    - 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
    - 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) In the Fourier expansion of  $f(x) = 4 x^2$  in the interval (0, 2) the constant term is
  - a)  $\frac{4}{3}$

- b)  $\frac{8}{3}$  c)  $\frac{16}{3\pi}$
- d) 0
- 2) The Fourier series of  $f(x) = 1 x^2$  in (-1, 1) contains
  - a) only sine terms

- b) only cosine terms
- c) both sine and cosine terms d) expansion does not exist
- 3) The Fourier cosine transform of  $f(x) = e^{-x}$ ,  $x \ge 0$  is \_\_\_\_\_
  - a)  $\frac{S}{1+S^2}$

- b)  $\frac{1}{1+S^2}$  c)  $\frac{2}{\pi} \frac{1}{1+S^2}$  d)  $\sqrt{\frac{2}{\pi}} \cdot \frac{1}{1+S^2}$

4) 
$$L^{-1} \left[ \frac{S-3}{S^2-6s+13} \right] =$$

- a)  $e^{3t}\cos 2t$  b)  $e^{t}\cos 3t$  c)  $e^{t}\cos 6t$  d)  $e^{3t}\cos 6t$



- 5)  $L[e^{-t} \sin 4t] =$

- a)  $\frac{4}{S^2 + 17}$  b)  $\frac{S+1}{(S+1)^2 + 4^2}$  c)  $\frac{4}{(S-1)^2 + 4^2}$  d)  $\frac{4}{(S+1)^2 + 4^2}$
- 6) A unit normal to the surface 2xy = Z at the point (2, 1, 2) is \_\_\_\_\_
  - a)  $\frac{1}{\sqrt{21}}(2i+4j-k)$  b)  $\frac{1}{\sqrt{21}}(4i+2j)$  c)  $\frac{1}{3}(2i+4j-k)$  d) None of these

- 7) Find 'a' such that the vector field  $\overline{F} = (ax + 4y^2z)i + (x^3sinz - 3y)j - (e^x + 4cos (x^2y))k$  is solenoidal
  - a) a = 0
- b) a = 1
- c) a = 4
- d) a = 3
- 8) The complementary function of  $(D-2)^2y = e^{2x}$  is
- a)  $2C_1e^{2x}$  b)  $(C_1 + C_2x)e^x$  c)  $(C_1 + C_2x + C_3x^2)C^{2x}$  d)  $C_1e^{2x} + xC_2e^{2x}$
- 9) The particular integral of  $(D^2 + 2D + 1)y = \sqrt{x} e^{-x}$  is

  - a)  $\frac{2}{15}e^{x}x^{5/2}$  b)  $\frac{8}{15}e^{-x}x^{5/2}$  c)  $\frac{4}{15}e^{-x}x^{5/2}$  d)  $3e^{-x}x^{3/2}$
- 10) The solution of the differential equation  $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = 0$  is

  - a)  $x(C_1 \cos \log x + C_2 \sin \log x)$  b)  $x^2(C_1 \cos \log x + C_2 \sin \log x)$
  - c)  $C_1\cos^2 + C_2\sin^2$

- d)  $(C_1 + C_0 z) \cos z$
- 11) The solution of  $\sqrt{p} + \sqrt{q} = 2x$  is z =
  - a)  $(a + 2x)^3 + c$

b)  $\frac{(a+2x)^3}{6} + a^2y + c$ 

c)  $2(a + 2x)^3 + a^2v + c$ 

- d) none of these
- 12) The solution of 2p + 3q = 1 is
  - a) 4(3x 2y, y 3z) = 0
- b) 4(3x + 2y, y + 3z) = 0
- c) 4(3x 2y, y z) = 0
- d) 4(3x + 2y, y 3z) = 0
- 13) If  $x_k = 3^k$ ,  $k \ge 0$ , then  $z(x_k) =$ \_\_\_\_\_ with |z| > 3.
  - a)  $\frac{1}{2}$

- b)  $\frac{z}{z-3}$  c)  $\frac{z-3}{z}$  d)  $\frac{z}{3-z}$
- 14) If  $z(x_{k}) = F(z)$  then  $z(a^{k}x_{k}) =$ \_\_\_\_\_
- a)  $F\left(\frac{a}{a}\right)$  b)  $F\left(\frac{z}{a}\right)$  c)  $\frac{1}{a}F\left(\frac{z}{a}\right)$  d)  $F(e^az)$



Seat No.

# S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

- N. B.: 1) Solve any three questions from each Section.
  - 2) Figures to the right indicate full marks.
  - 3) Use of calculator is allowed.

SECTION - I

2. a) Solve 
$$(D^3 - 1)y = (e^x + 1)^2$$
.

b) Solve 
$$(D^2 + 4)y = x \sin x$$
.

c) An electric circuit consists of an inductance L, a condenser of capacity C and an emf  $E = E_o \cos \omega t$ , so that the charge Q satisfies the differential equation  $\frac{d^2Q}{dt^2} + \frac{Q}{CL} = \frac{E_o}{L} \cos \omega t$ .

If 
$$\omega = \frac{1}{\sqrt{LC}}$$
 and initially  $Q = Q_0$  and the current  $i = i_0$  at  $t = 0$ , show that the charge at any time t is given by  $Q = Q_0 \cos \omega t + \frac{i_0}{\omega} \sin \omega t + \frac{E_0}{2L\omega} t \sin \omega t$ .

3. a) Solve the Legendre's equation

$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\log(1+x).$$

b) Solve 
$$z^2 = (p^2 + q^2 + 1)$$
.

c) Solve 
$$z^2(p^2 + q^2) = x^2 + y^2$$
.



4. a) Find the z-transform of the following functions:

5

i) 
$$x_k = \left(\frac{1}{4}\right)^{|k|}$$
 for all k.

ii) 
$$x_k = \frac{ak}{k}, k \ge 1$$

- iii) Find z-transform of unit step function U(k) = 1,  $k \ge 0$ .
- b) Find  $z^{-1} \left( \frac{z}{(z-3)(z-2)} \right)$  for 2 < |z| < 3.
- 5. Attempt any three:
  - a) Solve the following partial differential equation by the method of

separation of variables 
$$\frac{\partial z}{\partial x} = K \frac{\partial z}{\partial y}$$
.

b) Solve 
$$(D^2 + 5D + 4)y = 3 - 2x$$
.

c) Solve 
$$xzp + yzq = z^2$$
.

d) Solve 
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$
.

#### SECTION - II

6. a) Find half range sine series for f(x), where

5

$$f(x) = \begin{cases} x & \text{for } 0 < x < \frac{\pi}{2} \\ (\pi - x) & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Hence deduce that  $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ...$ 

b) Find Fourier series for  $f(x) = x^2$  in  $(-\pi, \pi)$ .

4

7. a) Express the function  $f(x) = \begin{cases} \frac{\pi}{2} & \text{for } 0 < x < \pi \\ 0 & \text{for } x < \pi \end{cases}$  as Fourier sine integral.

Hence show that 
$$\int_{0}^{\infty} \frac{1 - \cos \pi \omega}{\omega} \cdot \sin \omega x = \frac{\pi}{2} \text{ when } 0 < x < \pi.$$



3

4

3

3



- b) Find the Inverse Laplace transform of  $\frac{S}{(S^2 + 16)^2}$  by convolution theorem. 3
- c) Find Inverse Laplace transform of  $\frac{(S+29)}{(S+4)(S^2+9)}$  by partial fractions or otherwise.
- 8. a) Find the directional derivative of  $\phi = xy^2 + yz^3$  at (1, -1, 1) along:
  - i) The vector i + 2j + 2k
  - ii) Towards the point (2, 1, -1)
  - iii) Along the direction of normal to the surface  $x^2 + y^2 + z^2 = 9$  at (1, 2, 2). 5
  - b) For a constant vector  $\bar{\mathbf{a}}$  show that
    - i)  $\nabla(\overline{\mathbf{a}}\cdot\overline{\mathbf{r}})=\overline{\mathbf{a}}$
    - ii)  $\nabla \times (\overline{a} \times \overline{r}) = 2\overline{a}$ .

### 9. Attempt any 3:

- a) Solve by using Laplace Transform  $\frac{d^2y}{dx^2} + 25y = 10 \cos 5t$ , with y(0) = 2, y'(0) = 0.
- b) If the directional derivative of  $\phi = axy + byz + czx$  at (1, 1, 1) has maximum magnitude and in the direction parallel to x-axis, find the values of a, b and c.
- c) Find the Fourier series expansion of  $f(x) = \frac{1}{2}(\pi x)$  in  $(0, 2\pi)$ .
- d) If  $f_s(S) = \frac{e^{-as}}{S}$ , find f(x). Hence obtain the inverse Fourier sine

transform of  $\frac{1}{S}$ .

Seat No.

## S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 **ENGINEERING MATHEMATICS - III**

Max. Marks: 70 Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- **N. B.**: 1) Figures to extreme **right** indicates marks.
  - 2) **Use** of calculator is **allowed**.
  - 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
  - 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

1) The solution of 2p + 3q = 1 is

a) 
$$4(3x - 2y, y - 3z) = 0$$

b) 
$$4(3x + 2y, y + 3z) = 0$$

c) 
$$4(3x - 2y, y - z) = 0$$

d) 
$$4(3x + 2y, y - 3z) = 0$$

2) If  $x_k = 3^k$ ,  $k \ge 0$ , then  $z(x_k) =$  with |z| > 3.

a) 
$$\frac{1}{z-3}$$

b) 
$$\frac{z}{z-3}$$

c) 
$$\frac{z-3}{z}$$

a) 
$$\frac{1}{z-3}$$
 b)  $\frac{z}{z-3}$  c)  $\frac{z-3}{z}$  d)  $\frac{z}{3-z}$ 

- 3) If  $z(x_k) = F(z)$  then  $z(a^k x_k) =$ \_\_\_\_\_\_
- a)  $F\left(\frac{a}{z}\right)$  b)  $F\left(\frac{z}{a}\right)$  c)  $\frac{1}{a}F\left(\frac{z}{a}\right)$  d)  $F(e^az)$
- 4) In the Fourier expansion of  $f(x) = 4 x^2$  in the interval (0, 2) the constant term is
  - a)  $\frac{4}{2}$

- b)  $\frac{8}{3}$  c)  $\frac{16}{3\pi}$
- d) 0
- 5) The Fourier series of  $f(x) = 1 x^2$  in (-1, 1) contains
  - a) only sine terms

- b) only cosine terms
- c) both sine and cosine terms
  - d) expansion does not exist



- 6) The Fourier cosine transform of  $f(x) = e^{-x}$ ,  $x \ge 0$  is \_\_\_\_
  - a)  $\frac{S}{1 + S^2}$

- b)  $\frac{1}{1+S^2}$  c)  $\frac{2}{\pi} \frac{1}{1+S^2}$  d)  $\sqrt{\frac{2}{\pi}} \cdot \frac{1}{1+S^2}$
- 7)  $L^{-1} \left| \frac{S-3}{S^2-6s+13} \right| =$ 
  - a) e<sup>3t</sup>cos2t
- b) e<sup>t</sup>cos3t
- c) e<sup>t</sup>cos6t
- d) e<sup>3t</sup>cos6t

- 8)  $L[e^{-t} \sin 4t] =$

- a)  $\frac{4}{S^2 + 17}$  b)  $\frac{S+1}{(S+1)^2 + 4^2}$  c)  $\frac{4}{(S-1)^2 + 4^2}$  d)  $\frac{4}{(S+1)^2 + 4^2}$
- 9) A unit normal to the surface 2xy = Z at the point (2, 1, 2) is \_\_\_\_\_
  - a)  $\frac{1}{\sqrt{21}}(2i+4j-k)$  b)  $\frac{1}{\sqrt{21}}(4i+2j)$  c)  $\frac{1}{3}(2i+4j-k)$  d) None of these

10) Find 'a' such that the vector field

 $\overline{F} = (ax + 4y^2z)i + (x^3sinz - 3y)j - (e^x + 4cos (x^2y))k$  is solenoidal

- a) a = 0
- b) a = 1
- c) a = 4
- d) a = 3
- 11) The complementary function of  $(D-2)^2y = e^{2x}$  is
- a)  $2C_1e^{2x}$  b)  $(C_1 + C_2x)e^x$  c)  $(C_1 + C_2x + C_2x^2)C^{2x}$  d)  $C_1e^{2x} + xC_2e^{2x}$
- 12) The particular integral of  $(D^2 + 2D + 1)y = \sqrt{x} e^{-x}$  is

  - a)  $\frac{2}{15}e^{x}x^{5/2}$  b)  $\frac{8}{15}e^{-x}x^{5/2}$  c)  $\frac{4}{15}e^{-x}x^{5/2}$  d)  $3e^{-x}x^{3/2}$

- 13) The solution of the differential equation  $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = 0$  is
  - a)  $x(C_1 \cos \log x + C_2 \sin \log x)$
- b)  $x^2(C_1 \cos \log x + C_2 \sin \log x)$
- c)  $C_1\cos^2 + C_2\sin^2$

- d)  $(C_1 + C_2 z) \cos z$
- 14) The solution of  $\sqrt{p} + \sqrt{q} = 2x$  is z =
  - a)  $(a + 2x)^3 + c$

b)  $\frac{(a+2x)^3}{6} + a^2y + c$ 

c)  $2(a + 2x)^3 + a^2v + c$ 

d) none of these



Seat No.

# S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

- N. B.: 1) Solve any three questions from each Section.
  - 2) Figures to the right indicate full marks.
  - 3) Use of calculator is allowed.

#### SECTION - I

2. a) Solve 
$$(D^3 - 1)y = (e^x + 1)^2$$
.

b) Solve 
$$(D^2 + 4)y = x \sin x$$
.

c) An electric circuit consists of an inductance L, a condenser of capacity C and an emf  $E = E_o \cos \omega t$ , so that the charge Q satisfies the differential equation  $\frac{d^2Q}{dt^2} + \frac{Q}{CL} = \frac{E_o}{L} \cos \omega t$ .

If 
$$\omega = \frac{1}{\sqrt{LC}}$$
 and initially  $Q = Q_0$  and the current  $i = i_0$  at  $t = 0$ , show that the charge at any time t is given by  $Q = Q_0 \cos \omega t + \frac{i_0}{\omega} \sin \omega t + \frac{E_0}{2L\omega} t \sin \omega t$ .

3. a) Solve the Legendre's equation

$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\log(1+x).$$

b) Solve 
$$z^2 = (p^2 + q^2 + 1)$$
.

c) Solve 
$$z^2(p^2 + q^2) = x^2 + y^2$$
.



4. a) Find the z-transform of the following functions:

5

i) 
$$x_k = \left(\frac{1}{4}\right)^{|k|}$$
 for all k.

ii) 
$$x_k = \frac{ak}{k}, k \ge 1$$

- iii) Find z-transform of unit step function U(k) = 1,  $k \ge 0$ .
- b) Find  $z^{-1} \left( \frac{z}{(z-3)(z-2)} \right)$  for 2 < |z| < 3.
- 5. Attempt any three:
  - a) Solve the following partial differential equation by the method of

separation of variables 
$$\frac{\partial z}{\partial x} = K \frac{\partial z}{\partial y}$$
.

b) Solve 
$$(D^2 + 5D + 4)y = 3 - 2x$$
.

c) Solve 
$$xzp + yzq = z^2$$
.

d) Solve 
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$
.

6. a) Find half range sine series for f(x), where

5

$$f(x) = \begin{cases} x & \text{for } 0 < x < \frac{\pi}{2} \\ (\pi - x) & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Hence deduce that  $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ...$ 

b) Find Fourier series for  $f(x) = x^2$  in  $(-\pi, \pi)$ .

4

7. a) Express the function  $f(x) = \begin{cases} \frac{\pi}{2} & \text{for } 0 < x < \pi \\ 0 & \text{for } x < \pi \end{cases}$  as Fourier sine integral.

Hence show that 
$$\int_{0}^{\infty} \frac{1 - \cos \pi \omega}{\omega} \cdot \sin \omega x = \frac{\pi}{2} \text{ when } 0 < x < \pi.$$



3



b) Find the Inverse Laplace transform of  $\frac{S}{(S^2 + 16)^2}$  by convolution theorem. 3

c) Find Inverse Laplace transform of  $\frac{(S+29)}{(S+4)(S^2+9)}$  by partial fractions or otherwise.

- 8. a) Find the directional derivative of  $\phi = xy^2 + yz^3$  at (1, -1, 1) along :
  - i) The vector i + 2j + 2k
  - ii) Towards the point (2, 1, -1)
  - iii) Along the direction of normal to the surface  $x^2 + y^2 + z^2 = 9$  at (1, 2, 2). 5
  - b) For a constant vector  $\bar{\mathbf{a}}$  show that
    - i)  $\nabla(\overline{a}\cdot\overline{r}) = \overline{a}$
    - ii)  $\nabla \times (\overline{a} \times \overline{r}) = 2\overline{a}$ .
- 9. Attempt any 3:
  - a) Solve by using Laplace Transform  $\frac{d^2y}{dx^2} + 25y = 10 \cos 5t$ , with y(0) = 2, y'(0) = 0.
  - b) If the directional derivative of  $\phi = axy + byz + czx$  at (1, 1, 1) has maximum magnitude and in the direction parallel to x-axis, find the values of a, b and c.
  - c) Find the Fourier series expansion of  $f(x) = \frac{1}{2}(\pi x)$  in  $(0, 2\pi)$ .
  - d) If  $f_s(S) = \frac{e^{-as}}{S}$ , find f(x). Hence obtain the inverse Fourier sine

transform of  $\frac{1}{S}$ .



Max. Marks: 70

## Seat No.

## S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 **ENGINEERING MATHEMATICS - III**

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- 1) Figures to extreme **right** indicates marks.
  - 2) Use of calculator is allowed.
    - 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
    - 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

1) The Fourier cosine transform of  $f(x) = e^{-x}$ ,  $x \ge 0$  is \_\_\_\_

a) 
$$\frac{S}{1+S^2}$$

b) 
$$\frac{1}{1+S^2}$$

c) 
$$\frac{2}{\pi} \frac{1}{1+S^2}$$

a) 
$$\frac{S}{1+S^2}$$
 b)  $\frac{1}{1+S^2}$  c)  $\frac{2}{\pi} \frac{1}{1+S^2}$  d)  $\sqrt{\frac{2}{\pi}} \cdot \frac{1}{1+S^2}$ 

2) 
$$L^{-1} \left[ \frac{S-3}{S^2-6s+13} \right] =$$

- a) e<sup>3t</sup>cos2t
- b) e<sup>t</sup>cos3t
- c) e<sup>t</sup>cos6t d) e<sup>3t</sup>cos6t

3)  $L[e^{-t} \sin 4t] =$ 

a) 
$$\frac{4}{S^2 + 17}$$

b) 
$$\frac{S+1}{(S+1)^2+4^2}$$

c) 
$$\frac{4}{(S-1)^2+4^2}$$

a) 
$$\frac{4}{S^2 + 17}$$
 b)  $\frac{S+1}{(S+1)^2 + 4^2}$  c)  $\frac{4}{(S-1)^2 + 4^2}$  d)  $\frac{4}{(S+1)^2 + 4^2}$ 

4) A unit normal to the surface 2xy = Z at the point (2, 1, 2) is \_\_\_\_\_

a) 
$$\frac{1}{\sqrt{21}}(2i+4j-k)$$
 b)  $\frac{1}{\sqrt{21}}(4i+2j)$  c)  $\frac{1}{3}(2i+4j-k)$  d) None of these

b) 
$$\frac{1}{\sqrt{21}}(4i+2j)$$

c) 
$$\frac{1}{3}(2i+4j-k)$$



- 5) Find 'a' such that the vector field  $\overline{F} = (ax + 4y^2z)i + (x^3sinz - 3y)j - (e^x + 4cos (x^2y))k$  is solenoidal
  - a) a = 0
- b) a = 1
- c) a = 4
- d) a = 3
- 6) The complementary function of  $(D-2)^2y = e^{2x}$  is
- a)  $2C_1e^{2x}$  b)  $(C_1 + C_2x)e^x$  c)  $(C_1 + C_2x + C_2x^2)C^{2x}$  d)  $C_1e^{2x} + xC_2e^{2x}$
- 7) The particular integral of  $(D^2 + 2D + 1)y = \sqrt{x} e^{-x}$  is

  - a)  $\frac{2}{15}e^{x}x^{5/2}$  b)  $\frac{8}{15}e^{-x}x^{5/2}$  c)  $\frac{4}{15}e^{-x}x^{5/2}$  d)  $3e^{-x}x^{3/2}$
- 8) The solution of the differential equation  $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = 0$  is

  - a)  $x(C_1 \cos \log x + C_2 \sin \log x)$  b)  $x^2(C_1 \cos \log x + C_2 \sin \log x)$
  - c)  $C_1 \cos^2 + C_2 \sin^2$

- d)  $(C_1 + C_2 z) \cos z$
- 9) The solution of  $\sqrt{p} + \sqrt{q} = 2x$  is z =
  - a)  $(a + 2x)^3 + c$

b)  $\frac{(a+2x)^3}{6} + a^2y + c$ 

c)  $2(a + 2x)^3 + a^2y + c$ 

- d) none of these
- 10) The solution of 2p + 3q = 1 is
  - a) 4(3x 2y, y 3z) = 0
- b) 4(3x + 2v, v + 3z) = 0
- c) 4(3x 2y, y z) = 0
- d) 4(3x + 2y, y 3z) = 0
- 11) If  $x_{k} = 3^{k}$ ,  $k \ge 0$ , then  $z(x_{k}) =$ \_\_\_\_\_ with |z| > 3.
  - a)  $\frac{1}{7}$

- b)  $\frac{z}{z-3}$  c)  $\frac{z-3}{z}$  d)  $\frac{z}{3-z}$
- 12) If  $z(x_{i}) = F(z)$  then  $z(a^{k}x_{i}) =$ \_\_\_\_\_
- a)  $F\left(\frac{a}{z}\right)$  b)  $F\left(\frac{z}{a}\right)$  c)  $\frac{1}{a}F\left(\frac{z}{a}\right)$  d)  $F(e^az)$
- 13) In the Fourier expansion of  $f(x) = 4 x^2$  in the interval (0, 2) the constant term is
  - a)  $\frac{4}{3}$

- b)  $\frac{8}{3}$
- c)  $\frac{16}{3\pi}$
- d) 0
- 14) The Fourier series of  $f(x) = 1 x^2$  in (-1, 1) contains
  - a) only sine terms

- b) only cosine terms
- c) both sine and cosine terms
- d) expansion does not exist



Seat No.

# S.E. (E&E) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

- N. B.: 1) Solve any three questions from each Section.
  - 2) Figures to the right indicate full marks.
  - 3) Use of calculator is allowed.

#### SECTION - I

2. a) Solve 
$$(D^3 - 1)y = (e^x + 1)^2$$
.

b) Solve 
$$(D^2 + 4)y = x \sin x$$
.

c) An electric circuit consists of an inductance L, a condenser of capacity C and an emf  $E = E_o \cos \omega t$ , so that the charge Q satisfies the differential equation  $\frac{d^2Q}{dt^2} + \frac{Q}{CL} = \frac{E_o}{L} \cos \omega t$ .

If 
$$\omega = \frac{1}{\sqrt{LC}}$$
 and initially  $Q = Q_0$  and the current  $i = i_0$  at  $t = 0$ , show that the charge at any time t is given by  $Q = Q_0 \cos \omega t + \frac{i_0}{\omega} \sin \omega t + \frac{E_0}{2L\omega} t \sin \omega t$ .

3. a) Solve the Legendre's equation

$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\log(1+x).$$

b) Solve 
$$z^2 = (p^2 + q^2 + 1)$$
.

c) Solve 
$$z^2(p^2 + q^2) = x^2 + y^2$$
.



4. a) Find the z-transform of the following functions:

5

i) 
$$x_k = \left(\frac{1}{4}\right)^{|k|}$$
 for all k.

- ii)  $x_k = \frac{ak}{k}, k \ge 1$
- iii) Find z-transform of unit step function U(k) = 1,  $k \ge 0$ .

b) Find 
$$z^{-1} \left( \frac{z}{(z-3)(z-2)} \right)$$
 for  $2 < |z| < 3$ .

- 5. Attempt any three:
  - a) Solve the following partial differential equation by the method of

separation of variables 
$$\frac{\partial z}{\partial x} = K \frac{\partial z}{\partial y}$$
.

b) Solve 
$$(D^2 + 5D + 4)y = 3 - 2x$$
.

c) Solve 
$$xzp + yzq = z^2$$
.

d) Solve 
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$
.

SECTION - II

6. a) Find half range sine series for f(x), where

5

$$f(x) = \begin{cases} x & \text{for } 0 < x < \frac{\pi}{2} \\ (\pi - x) & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Hence deduce that  $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ...$ 

b) Find Fourier series for  $f(x) = x^2$  in  $(-\pi, \pi)$ .

4

7. a) Express the function  $f(x) = \begin{cases} \frac{\pi}{2} & \text{for } 0 < x < \pi \\ 0 & \text{for } x < \pi \end{cases}$  as Fourier sine integral.

Hence show that 
$$\int_{0}^{\infty} \frac{1 - \cos \pi \omega}{\omega} \cdot \sin \omega x = \frac{\pi}{2} \text{ when } 0 < x < \pi.$$



3

4

3



- b) Find the Inverse Laplace transform of  $\frac{S}{(S^2 + 16)^2}$  by convolution theorem. 3
- c) Find Inverse Laplace transform of  $\frac{(S+29)}{(S+4)(S^2+9)}$  by partial fractions or otherwise.
- 8. a) Find the directional derivative of  $\phi = xy^2 + yz^3$  at (1, -1, 1) along :
  - i) The vector i + 2j + 2k
  - ii) Towards the point (2, 1, -1)
  - iii) Along the direction of normal to the surface  $x^2 + y^2 + z^2 = 9$  at (1, 2, 2). 5
  - b) For a constant vector  $\bar{\mathbf{a}}$  show that
    - i)  $\nabla(\overline{\mathbf{a}}\cdot\overline{\mathbf{r}})=\overline{\mathbf{a}}$
    - ii)  $\nabla \times (\overline{a} \times \overline{r}) = 2\overline{a}$ .

### 9. Attempt any 3:

- a) Solve by using Laplace Transform  $\frac{d^2y}{dx^2} + 25y = 10 \cos 5t$ , with y(0) = 2, y'(0) = 0.
- b) If the directional derivative of  $\phi = axy + byz + czx$  at (1, 1, 1) has maximum magnitude and in the direction parallel to x-axis, find the values of a, b and c.
- c) Find the Fourier series expansion of  $f(x) = \frac{1}{2}(\pi x)$  in  $(0, 2\pi)$ .
- d) If  $f_s(S) = \frac{e^{-as}}{S}$ , find f(x). Hence obtain the inverse Fourier sine

transform of  $\frac{1}{S}$ .



| Seat |  |
|------|--|
| No.  |  |

Set



## S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

Duration: 30 Minutes

1. Choose the correct alternative:

1) In Dc generator armature reaction is produced actually by

a) Its field current

b) Field pole winding

c) Armature conductor

d) Load current in armature

2) Back E.M.F. in a DC motor
a) Opposes the applied voltage
b) Aids the applied voltage
c) Aids the armature current
d) None of the above

3) \_\_\_\_\_ motor should be never started at no load.

a) Seriesb) Shuntc) Long compoundd) Short compound

4) Which of the load would be best driven by DC compound motor?

a) Reciprocating pump b) Electric locomotive

c) Centrifugal pump d) Fan

5) The speed of DC motor can be controlled by varying

a) Its flux per pole b) Resistance of armature circuit

c) Applied voltage d) All of the above

6) Which of the following is power equation?

a)  $VI_a = E_bI_a + I_a ^2R_a$ b)  $V = E_bI_a + I_a ^2R_a$ c)  $I_a ^2V = E_bI_a ^2 + I_a ^2R_a$ d)  $V = E_b + I_aR_a$ 

| 7)    | The E.M.F. induced in DC machine i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s E.M.F.                                 |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
|       | a) Dynamically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Statically                            |  |
|       | c) Both a) and b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d) None of the above                     |  |
| 8)    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | er from primary to secondary usually     |  |
|       | with change in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.37.16                                 |  |
|       | a) Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) Voltage                               |  |
| 0)    | c) Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) Time period                           |  |
| 9)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ss of 400 W, the Cu loss at half load is |  |
|       | a) 100 W<br>c) 200 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b) 1000 W<br>d) 400 W                    |  |
| 10)   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                        |  |
| 10)   | The efficiency of single phase transfer a) $n = (VA rating*cos\phi)/[(VA rating*cos\phi)/(VA rat$ | _ ·                                      |  |
|       | b) $n = (V_2 I_2 \cos \phi)/[(V_2 I_2 \cos \phi) + Pi + Pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - · ·                                    |  |
|       | c) Both a) and b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                        |  |
|       | d) None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |  |
| 11)   | A Universal motor is one which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |  |
|       | a) Is available universally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |  |
|       | b) Can be marketed internationally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |  |
|       | c) Can be operated either on DC or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • • •                                    |  |
| 4.0\  | d) Runs at dangerously high speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |  |
| 12)   | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | urns is connected to 200 V AC supply,    |  |
|       | for a secondary voltage of 400 V, the n a) 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) 2000                                  |  |
|       | c) 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) 1250                                  |  |
| 13)   | In parallel operation of 3 ph transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                        |  |
| . • , | phase sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |  |
|       | a) 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) 90                                    |  |
|       | c) same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) opposite                              |  |
| 14)   | The primary and secondary of a tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sformer are coupled.                     |  |
|       | a) Electrically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) Magnetically                          |  |
|       | c) Electrically and Magnetically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) None of the above                     |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |  |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Draw and explain the power stages of a DC machine.
- b) Explain three point starter with neat diagram.
- c) Why DC series motor should not be started on no-load?
- d) What is armature reaction? Explain its two important effects in case of 2 pole generator.
- e) A 250 V, 4 pole, wave wound series motor has 782 conductors on its armature. It has armature and series field resistance of  $0.75\Omega$ . The motor takes a current of 40 A. Find its speed and gross torque developed if it has a flux per pole of 25 mwb.

## 3. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Draw and explain torque-speed, armature current-torque and armature current-speed characteristics of DC shunt and series motor.
- b) A 250 V, 14.9 kW, 8 pole DC motor has single turn coils. The armature is wave wound with 94 commutator segments. If the brushes are given a lead of 2 commutator segments at full load, calculate
  - a) Total armature reaction ampere turns per pole
  - b) Cross magnetizing ampere turns per pole. Assume efficiency of 80%.
- c) What is back E.M.F. ? Explain its significance and derive equation for it.

#### SECTION - II

## 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Why transformer is called constant flux machine?
- b) Explain operation of universal motor on both AC and DC.
- c) Draw phaser diagram of single phase transformer on resistive and capacitive load.



- d) Explain the construction and working principle of single phase transformer.
- e) A 150 kVA transformer has iron loss of 1.4 kW and full load Cu loss of 2.8 kW at 0.8 p.f. lagging. Calculate
  - i) Efficiency of transformer at full load.
  - ii) The maximum efficiency of the transformer.
- 5. Solve the following questions:

 $(2 \times 6 = 12)$ 

- a) Explain use of transformer having vector group YY 0, DY 1, DD 0 and DY 11. Draw the vector group with connection diagram for each group.
- b) Two single phase transformers with equal voltage ratios have impedances of  $(0.5 + j3)\Omega$  and  $(0.6 + j10) \Omega$  with respect to the secondary. If they operate in parallel, determine how they share a total load of 100 kW at p.f. 0.8 lagging.

OR

b) A 100 kVA,  $3\phi$ , 50 Hz, 3300/400 V transformer is delta connected on the H.V. side and star connected on the L.V. side. The resistance of the H.V. winding is  $3.5~\Omega$  per phase and that of L.V. winding  $0.02~\Omega$  per phase. Calculate the iron losses of the transformer at normal voltage and frequency if its full load efficiency is 95.8% at 0.8~p.f. lagging.

|--|--|

| Seat |  |
|------|--|
| No.  |  |

Set



## S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct alternative:

 $(1 \times 14 = 14)$ 

- A transformer transfers electric power from primary to secondary usually with change in
  - a) Frequency

b) Voltage

c) Power

- d) Time period
- 2) The transformer has a full load Cu loss of 400 W, the Cu loss at half load is
  - a) 100 W

b) 1000 W

c) 200 W

- d) 400 W
- 3) The efficiency of single phase transformer is given by
  - a)  $n = (VA \ rating^*cos\phi)/[(VA \ rating^*cos\phi) + Pi + Pcu]$
  - b)  $n = (V_2 I_2 \cos \phi)/[(V_2 I_2 \cos \phi) + Pi + Pcu]$
  - c) Both a) and b)
  - d) None of the above
- 4) A Universal motor is one which
  - a) Is available universally
  - b) Can be marketed internationally
  - c) Can be operated either on DC or AC supply
  - d) Runs at dangerously high speed on no load
- 5) A transformer having 1000 primary turns is connected to 200 V AC supply, for a secondary voltage of 400 V, the no. of turns for the secondary should be
  - a) 1600

b) 2000

c) 2500

d) 1250

| 6)  | In parallel operation of 3 ph transformer it is essential to have |                                     |  |
|-----|-------------------------------------------------------------------|-------------------------------------|--|
|     | phase sequence.                                                   |                                     |  |
|     | a) 120                                                            | b) 90                               |  |
|     | c) same                                                           | d) opposite                         |  |
| 7)  | The primary and secondary of a tran                               | sformer are coupled.                |  |
| ,   | a) Electrically                                                   | b) Magnetically                     |  |
|     | c) Electrically and Magnetically                                  | d) None of the above                |  |
| 8)  | In Dc generator armature reaction is                              | produced actually by                |  |
| ,   | a) Its field current                                              | b) Field pole winding               |  |
|     | c) Armature conductor                                             | d) Load current in armature         |  |
| 9)  | Back E.M.F. in a DC motor                                         |                                     |  |
|     | a) Opposes the applied voltage                                    | b) Aids the applied voltage         |  |
|     | c) Aids the armature current                                      | d) None of the above                |  |
| 10) | motor should be never                                             | r started at no load.               |  |
|     | a) Series                                                         | b) Shunt                            |  |
|     | c) Long compound                                                  | d) Short compound                   |  |
| 11) | Which of the load would be best drive                             | en by DC compound motor?            |  |
|     | a) Reciprocating pump                                             | b) Electric locomotive              |  |
|     | c) Centrifugal pump                                               | d) Fan                              |  |
| 12) | The speed of DC motor can be contr                                | olled by varying                    |  |
|     | a) Its flux per pole                                              | b) Resistance of armature circuit   |  |
|     | c) Applied voltage                                                | d) All of the above                 |  |
| 13) | Which of the following is power equation?                         |                                     |  |
|     | a) $VI_a = E_bI_a + I_a ^2R_a$                                    | b) $V = E_b I_a + I_a^{\land} 2R_a$ |  |
|     | c) $I_a^{a} 2V = E_b I_a^{a} 2 + I_a^{a} 2R_a$                    | d) $V = E_b + I_a R_a$              |  |
| 14) | The E.M.F. induced in DC machine is                               | s E.M.F.                            |  |
|     | a) Dynamically                                                    | b) Statically                       |  |
|     | c) Both a) and b)                                                 | d) None of the above                |  |
|     | , ,                                                               | ,                                   |  |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Draw and explain the power stages of a DC machine.
- b) Explain three point starter with neat diagram.
- c) Why DC series motor should not be started on no-load?
- d) What is armature reaction? Explain its two important effects in case of 2 pole generator.
- e) A 250 V, 4 pole, wave wound series motor has 782 conductors on its armature. It has armature and series field resistance of  $0.75\Omega$ . The motor takes a current of 40 A. Find its speed and gross torque developed if it has a flux per pole of 25 mwb.

## 3. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Draw and explain torque-speed, armature current-torque and armature current-speed characteristics of DC shunt and series motor.
- b) A 250 V, 14.9 kW, 8 pole DC motor has single turn coils. The armature is wave wound with 94 commutator segments. If the brushes are given a lead of 2 commutator segments at full load, calculate
  - a) Total armature reaction ampere turns per pole
  - b) Cross magnetizing ampere turns per pole. Assume efficiency of 80%.
- c) What is back E.M.F. ? Explain its significance and derive equation for it.

#### SECTION - II

## 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Why transformer is called constant flux machine?
- b) Explain operation of universal motor on both AC and DC.
- c) Draw phaser diagram of single phase transformer on resistive and capacitive load.



- d) Explain the construction and working principle of single phase transformer.
- e) A 150 kVA transformer has iron loss of 1.4 kW and full load Cu loss of 2.8 kW at 0.8 p.f. lagging. Calculate
  - i) Efficiency of transformer at full load.
  - ii) The maximum efficiency of the transformer.
- 5. Solve the following questions:

 $(2 \times 6 = 12)$ 

- a) Explain use of transformer having vector group YY 0, DY 1, DD 0 and DY 11. Draw the vector group with connection diagram for each group.
- b) Two single phase transformers with equal voltage ratios have impedances of  $(0.5 + j3)\Omega$  and  $(0.6 + j10) \Omega$  with respect to the secondary. If they operate in parallel, determine how they share a total load of 100 kW at p.f. 0.8 lagging.

OR

b) A 100 kVA,  $3\phi$ , 50 Hz, 3300/400 V transformer is delta connected on the H.V. side and star connected on the L.V. side. The resistance of the H.V. winding is  $3.5~\Omega$  per phase and that of L.V. winding  $0.02~\Omega$  per phase. Calculate the iron losses of the transformer at normal voltage and frequency if its full load efficiency is 95.8% at 0.8~p.f. lagging.

| Seat |  |
|------|--|
| No.  |  |

Set

R

## S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

| Day and Date : Friday, 4-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                       | Max. Marks: 70                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instructions : 1) Q. No. 1<br>minutes<br>carries o<br>2) Answer                                        | is compulsory. It should be solved in first 30 in Answer Book Page No. 3. Each question ne mark.  MCQ/Objective type questions on Page No. 3 n't forget to mention, Q.P. Set (P/Q/R/S) on Top |
| MCQ/O                                                                                                  | bjective Type Questions                                                                                                                                                                       |
| Duration: 30 Minutes                                                                                   | Marks: 14                                                                                                                                                                                     |
| 1. Choose the correct alternative                                                                      | (1×14=14)                                                                                                                                                                                     |
| <ol> <li>The speed of DC motor ca</li> <li>a) Its flux per pole</li> <li>c) Applied voltage</li> </ol> | n be controlled by varying b) Resistance of armature circuit d) All of the above                                                                                                              |
| 2) Which of the following is p<br>a) $VI_a = E_bI_a + I_a ^2R_a$<br>c) $I_a ^2V = E_bI_a ^2 + I_a ^2$  | ower equation ?<br>b) $V = E_b I_a + I_a ^2 R_a$<br>$2R_a$ d) $V = E_b + I_a R_a$                                                                                                             |
|                                                                                                        | machine is E.M.F. b) Statically d) None of the above                                                                                                                                          |
| <ul><li>4) A transformer transfers el with change in</li><li>a) Frequency</li><li>c) Power</li></ul>   | ectric power from primary to secondary usually b) Voltage d) Time period                                                                                                                      |

5) The transformer has a full load Cu loss of 400 W, the Cu loss at half load is

b) 1000 W d) 400 W

- 6) The efficiency of single phase transformer is given by
  - a)  $n = (VA \ rating^*cos\phi)/[(VA \ rating^*cos\phi) + Pi + Pcu]$
  - b)  $n = (V_2 I_2 \cos\phi)/[(V_2 I_2 \cos\phi) + Pi + Pcu]$
  - c) Both a) and b)

a) 100 W

c) 200 W

d) None of the above

| 7)  | A Universal motor is one which                                                                |                                                                                               |
|-----|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|     | a) Is available universally                                                                   |                                                                                               |
|     | b) Can be marketed internationally                                                            |                                                                                               |
|     | c) Can be operated either on DC or                                                            |                                                                                               |
|     | d) Runs at dangerously high speed                                                             |                                                                                               |
| 8)  | A transformer having 1000 primary to for a secondary voltage of 400 V, the notal 1600 c) 2500 | urns is connected to 200 V AC supply, o. of turns for the secondary should be b) 2000 d) 1250 |
| 9)  | In parallel operation of 3 ph transform                                                       | ner it is essential to have                                                                   |
|     | phase sequence.                                                                               |                                                                                               |
|     | a) 120                                                                                        | b) 90                                                                                         |
|     | c) same                                                                                       | d) opposite                                                                                   |
| 10) | The primary and secondary of a tran                                                           | •                                                                                             |
|     | a) Electrically                                                                               | b) Magnetically                                                                               |
|     | c) Electrically and Magnetically                                                              | ·                                                                                             |
| 11) | In Dc generator armature reaction is                                                          |                                                                                               |
|     | a) Its field current                                                                          | b) Field pole winding                                                                         |
|     | c) Armature conductor                                                                         | d) Load current in armature                                                                   |
| 12) | Back E.M.F. in a DC motor                                                                     | 12 4:1 11 12 12 12                                                                            |
|     | a) Opposes the applied voltage                                                                | ,                                                                                             |
| \   | ,                                                                                             | d) None of the above                                                                          |
| 13) | motor should be never                                                                         |                                                                                               |
|     | a) Series                                                                                     | b) Shunt                                                                                      |
|     | c) Long compound                                                                              | d) Short compound                                                                             |
| 14) | Which of the load would be best drive                                                         |                                                                                               |
|     | a) Reciprocating pump                                                                         | b) Electric locomotive                                                                        |
|     | c) Centrifugal pump                                                                           | d) Fan                                                                                        |
|     |                                                                                               |                                                                                               |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Draw and explain the power stages of a DC machine.
- b) Explain three point starter with neat diagram.
- c) Why DC series motor should not be started on no-load?
- d) What is armature reaction? Explain its two important effects in case of 2 pole generator.
- e) A 250 V, 4 pole, wave wound series motor has 782 conductors on its armature. It has armature and series field resistance of  $0.75\Omega$ . The motor takes a current of 40 A. Find its speed and gross torque developed if it has a flux per pole of 25 mwb.

## 3. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Draw and explain torque-speed, armature current-torque and armature current-speed characteristics of DC shunt and series motor.
- b) A 250 V, 14.9 kW, 8 pole DC motor has single turn coils. The armature is wave wound with 94 commutator segments. If the brushes are given a lead of 2 commutator segments at full load, calculate
  - a) Total armature reaction ampere turns per pole
  - b) Cross magnetizing ampere turns per pole. Assume efficiency of 80%.
- c) What is back E.M.F. ? Explain its significance and derive equation for it.

#### SECTION - II

## 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Why transformer is called constant flux machine?
- b) Explain operation of universal motor on both AC and DC.
- c) Draw phaser diagram of single phase transformer on resistive and capacitive load.



- d) Explain the construction and working principle of single phase transformer.
- e) A 150 kVA transformer has iron loss of 1.4 kW and full load Cu loss of 2.8 kW at 0.8 p.f. lagging. Calculate
  - i) Efficiency of transformer at full load.
  - ii) The maximum efficiency of the transformer.
- 5. Solve the following questions:

 $(2 \times 6 = 12)$ 

- a) Explain use of transformer having vector group YY 0, DY 1, DD 0 and DY 11. Draw the vector group with connection diagram for each group.
- b) Two single phase transformers with equal voltage ratios have impedances of  $(0.5 + j3)\Omega$  and  $(0.6 + j10) \Omega$  with respect to the secondary. If they operate in parallel, determine how they share a total load of 100 kW at p.f. 0.8 lagging.

OR

b) A 100 kVA,  $3\phi$ , 50 Hz, 3300/400 V transformer is delta connected on the H.V. side and star connected on the L.V. side. The resistance of the H.V. winding is  $3.5~\Omega$  per phase and that of L.V. winding  $0.02~\Omega$  per phase. Calculate the iron losses of the transformer at normal voltage and frequency if its full load efficiency is 95.8% at 0.8~p.f. lagging.

**SLR-TC - 475** 

# S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

|         | DC MAC                                                                                                                                                                                                                                                                                                                                                        | HINES AND TRANSFO                                                                          | RMERS                                                                                                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| -       | d Date : Friday, 4-5-201<br>2.30 p.m. to 5.30 p.m.                                                                                                                                                                                                                                                                                                            | 8                                                                                          | Max. Marks: 70                                                                                       |
| ,       | <b>minut</b><br>carries<br>2) <b>Answ</b>                                                                                                                                                                                                                                                                                                                     | tes in Answer Book Pag<br>s one mark.<br>er MCQ/Objective type<br>Don't forget to mention, | ould be solved in first 30 ye No. 3. Each question questions on Page No. 3 Q.P. Set (P/Q/R/S) on Top |
|         |                                                                                                                                                                                                                                                                                                                                                               | O/Objective Type Question                                                                  |                                                                                                      |
| Duratio | n : 30 Minutes                                                                                                                                                                                                                                                                                                                                                |                                                                                            | Marks: 14                                                                                            |
| 1. Ch   | oose the correct alterna                                                                                                                                                                                                                                                                                                                                      | tive:                                                                                      | (1×14=14)                                                                                            |
| ·       | <ul> <li>a) n = (VA rating*cosφ)</li> <li>b) n = (V<sub>2</sub>I<sub>2</sub>cosφ)/[(V<sub>2</sub>I<sub>2</sub>cosφ)/[(V<sub>2</sub>I<sub>2</sub>cosφ)]</li> <li>c) Both a) and b)</li> <li>d) None of the above</li> <li>A Universal motor is or</li> <li>a) Is available universal</li> <li>b) Can be marketed in</li> <li>c) Can be operated eit</li> </ul> | ne which<br>ally                                                                           | -                                                                                                    |
| 3)      |                                                                                                                                                                                                                                                                                                                                                               | 000 primary turns is conne<br>of 400 V, the no. of turns for<br>b) 2000<br>d) 1250         | ected to 200 V AC supply,<br>the secondary should be                                                 |
| 4)      | In parallel operation of phase sequence. a) 120 c) same                                                                                                                                                                                                                                                                                                       | 3 ph transformer it is esse<br>b) 90<br>d) opposite                                        |                                                                                                      |
| 5)      | The primary and secona) Electrically                                                                                                                                                                                                                                                                                                                          | dary of a transformer are<br>b) Magneti                                                    |                                                                                                      |

c) Electrically and Magnetically

d) None of the above



| 6)  | In Dc generator armature reaction is produced actually by              |      |                                       |  |  |
|-----|------------------------------------------------------------------------|------|---------------------------------------|--|--|
|     | a) Its field current                                                   | b)   | Field pole winding                    |  |  |
|     | c) Armature conductor                                                  | d)   | Load current in armature              |  |  |
| 7)  | Back E.M.F. in a DC motor                                              |      |                                       |  |  |
| ,   | a) Opposes the applied voltage                                         | b)   | Aids the applied voltage              |  |  |
|     | c) Aids the armature current                                           |      |                                       |  |  |
| 8)  | motor should be never                                                  | rst  | arted at no load.                     |  |  |
| ,   | a) Series                                                              |      | Shunt                                 |  |  |
|     | c) Long compound                                                       | ď)   | Short compound                        |  |  |
| 9)  | Which of the load would be best drive                                  | en   | by DC compound motor?                 |  |  |
| ,   | a) Reciprocating pump                                                  | b)   | Electric locomotive                   |  |  |
|     | c) Centrifugal pump                                                    | d)   | Fan                                   |  |  |
| 10) | The speed of DC motor can be contr                                     | olle | ed by varying                         |  |  |
|     | a) Its flux per pole                                                   | b)   | Resistance of armature circuit        |  |  |
|     | c) Applied voltage                                                     | d)   | All of the above                      |  |  |
| 11) | Which of the following is power equa                                   | tior | າ ?                                   |  |  |
|     | a) $VI_a = E_b I_a + I_a ^ 2R_a$                                       | b)   | $V = E_b I_a + I_a \wedge 2R_a$       |  |  |
|     | a) $VI_a = E_bI_a + I_a ^2R_a$<br>c) $I_a ^2V = E_bI_a ^2 + I_a ^2R_a$ | d)   | $V = E_b + I_a R_a$                   |  |  |
| 12) | The E.M.F. induced in DC machine is                                    |      |                                       |  |  |
|     | a) Dynamically                                                         | b)   | Statically                            |  |  |
|     | c) Both a) and b)                                                      | d)   | None of the above                     |  |  |
| 13) | A transformer transfers electric power with change in                  | er f | rom primary to secondary usually      |  |  |
|     | a) Frequency                                                           | b)   | Voltage                               |  |  |
|     | c) Power                                                               | ,    | Time period                           |  |  |
| 14) | The transformer has a full load Cu los                                 | s o  | of 400 W, the Cu loss at half load is |  |  |
| .,  | a) 100 W                                                               |      | 1000 W                                |  |  |
|     | c) 200 W                                                               | ,    | 400 W                                 |  |  |
|     | J, 200 VV                                                              | u)   | 100 44                                |  |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (E & E) (Part – I) (Old CGPA) Examination, 2018 DC MACHINES AND TRANSFORMERS

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Draw and explain the power stages of a DC machine.
- b) Explain three point starter with neat diagram.
- c) Why DC series motor should not be started on no-load?
- d) What is armature reaction? Explain its two important effects in case of 2 pole generator.
- e) A 250 V, 4 pole, wave wound series motor has 782 conductors on its armature. It has armature and series field resistance of  $0.75\Omega$ . The motor takes a current of 40 A. Find its speed and gross torque developed if it has a flux per pole of 25 mwb.

## 3. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Draw and explain torque-speed, armature current-torque and armature current-speed characteristics of DC shunt and series motor.
- b) A 250 V, 14.9 kW, 8 pole DC motor has single turn coils. The armature is wave wound with 94 commutator segments. If the brushes are given a lead of 2 commutator segments at full load, calculate
  - a) Total armature reaction ampere turns per pole
  - b) Cross magnetizing ampere turns per pole. Assume efficiency of 80%.
- c) What is back E.M.F. ? Explain its significance and derive equation for it.

#### SECTION - II

# 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Why transformer is called constant flux machine?
- b) Explain operation of universal motor on both AC and DC.
- c) Draw phaser diagram of single phase transformer on resistive and capacitive load.



- d) Explain the construction and working principle of single phase transformer.
- e) A 150 kVA transformer has iron loss of 1.4 kW and full load Cu loss of 2.8 kW at 0.8 p.f. lagging. Calculate
  - i) Efficiency of transformer at full load.
  - ii) The maximum efficiency of the transformer.
- 5. Solve the following questions:

 $(2 \times 6 = 12)$ 

- a) Explain use of transformer having vector group YY 0, DY 1, DD 0 and DY 11. Draw the vector group with connection diagram for each group.
- b) Two single phase transformers with equal voltage ratios have impedances of  $(0.5 + j3)\Omega$  and  $(0.6 + j10) \Omega$  with respect to the secondary. If they operate in parallel, determine how they share a total load of 100 kW at p.f. 0.8 lagging.

OR

b) A 100 kVA,  $3\phi$ , 50 Hz, 3300/400 V transformer is delta connected on the H.V. side and star connected on the L.V. side. The resistance of the H.V. winding is  $3.5~\Omega$  per phase and that of L.V. winding  $0.02~\Omega$  per phase. Calculate the iron losses of the transformer at normal voltage and frequency if its full load efficiency is 95.8% at 0.8~p.f. lagging.



| Seat | Set | D |
|------|-----|---|
| No.  | Sei | L |

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: i) **All** questions are **compulsory**.

- ii) Figures to right indicate full marks.
- iii) Assume suitable data whenever necessary.
- iv) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- v) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Duratio | n : 30 Minutes                                                               | Marks:                                                    | 14 |
|---------|------------------------------------------------------------------------------|-----------------------------------------------------------|----|
| 1. Ch   | oose the correct answer:                                                     | (14×1=1                                                   | 4) |
| 1)      | Which law plays a significant role in a) KCL c) Law of superposition theorem | b) KVL                                                    |    |
| 2)      | resistance?                                                                  | cuit is removed, what happens to total                    |    |
|         | <ul><li>a) Decreases</li><li>c) Remains constant</li></ul>                   | <ul><li>b) Increases</li><li>d) Exactly doubles</li></ul> |    |
| 3)      | What will be the value of a rectanguassociated branch is oriented toward     | ular (complete incidence) matrix, if and ds the node?     |    |
|         | a) 1<br>c) 0                                                                 | b) –1<br>d) Not defined (∞)                               |    |
|         | C1 U                                                                         | $\alpha$ ) Not defined ( $\infty$ )                       |    |



| 4)  | Which is the correct sequential order of steps to be undertaken while applying Thevenin's theorem?                                                            |                                                                                                                                           |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | <ul> <li>A) Calculation of Thevenin's equivalent voltage</li> <li>B) Removal of branch impedance through which required current is to be estimated</li> </ul> |                                                                                                                                           |  |  |  |  |
|     | C) Estimation of equivalent impedance                                                                                                                         | ce between two terminals of the branch schematic representation of Thevenin's                                                             |  |  |  |  |
|     | a) A, C, B, D<br>c) D, A, C, B                                                                                                                                | b) B, A, C, D<br>d) B, C, D, A                                                                                                            |  |  |  |  |
| 5)  | A tree has a) closed path b) no closed path                                                                                                                   | c) single path d) none                                                                                                                    |  |  |  |  |
| 6)  | An ideal current source has zero a) Internal resistance c) Ripple                                                                                             | <ul><li>b) Internal conductance</li><li>d) Voltage on the load</li></ul>                                                                  |  |  |  |  |
| 7)  | Superposition theorem can be applicated elements.                                                                                                             | -                                                                                                                                         |  |  |  |  |
| 8)  | Which among the following condition  a) Xc > XL  c) Xc < XL                                                                                                   | <ul> <li>c) Resistive d) Linear bilateral</li> <li>is true at the resonance?</li> <li>b) Xc = XL</li> <li>d) None of the above</li> </ul> |  |  |  |  |
| 9)  | The transient response occurs a) only in resistive networks c) only in inductive circuits                                                                     | <ul><li>b) only in capacitive circuits</li><li>d) both b) and c)</li></ul>                                                                |  |  |  |  |
| 10) | An ideal voltage source should have a) Large value of E.M.F. c) Zero source resistance                                                                        | <ul><li>b) Small value of E.M.F.</li><li>d) Infinite source resistance</li></ul>                                                          |  |  |  |  |
| 11) | With zero initial condition at $t = 0 + $ circuit.                                                                                                            |                                                                                                                                           |  |  |  |  |
| 12) | <ul><li>a) Resistor</li><li>b) Inductor</li><li>For a 2 port network, the condition AE</li><li>a) Unilateral element network</li><li>c) Lossless</li></ul>    | c) Capacitor d) All of the above D-BC = 1 implies that the network is b) Lumped element network d) Reciprocal                             |  |  |  |  |
| 13) | When a network function is expressed output to input variables of a system, a) System function c) Both a) and b)                                              |                                                                                                                                           |  |  |  |  |
| 14) | In series RLC circuit if C is increased what a) It increases                                                                                                  | at happens to resonance frequency ? b) It remains same                                                                                    |  |  |  |  |
|     | c) It decreases                                                                                                                                               | d) It is zero                                                                                                                             |  |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

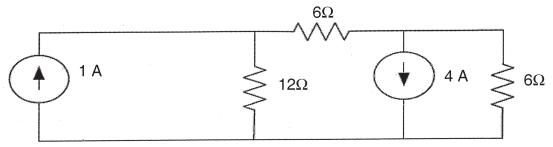
Day and Date: Saturday, 5-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: i) All questions are compulsory.

ii) Figures to **right** indicate **full** marks.

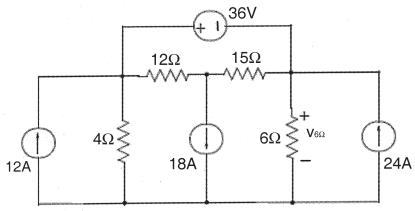
iii) Assume suitable data whenever necessary.


#### SECTION - I

2. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

Marks: 56


- 1) State and explain Thevenin's theorem for DC circuit.
- 2) Determine node voltages of the following circuit.



- 3) Define the terms : Tree, Cotree, Twigs and links.
- 4) What is source transformation? Explain the process step by step.
- 3. Solve any two of the followings:

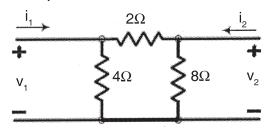
 $(8 \times 2 = 16)$ 

1) Use superposition principle to compute voltage across  $6\Omega$  resistance  $(V_{_{6\Omega}})$ 





- 2) Derive necessary and sufficient condition for maximum power transfer condition from a voltage source with source impedance  $R_s + JX_s$  to a load  $R_l + JX_l$ . What is the value of power transferred in this case ?
- 3) What is incidence matrix? Explain generation of incidence matrix by taking an example. Compare with reduced incidence matrix.


4. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

- 1) Derive transmissions parameters with suitable diagram.
- 2) Differentiate between series and parallel resonance.
- 3) Obtain the Z parameters in terms of Y parameters.
- 4) An inductance 0.5H, a resistance of  $5\Omega$  and capacitance of  $8\mu F$  are in series across a 220V AC supply. Calculate frequency at which the circuit impedance become minimum. Find the current at resonance.
- 5. Solve any two of the followings:

 $(8 \times 2 = 16)$ 

- 1) What is parallel resonance ? State the properties of parallel resonance. A coil resistance  $20\Omega$  and inductance 0.2 H is connected in parallel with a capacitor of  $100\mu F$ . Determine resonant frequency and input impedance at resonance.
- 2) Find Y-parameter for the network shown.



3) Derive the DC transient response of RL series circuit.

Set P



| Seat<br>No. | Set | Q |
|-------------|-----|---|
| 140.        |     |   |

| Day and Date : Saturday, 5-5-2018 | Max. Marks: 70 |
|-----------------------------------|----------------|
|-----------------------------------|----------------|

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: i) **All** questions are **compulsory**.

- ii) Figures to right indicate full marks.
- iii) Assume suitable data whenever necessary.
- iv) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- v) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| MCQ/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bjective Type             | Questions                          |             |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|-------------|-----------|
| Duration : 30 Minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                    |             | Marks: 14 |
| <ol> <li>Choose the correct answer :</li> <li>Which among the following the fo</li></ol> | •                         |                                    | ance ?      | (14×1=14) |
| a) Xc > XL<br>c) Xc < XL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                         | Xc = XL<br>None of the ab          | ove         |           |
| <ul><li>2) The transient response of a) only in resistive netwo</li><li>c) only in inductive circuit</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | orks b)                   | only in capaciti<br>both b) and c) | ve circuits |           |
| <ul><li>3) An ideal voltage source sl</li><li>a) Large value of E.M.F.</li><li>c) Zero source resistance</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b)                        | Small value of Infinite source     |             |           |
| 4) With zero initial condition circuit.  a) Resistor  b) Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                    |             |           |
| 5) For a 2 port network, the a Unilateral element net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | condition AD-B<br>work b) | •                                  | at the netw |           |



| 6)  | When a network function is expressed output to input variables of a system, a) System function c) Both a) and b)                                                                                                                                                                                                                                   | •                                                          | as<br>on                                    |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|--|
| 7)  | In series RLC circuit if C is increased what a) It increases c) It decreases                                                                                                                                                                                                                                                                       | ,                                                          |                                             |  |
| 8)  | Which law plays a significant role in the a) KCL c) Law of superposition theorem                                                                                                                                                                                                                                                                   | b) KVL                                                     |                                             |  |
| 9)  | If one of the resistors in a parallel circuresistance?  a) Decreases c) Remains constant                                                                                                                                                                                                                                                           | uit is removed, what<br>b) Increases<br>d) Exactly doubles |                                             |  |
| 10) | What will be the value of a rectangular associated branch is oriented towards a) 1 c) 0                                                                                                                                                                                                                                                            | ` .                                                        | ŕ                                           |  |
| 11) | <ul> <li>Which is the correct sequential order of Thevenin's theorem?</li> <li>A) Calculation of Thevenin's equivalent</li> <li>B) Removal of branch impedance to estimated</li> <li>C) Estimation of equivalent impedance</li> <li>D) Estimation of branch current by equivalent circuit</li> <li>a) A, C, B, D</li> <li>c) D, A, C, B</li> </ul> | ent voltage<br>hrough which requ<br>ce between two ter     | uired current is to be minals of the branch |  |
| 12) | A tree has a) closed path b) no closed path                                                                                                                                                                                                                                                                                                        | c) single path                                             | d) none                                     |  |
| ,   | <ul> <li>An ideal current source has zero</li> <li>a) Internal resistance</li> <li>b) Internal conductance</li> <li>c) Ripple</li> <li>d) Voltage on the load</li> </ul>                                                                                                                                                                           |                                                            |                                             |  |
| 14) | Superposition theorem can be applicated elements.                                                                                                                                                                                                                                                                                                  | able only to circuits                                      | having                                      |  |
|     | a) Non-linear b) Passive                                                                                                                                                                                                                                                                                                                           | c) Resistive                                               | d) Linear bilateral                         |  |



| Seat |  |
|------|--|
| No.  |  |

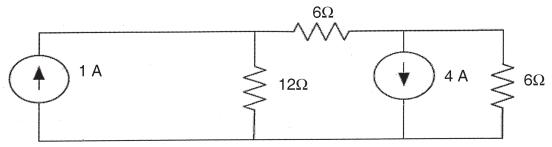
Day and Date: Saturday, 5-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: i) All questions are compulsory.

ii) Figures to **right** indicate **full** marks.

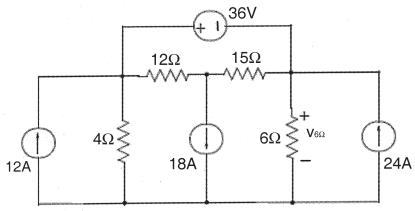
iii) Assume suitable data whenever necessary.


#### SECTION - I

2. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

Marks: 56


- 1) State and explain Thevenin's theorem for DC circuit.
- 2) Determine node voltages of the following circuit.



- 3) Define the terms : Tree, Cotree, Twigs and links.
- 4) What is source transformation? Explain the process step by step.
- 3. Solve any two of the followings:

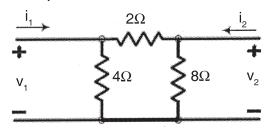
 $(8 \times 2 = 16)$ 

1) Use superposition principle to compute voltage across  $6\Omega$  resistance  $(V_{_{6\Omega}})$ 





- 2) Derive necessary and sufficient condition for maximum power transfer condition from a voltage source with source impedance  $R_s + JX_s$  to a load  $R_i + JX_i$ . What is the value of power transferred in this case ?
- 3) What is incidence matrix? Explain generation of incidence matrix by taking an example. Compare with reduced incidence matrix.


4. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

- 1) Derive transmissions parameters with suitable diagram.
- 2) Differentiate between series and parallel resonance.
- 3) Obtain the Z parameters in terms of Y parameters.
- 4) An inductance 0.5H, a resistance of  $5\Omega$  and capacitance of  $8\mu F$  are in series across a 220V AC supply. Calculate frequency at which the circuit impedance become minimum. Find the current at resonance.
- 5. Solve any two of the followings:

 $(8 \times 2 = 16)$ 

- 1) What is parallel resonance ? State the properties of parallel resonance. A coil resistance  $20\Omega$  and inductance 0.2 H is connected in parallel with a capacitor of  $100\mu F$ . Determine resonant frequency and input impedance at resonance.
- 2) Find Y-parameter for the network shown.



3) Derive the DC transient response of RL series circuit.

Set Q



| Seat | Set | R |
|------|-----|---|
| No.  | Set | n |

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: i) All questions are compulsory.

- ii) Figures to right indicate full marks.
- iii) Assume suitable data whenever necessary.
- iv) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- v) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Duratio | n : 30 Minutes                                                      |                     |    |                                              |             | Marks: 14 |
|---------|---------------------------------------------------------------------|---------------------|----|----------------------------------------------|-------------|-----------|
| 1. Ch   | oose the correct an                                                 | swer:               |    |                                              |             | (14×1=14) |
| 1)      | A tree has a) closed path                                           | b) no closed path   | c) | single path                                  | d) none     |           |
| 2)      | An ideal current so<br>a) Internal resista<br>c) Ripple             |                     | ,  | Internal conduct<br>Voltage on the           |             |           |
| 3)      | Superposition theo elements.                                        |                     |    | -                                            |             |           |
|         | a) Non-linear                                                       | b) Passive          | C) | Resistive                                    | d) Linear   | bilateral |
| 4)      | Which among the f<br>a) Xc > XL<br>c) Xc < XL                       | following condition | b) | ue at the reson<br>Xc = XL<br>None of the ab |             |           |
| 5)      | The transient responsible a) only in resistive c) only in inductive | enetworks           | ,  | only in capaciti<br>both b) and c)           | ve circuits |           |



| 6)  | a) Large value of                                         | source should have<br>f E.M.F.<br>esistance | b) Small value of                                                                     |                                                |
|-----|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|
| 7)  | With zero initial circuit.                                | condition at t = 0                          | + ,                                                                                   | _ acts as an open                              |
|     | a) Resistor                                               | b) Inductor                                 | c) Capacitor                                                                          | d) All of the above                            |
| 8)  | •                                                         |                                             | AD-BC = 1 implies to b) Lumped elem d) Reciprocal                                     |                                                |
| 9)  |                                                           | riables of a system<br>on                   | ed as a ratio of Lap<br>n, then it is regarde<br>b) Transfer func<br>d) None of the a | tion                                           |
| 10) | In series RLC circu<br>a) It increases<br>c) It decreases | it if C is increased w                      | hat happens to resor<br>b) It remains sa<br>d) It is zero                             |                                                |
| 11) | a) KCL                                                    | C                                           | the loop analysis of b) KVL d) None of the a                                          |                                                |
| 12) | If one of the resistance?                                 |                                             | cuit is removed, wh                                                                   | nat happens to total                           |
|     | <ul><li>a) Decreases</li><li>c) Remains cons</li></ul>    | stant                                       | <ul><li>b) Increases</li><li>d) Exactly doub</li></ul>                                | lee                                            |
| 13) | What will be the                                          |                                             | ular (complete incid                                                                  | dence) matrix, if an                           |
|     | a) 1                                                      | i is offerfied towar                        | b) -1                                                                                 |                                                |
|     | c) 0                                                      |                                             | d) Not defined (                                                                      | ∞)                                             |
| 14) | Which is the correct Thevenin's theorem                   | em?                                         | of steps to be under                                                                  | taken while applying                           |
|     | •                                                         | Thevenin's equiva<br>eranch impedance       |                                                                                       | quired current is to be                        |
|     | •                                                         | branch current by                           |                                                                                       | erminals of the branch sentation of Thevenin's |
|     | a) A, C, B, D                                             |                                             | b) B, A, C, D                                                                         |                                                |
|     | c) D, A, C, B                                             |                                             | d) B, C, D, A                                                                         |                                                |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Saturday, 5-5-2018

Time: 2.30 p.m. to 5.30 p.m.

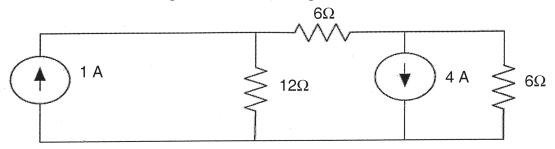
Marks: 56

. . .

**Instructions**: i) **All** questions are **compulsory**.

ii) Figures to **right** indicate **full** marks.

iii) Assume suitable data whenever necessary.

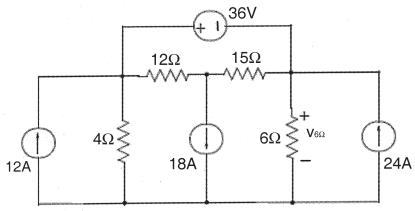

#### SECTION - I

# 2. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

1) State and explain Thevenin's theorem for DC circuit.

2) Determine node voltages of the following circuit.




- 3) Define the terms : Tree, Cotree, Twigs and links.
- 4) What is source transformation? Explain the process step by step.

# 3. Solve any two of the followings:

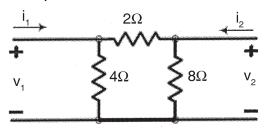
 $(8 \times 2 = 16)$ 

1) Use superposition principle to compute voltage across  $6\Omega$  resistance  $(V_{_{6\Omega}})$ 





- 2) Derive necessary and sufficient condition for maximum power transfer condition from a voltage source with source impedance  $R_{\rm s} + JX_{\rm s}$  to a load  $R_{\rm l} + JX_{\rm l}$ . What is the value of power transferred in this case ?
- 3) What is incidence matrix? Explain generation of incidence matrix by taking an example. Compare with reduced incidence matrix.


4. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

- 1) Derive transmissions parameters with suitable diagram.
- 2) Differentiate between series and parallel resonance.
- 3) Obtain the Z parameters in terms of Y parameters.
- 4) An inductance 0.5H, a resistance of  $5\Omega$  and capacitance of  $8\mu F$  are in series across a 220V AC supply. Calculate frequency at which the circuit impedance become minimum. Find the current at resonance.
- 5. Solve any two of the followings:

 $(8 \times 2 = 16)$ 

- 1) What is parallel resonance ? State the properties of parallel resonance. A coil resistance  $20\Omega$  and inductance 0.2 H is connected in parallel with a capacitor of  $100\mu F$ . Determine resonant frequency and input impedance at resonance.
- 2) Find Y-parameter for the network shown.



3) Derive the DC transient response of RL series circuit.

Set R



| Seat<br>No. |  | Set | S |
|-------------|--|-----|---|
|-------------|--|-----|---|

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

### **Instructions**: i) **All** questions are **compulsory**.

- ii) Figures to right indicate full marks.
- iii) Assume suitable data whenever necessary.
- iv) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- v) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Dur | ation : 30 Minute | S                                                         |                                      | Marks: 14                           |
|-----|-------------------|-----------------------------------------------------------|--------------------------------------|-------------------------------------|
| 1.  | Choose the corr   | ect answer:                                               |                                      | (14×1=14)                           |
|     | a) Large va       | age source should have<br>lue of E.M.F.<br>rce resistance | b) Small value<br>d) Infinite source |                                     |
|     | circuit.          | b) Inductor                                               |                                      | acts as an open d) All of the above |
|     | 3) For a 2 port   | network, the condition A<br>I element network             | D-BC = 1 implies                     | that the network is                 |
|     | ,                 |                                                           |                                      | ed as<br>ction                      |



| 5)  | In series RLC circuit if C is increased what a) It increases c) It decreases                                                                                                                                                                                                                              | t happens to resonal<br>b) It remains same<br>d) It is zero     |                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|
| 6)  | Which law plays a significant role in that a) KCL c) Law of superposition theorem                                                                                                                                                                                                                         | b) KVL                                                          |                      |
| 7)  | If one of the resistors in a parallel circuresistance?                                                                                                                                                                                                                                                    | ,                                                               |                      |
|     | a) Decreases                                                                                                                                                                                                                                                                                              | b) Increases                                                    |                      |
|     | c) Remains constant                                                                                                                                                                                                                                                                                       | d) Exactly doubles                                              | 3                    |
| 8)  | What will be the value of a rectangula                                                                                                                                                                                                                                                                    | •                                                               | nce) matrix, if an   |
|     | associated branch is oriented towards                                                                                                                                                                                                                                                                     |                                                                 |                      |
|     | a) 1                                                                                                                                                                                                                                                                                                      | b) -1                                                           |                      |
| ٥)  | c) 0 Which is the correct sequential order of                                                                                                                                                                                                                                                             | d) Not defined (∞)                                              |                      |
| 10) | <ul> <li>Thevenin's theorem?</li> <li>A) Calculation of Thevenin's equivale</li> <li>B) Removal of branch impedance the estimated</li> <li>C) Estimation of equivalent impedance</li> <li>D) Estimation of branch current by sequivalent circuit</li> <li>a) A, C, B, D</li> <li>c) D, A, C, B</li> </ul> | hrough which require between two terr                           | minals of the branch |
| 10) | A tree has a) closed path b) no closed path                                                                                                                                                                                                                                                               | c) single path                                                  | d) none              |
| 11) | An ideal current source has zero a) Internal resistance c) Ripple                                                                                                                                                                                                                                         | <ul><li>b) Internal conduct</li><li>d) Voltage on the</li></ul> |                      |
| 12) | Superposition theorem can be applicated elements.                                                                                                                                                                                                                                                         |                                                                 | -                    |
| 40\ | a) Non-linear b) Passive                                                                                                                                                                                                                                                                                  | c) Resistive                                                    | d) Linear bilateral  |
| 13) | Which among the following condition i a) Xc > XL c) Xc < XL                                                                                                                                                                                                                                               | b) Xc = XL<br>d) None of the abo                                |                      |
| 14) | The transient response occurs a) only in resistive networks                                                                                                                                                                                                                                               | b) only in capacitive                                           | ve circuits          |
|     | c) only in inductive circuits                                                                                                                                                                                                                                                                             | d) both b) and c)                                               |                      |



| Seat |  |
|------|--|
| No.  |  |

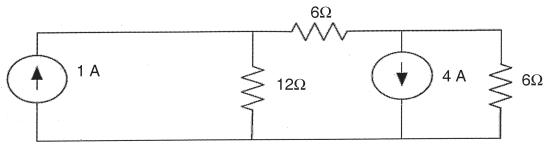
Day and Date: Saturday, 5-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: i) All questions are compulsory.

ii) Figures to **right** indicate **full** marks.

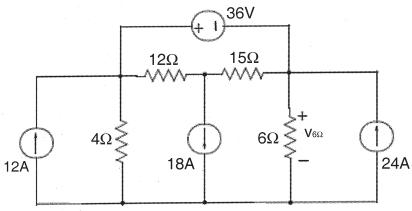
iii) Assume suitable data whenever necessary.


#### SECTION - I

2. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

Marks: 56


- 1) State and explain Thevenin's theorem for DC circuit.
- 2) Determine node voltages of the following circuit.



- 3) Define the terms : Tree, Cotree, Twigs and links.
- 4) What is source transformation? Explain the process step by step.
- 3. Solve any two of the followings:

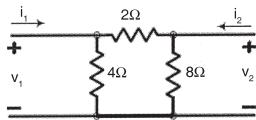
 $(8 \times 2 = 16)$ 

1) Use superposition principle to compute voltage across  $6\Omega$  resistance  $(V_{_{6\Omega}})$ 





- 2) Derive necessary and sufficient condition for maximum power transfer condition from a voltage source with source impedance  $R_s + JX_s$  to a load  $R_i + JX_i$ . What is the value of power transferred in this case ?
- 3) What is incidence matrix? Explain generation of incidence matrix by taking an example. Compare with reduced incidence matrix.


4. Solve any three of the followings:

 $(4 \times 3 = 12)$ 

- 1) Derive transmissions parameters with suitable diagram.
- 2) Differentiate between series and parallel resonance.
- 3) Obtain the Z parameters in terms of Y parameters.
- 4) An inductance 0.5H, a resistance of  $5\Omega$  and capacitance of  $8\mu F$  are in series across a 220V AC supply. Calculate frequency at which the circuit impedance become minimum. Find the current at resonance.
- 5. Solve any two of the followings:

 $(8 \times 2 = 16)$ 

- 1) What is parallel resonance ? State the properties of parallel resonance. A coil resistance  $20\Omega$  and inductance 0.2 H is connected in parallel with a capacitor of  $100\mu F$ . Determine resonant frequency and input impedance at resonance.
- 2) Find Y-parameter for the network shown.



3) Derive the DC transient response of RL series circuit.

Set S



**SLR-TC - 477** 

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 ANALOG ELECTRONICS

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) If necessary, assume suitable data.
- 4) Figure to right indicate full marks.

| Dur | ation: 30 Minutes                         |                        |                           |                   | Marks: 14 |
|-----|-------------------------------------------|------------------------|---------------------------|-------------------|-----------|
| 1.  | Choose the correct a                      | Iternative :           |                           |                   |           |
|     | 1) The average value                      | e of load voltage      | e for half wave re        | ctifier is        |           |
|     | a) $V_m/\pi$                              | b) $2V_m/\pi$          | c) $\pi/V_m$              | d) $\pi/2V_{m}$   |           |
|     | 2) The gain of cascaded amplifier is equ  |                        | equal to                  |                   |           |
|     | a) Product of individual gain             |                        | b) Sum of individual gain |                   |           |
|     | c) Ratio of stage                         | c) Ratio of stage gain |                           | d) None of these  |           |
|     | 3) In class A amplifier the collector cur |                        | current flows for         |                   |           |
|     | a) Less than half                         | cycle                  | b) For half c             | ycle              |           |
|     | c) Less than full o                       | cycle                  | d) For comp               | lete cycle        |           |
|     | 4) MOSFET can be used as a                |                        |                           |                   |           |
|     | a) current control                        | led capacitor          | b) voltage co             | ontrolled capaci  | tor       |
|     | c) current control                        | led inductor           | d) voltage co             | ontrolled inducto | or        |



| 5)  | The output of class                  | B amplifier                 |                  |                       |                     |
|-----|--------------------------------------|-----------------------------|------------------|-----------------------|---------------------|
|     | a) is distortion free                |                             |                  |                       |                     |
|     | b) consist of positiv                | e half cycle only           |                  |                       |                     |
|     | c) is like a output of               | f FWR                       |                  |                       |                     |
|     | d) comprise short d                  | luration of current         | pu               | lses                  |                     |
| 6)  | When transistor is u                 | ısed as amplifier i         | ts c             | operation is co       | nfines in           |
|     | a) saturation region                 | 1                           | b)               | cutoff region         |                     |
|     | c) active region                     |                             | d)               | both a & b            |                     |
| 7)  | The main job of cur                  | rent mirror circuit         | is t             | o provide             | output current.     |
|     | a) sinusoidal                        | b) constant                 | c)               | smooth                | d) fluctuating      |
| 8)  | Two input terminals                  | of op-amp are               |                  |                       |                     |
|     | a) Positive & negat                  | ive                         | b)               | Differential &        | non-differential    |
|     | c) Inverting & non-i                 | nverting                    | d)               | High & low            |                     |
| 9)  | An ideal op-amp ha                   | S                           |                  |                       |                     |
|     | a) Zero output resis                 | stance                      | b)               | Infinite resista      | ince                |
|     | c) Zero input resista                | ance                        | d)               | Both a & c            |                     |
| 10) | For inverting amplifi                | er if $R_f = 10K\Omega$ , F | R <sub>1</sub> = | 1K $\Omega$ then gain | n is                |
|     | a) -11                               | b) -10                      | c)               | <b>-9</b>             | d) -1               |
| 11) | For sine input, outpo                | ut of an integrator         | is               |                       |                     |
|     | a) cosine wave                       |                             | b)               | pulse                 |                     |
|     | c) triangular wave                   |                             | d)               | square wave           |                     |
| 12) | A monostable multiv                  | vibrator is called a        | as               |                       |                     |
|     | a) one shot                          | b) two shot                 | c)               | unibrator             | d) both a & c       |
| 13) | The Schmitt trigger                  | circuit                     |                  |                       |                     |
|     | a) converts irregula                 | r waveform into p           | uls              | e waveform            |                     |
|     | b) uses positive fee                 | edback                      |                  |                       |                     |
|     | c) is fast operating                 | voltage level dete          | ecto             | or                    |                     |
|     | d) all of above                      |                             |                  |                       |                     |
| 14) | The change in op-a voltage called as | ımp input offset v          | olta             | age causes by         | variation in supply |
|     | a) SVRR                              | b) PSS                      | c)               | PSRR                  | d) All              |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 **ANALOG ELECTRONICS**

Day and Date: Monday, 7-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

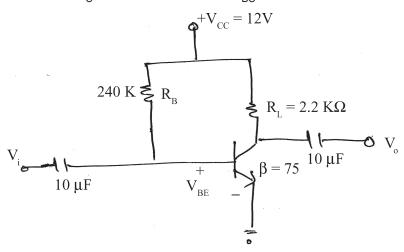
Instructions: 1) If necessary, assume suitable data. 2) Figure to right indicate full marks.

#### SECTION - I

2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is clamper? Explain positive clamper.
- 2) What is load line analysis? Explain Q-point.
- 3) Explain class A amplifier.
- 4) Explain the working of depletion type MOSFET.


# 3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) For fixed bias configuration shown below, calculate
  - a)  $I_{BO}$  and  $I_{CO}$
- b) V<sub>CFO</sub> e)  $V_{BC}$
- c)  $V_{R}$

d)  $V_{c}$ 

f)  $\alpha$ 





- 2) Explain working of unijunction transistor. Also discuss its VI characteristics.
- 3) What is rectifier? State its types. Explain operation of bridge rectifier.

### 4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw general block diagram of op-amp and pin diagram of IC 741.
- 2) Explain op-amp as a integrator.
- 3) Explain peak detector using op-amp.
- 4) What are closed loop inverting and non-inverting amplifiers?

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Explain instrumentation amplifier using transducer bridge.
- 2) Explain with neat diagram and waveforms of IC 555 as a stable multivibrator. Also derive expression for frequency of oscillation.
- 3) What are ideal characteristics of op-amp? Explain following terms in op-amp.
  - a) CMRR
- b) PSRR
- c) Slew rate.

**SLR-TC - 477** 

| Seat |  |
|------|--|
| No.  |  |

Set

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 ANALOG ELECTRONICS

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
30 minutes in Answer Book Page No. 3. Each question
carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

c) unibrator

- 3) If necessary, assume suitable data.
- 4) Figure to **right** indicate **full** marks.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14 Choose the correct alternative : 1) Two input terminals of op-amp are a) Positive & negative b) Differential & non-differential c) Inverting & non-inverting d) High & low 2) An ideal op-amp has a) Zero output resistance b) Infinite resistance c) Zero input resistance d) Both a & c 3) For inverting amplifier if  $R_f = 10K\Omega$ ,  $R_1 = 1K\Omega$  then gain is b) -10c) -9d) -1a) -11 4) For sine input, output of an integrator is a) cosine wave b) pulse d) square wave c) triangular wave

5) A monostable multivibrator is called as

b) two shot

a) one shot

d) both a & c

| 6)  | The Schmitt trigger                  | circuit             |                     |                       |
|-----|--------------------------------------|---------------------|---------------------|-----------------------|
|     | a) converts irregula                 | ır waveform into p  | oulse waveform      |                       |
|     | b) uses positive fee                 | edback              |                     |                       |
|     | c) is fast operating                 | voltage level dete  | ector               |                       |
|     | d) all of above                      |                     |                     |                       |
| 7)  | The change in op-a voltage called as | amp input offset v  | oltage causes b     | y variation in supply |
|     | a) SVRR                              | b) PSS              | c) PSRR             | d) All                |
| 8)  | The average value                    | of load voltage fo  | r half wave rectif  | ier is                |
|     | a) $V_m/\pi$                         | b) $2V_m/\pi$       | c) $\pi/V_m$        | d) $\pi/2V_{m}$       |
| 9)  | The gain of cascade                  | ed amplifier is equ | ual to              |                       |
|     | a) Product of individual             | dual gain           | b) Sum of indiv     | idual gain            |
|     | c) Ratio of stage ga                 | ain                 | d) None of thes     | se                    |
| 10) | In class A amplifier                 | the collector curre | ent flows for       |                       |
|     | a) Less than half cy                 | /cle                | b) For half cycle   | е                     |
|     | c) Less than full cy                 | cle                 | d) For complete     | e cycle               |
| 11) | MOSFET can be us                     | sed as a            |                     |                       |
|     | a) current controlle                 | d capacitor         | b) voltage cont     | rolled capacitor      |
|     | c) current controlle                 | d inductor          | d) voltage cont     | rolled inductor       |
| 12) | The output of class                  | B amplifier         |                     |                       |
|     | a) is distortion free                |                     |                     |                       |
|     | b) consist of positive               | e half cycle only   |                     |                       |
|     | c) is like a output o                | f FWR               |                     |                       |
|     | d) comprise short of                 | luration of current | pulses              |                       |
| 13) | When transistor is u                 | ised as amplifier i | its operation is co | onfines in            |
|     | a) saturation region                 | 1                   | b) cutoff region    |                       |
|     | c) active region                     |                     | d) both a & b       |                       |
| 14) | The main job of cur                  | rent mirror circuit | is to provide       | output current.       |
|     | a) sinusoidal                        | b) constant         | c) smooth           | d) fluctuating        |
|     |                                      |                     |                     |                       |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 **ANALOG ELECTRONICS**

Day and Date: Monday, 7-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

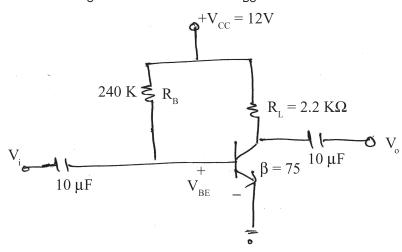
**Instructions**: 1) **If necessary**, assume suitable data. 2) Figure to right indicate full marks.

#### SECTION - I

2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is clamper? Explain positive clamper.
- 2) What is load line analysis? Explain Q-point.
- 3) Explain class A amplifier.
- 4) Explain the working of depletion type MOSFET.


3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) For fixed bias configuration shown below, calculate
  - a)  $I_{BO}$  and  $I_{CO}$
- b) V<sub>CFO</sub> e)  $V_{BC}$
- c)  $V_{R}$

d)  $V_{c}$ 

f)  $\alpha$ 





- 2) Explain working of unijunction transistor. Also discuss its VI characteristics.
- 3) What is rectifier? State its types. Explain operation of bridge rectifier.

### 4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw general block diagram of op-amp and pin diagram of IC 741.
- 2) Explain op-amp as a integrator.
- 3) Explain peak detector using op-amp.
- 4) What are closed loop inverting and non-inverting amplifiers?

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Explain instrumentation amplifier using transducer bridge.
- 2) Explain with neat diagram and waveforms of IC 555 as a stable multivibrator. Also derive expression for frequency of oscillation.
- 3) What are ideal characteristics of op-amp? Explain following terms in op-amp.
  - a) CMRR
- b) PSRR
- c) Slew rate.

| <br> | <br> |
|------|------|

**SLR-TC - 477** 

| Seat |  |
|------|--|
| No.  |  |

Set R

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 ANALOG ELECTRONICS

| Day | and Date : Monday, 7-5-2018 | Total Marks: 70 |
|-----|-----------------------------|-----------------|
|     |                             |                 |

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
30 minutes in Answer Book Page No. 3. Each question
carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) If necessary, assume suitable data.
- 4) Figure to **right** indicate **full** marks.

| Dura | ation : 30 Minutes                     | Marks: 14                          |
|------|----------------------------------------|------------------------------------|
| 1.   | Choose the correct alternative :       |                                    |
|      | 1) The output of class B amplifier     |                                    |
|      | a) is distortion free                  |                                    |
|      | b) consist of positive half cycle on   | ly                                 |
|      | c) is like a output of FWR             |                                    |
|      | d) comprise short duration of curre    | ent pulses                         |
|      | 2) When transistor is used as amplific | er its operation is confines in    |
|      | a) saturation region                   | b) cutoff region                   |
|      | c) active region                       | d) both a & b                      |
|      | 3) The main job of current mirror circ | uit is to provide output current.  |
|      | a) sinusoidal b) constant              | c) smooth d) fluctuating           |
|      | 4) Two input terminals of op-amp are   |                                    |
|      | a) Positive & negative                 | b) Differential & non-differential |
|      | c) Inverting & non-inverting           | d) High & low                      |
|      |                                        |                                    |

| 5)  | An ideal op-amp has                                   |                                       |
|-----|-------------------------------------------------------|---------------------------------------|
|     | a) Zero output resistance                             | b) Infinite resistance                |
|     | c) Zero input resistance                              | d) Both a & c                         |
| 6)  | For inverting amplifier if $R_f = 10K\Omega$ , F      | $R_1 = 1 \text{K}\Omega$ then gain is |
|     | a) -11 b) -10                                         | c) -9 d) -1                           |
| 7)  | For sine input, output of an integrator               | is                                    |
|     | a) cosine wave                                        | b) pulse                              |
|     | c) triangular wave                                    | d) square wave                        |
| 8)  | A monostable multivibrator is called a                | as                                    |
|     | a) one shot b) two shot                               | c) unibrator d) both a & c            |
| 9)  | The Schmitt trigger circuit                           |                                       |
|     | a) converts irregular waveform into p                 | oulse waveform                        |
|     | b) uses positive feedback                             |                                       |
|     | c) is fast operating voltage level dete               | ector                                 |
|     | d) all of above                                       |                                       |
| 10) | The change in op-amp input offset v voltage called as | oltage causes by variation in supply  |
|     | a) SVRR b) PSS                                        | c) PSRR d) All                        |
| 11) | The average value of load voltage for                 | r half wave rectifier is              |
|     | a) $V_m/\pi$ b) $2V_m/\pi$                            | c) $\pi/V_m$ d) $\pi/2V_m$            |
| 12) | The gain of cascaded amplifier is equ                 | ual to                                |
|     | a) Product of individual gain                         | b) Sum of individual gain             |
|     | c) Ratio of stage gain                                | d) None of these                      |
| 13) | In class A amplifier the collector curre              | ent flows for                         |
|     | a) Less than half cycle                               | b) For half cycle                     |
|     | c) Less than full cycle                               | d) For complete cycle                 |
| 14) | MOSFET can be used as a                               |                                       |
| ,   | a) current controlled capacitor                       | b) voltage controlled capacitor       |
|     | c) current controlled inductor                        | d) voltage controlled inductor        |
|     |                                                       |                                       |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 ANALOG ELECTRONICS

Day and Date: Monday, 7-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

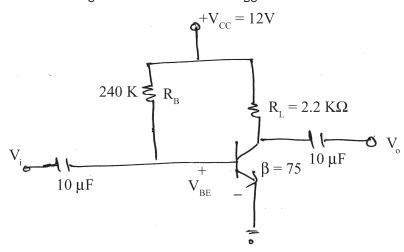
Instructions: 1) If necessary, assume suitable data.
2) Figure to right indicate full marks.

#### SECTION - I

2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is clamper? Explain positive clamper.
- 2) What is load line analysis? Explain Q-point.
- 3) Explain class A amplifier.
- 4) Explain the working of depletion type MOSFET.


# 3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) For fixed bias configuration shown below, calculate
  - a)  $I_{BO}$  and  $I_{CO}$
- b) V<sub>CEQ</sub>e) V<sub>BC</sub>
- c)  $V_B$

d)  $V_{c}$ 

f)  $\alpha$ 





- 2) Explain working of unijunction transistor. Also discuss its VI characteristics.
- 3) What is rectifier? State its types. Explain operation of bridge rectifier.

### 4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw general block diagram of op-amp and pin diagram of IC 741.
- 2) Explain op-amp as a integrator.
- 3) Explain peak detector using op-amp.
- 4) What are closed loop inverting and non-inverting amplifiers?

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Explain instrumentation amplifier using transducer bridge.
- 2) Explain with neat diagram and waveforms of IC 555 as a stable multivibrator. Also derive expression for frequency of oscillation.
- 3) What are ideal characteristics of op-amp? Explain following terms in op-amp.
  - a) CMRR
- b) PSRR
- c) Slew rate.



**SLR-TC - 477** 

| Seat |  |
|------|--|
| No.  |  |

Set

Marks: 14

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 ANALOG ELECTRONICS

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Duration: 30 Minutes** 

d) all of above

1.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) If necessary, assume suitable data.
  - 4) Figure to right indicate full marks.

| Choose the correct   | alternative :                |                          |               |
|----------------------|------------------------------|--------------------------|---------------|
| 1) For inverting am  | plifier if $R_f = 10K\Omega$ | $R_1 = 1K\Omega$ then ga | ain is        |
| a) -11               | b) -10                       | c) -9                    | d) -1         |
| 2) For sine input, o | utput of an integrat         | tor is                   |               |
| a) cosine wave       |                              | b) pulse                 |               |
| c) triangular wa     | ve                           | d) square wave           | е             |
| 3) A monostable m    | ultivibrator is called       | d as                     |               |
| a) one shot          | b) two shot                  | c) unibrator             | d) both a & c |
| 4) The Schmitt trigg | ger circuit                  |                          |               |
| a) converts irreg    | jular waveform into          | pulse waveform           |               |
| b) uses positive     | feedback                     |                          |               |
| c) is fast operati   | ng voltage level de          | etector                  |               |

| 5)                                                                                                                                        | The change in op-amp input offset voltage causes by variation in supply voltage called as                       |                       |      |                       |                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------------|------------------|--|
|                                                                                                                                           | a) SVRR                                                                                                         | b) PSS                | c)   | PSRR                  | d) All           |  |
| 6)                                                                                                                                        | The average value of                                                                                            | of load voltage for   | r ha | alf wave rectifie     | er is            |  |
|                                                                                                                                           | a) $V_m/\pi$                                                                                                    | b) $2V_m/\pi$         | c)   | $\pi/V_{m}$           | d) $\pi/2V_m$    |  |
| 7)                                                                                                                                        | The gain of cascade                                                                                             | ed amplifier is equ   | ıal  | to                    |                  |  |
|                                                                                                                                           | a) Product of individ                                                                                           | dual gain             | b)   | Sum of individ        | lual gain        |  |
|                                                                                                                                           | c) Ratio of stage ga                                                                                            | in                    | d)   | None of these         | •                |  |
| 8)                                                                                                                                        | 8) In class A amplifier the collector curre                                                                     |                       |      | ent flows for         |                  |  |
| <ul> <li>a) Less than half cyc</li> </ul>                                                                                                 |                                                                                                                 | rcle                  | b)   | o) For half cycle     |                  |  |
|                                                                                                                                           | c) Less than full cycle                                                                                         |                       | d)   | d) For complete cycle |                  |  |
| 9)                                                                                                                                        | MOSFET can be us                                                                                                | ed as a               |      |                       |                  |  |
|                                                                                                                                           | a) current controlled                                                                                           | •                     | •    | voltage contro        | •                |  |
|                                                                                                                                           | c) current controlled                                                                                           |                       | d)   | voltage contro        | olled inductor   |  |
| 10)                                                                                                                                       | The output of class                                                                                             | B amplifier           |      |                       |                  |  |
|                                                                                                                                           | a) is distortion free                                                                                           | a la alfantal a andri |      |                       |                  |  |
| <ul><li>b) consist of positive half cycle only</li><li>c) is like a output of FWR</li><li>d) comprise short duration of current</li></ul> |                                                                                                                 |                       |      |                       |                  |  |
|                                                                                                                                           |                                                                                                                 |                       | nu   | lses                  |                  |  |
| 11)                                                                                                                                       | d) comprise short duration of current pulses  When transistor is used as amplifier its operation is confines in |                       |      |                       |                  |  |
| ,                                                                                                                                         | a) saturation region                                                                                            | -                     |      | cutoff region         |                  |  |
|                                                                                                                                           | c) active region                                                                                                |                       | •    | both a & b            |                  |  |
| 12)                                                                                                                                       | The main job of curr                                                                                            | ent mirror circuit    | is t | o provide             | output current.  |  |
|                                                                                                                                           | a) sinusoidal                                                                                                   | b) constant           |      | smooth                | d) fluctuating   |  |
| 13)                                                                                                                                       | Two input terminals                                                                                             | of op-amp are         |      |                       |                  |  |
|                                                                                                                                           | a) Positive & negati                                                                                            | ive                   | b)   | Differential &        | non-differential |  |
|                                                                                                                                           | c) Inverting & non-in                                                                                           | nverting              | d)   | High & low            |                  |  |
| 14)                                                                                                                                       | An ideal op-amp has                                                                                             | S                     |      |                       |                  |  |
|                                                                                                                                           | a) Zero output resis                                                                                            | stance                | b)   | Infinite resista      | ince             |  |
|                                                                                                                                           | c) Zero input resista                                                                                           | ance                  | d)   | Both a & c            |                  |  |
|                                                                                                                                           |                                                                                                                 |                       |      |                       |                  |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Electrical & Electronics Engineering) (Part – I) (Old CGPA) Examination, 2018 ANALOG ELECTRONICS

Day and Date: Monday, 7-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

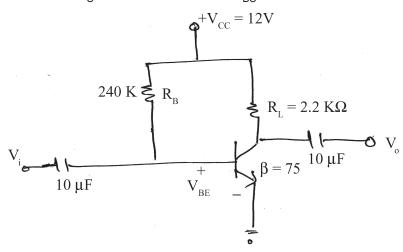
Instructions: 1) If necessary, assume suitable data.
2) Figure to right indicate full marks.

#### SECTION - I

2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is clamper? Explain positive clamper.
- 2) What is load line analysis? Explain Q-point.
- 3) Explain class A amplifier.
- 4) Explain the working of depletion type MOSFET.


# 3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) For fixed bias configuration shown below, calculate
  - a)  $I_{BO}$  and  $I_{CO}$
- b) V<sub>CEQ</sub>e) V<sub>BC</sub>
- c)  $V_B$

d)  $V_{c}$ 

f)  $\alpha$ 





- 2) Explain working of unijunction transistor. Also discuss its VI characteristics.
- 3) What is rectifier? State its types. Explain operation of bridge rectifier.

### 4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw general block diagram of op-amp and pin diagram of IC 741.
- 2) Explain op-amp as a integrator.
- 3) Explain peak detector using op-amp.
- 4) What are closed loop inverting and non-inverting amplifiers?

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Explain instrumentation amplifier using transducer bridge.
- 2) Explain with neat diagram and waveforms of IC 555 as a stable multivibrator. Also derive expression for frequency of oscillation.
- 3) What are ideal characteristics of op-amp? Explain following terms in op-amp.
  - a) CMRR
- b) PSRR
- c) Slew rate.

| Seat |  |
|------|--|
| No.  |  |

### S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 **ELECTRICAL POWER GENERATION**

| Day ar        | nd Date: | Tuesday, | 8-5-2018 | Total Marks: 70 |
|---------------|----------|----------|----------|-----------------|
| <del></del> - |          |          |          |                 |

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|     |                                                                                                                                                      | MCQ/Objective       | Type Questions                                |                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|----------------------------------|
| Dur | ation : 30 Minutes                                                                                                                                   |                     |                                               | Marks: 14                        |
| 1.  | Choose the correct ar                                                                                                                                | nswer:              |                                               | (14×1=14)                        |
|     | <ol> <li>Out of the following</li> <li>A) Tidal power</li> <li>C) Nuclear energy</li> </ol>                                                          |                     | ot a unconvention  B) Geotherma  D) Wind powe |                                  |
|     | <ul><li>2) Pulverized coal is</li><li>A) Coal free from a</li><li>C) Coal which bun</li></ul>                                                        |                     | B) Non-smokii D) Coal broke                   | ng coal<br>n into fine particles |
|     | Coal used in power     A) Steam coal                                                                                                                 | •                   | own as<br>C) Coke                             | D) Soft coal                     |
|     | <ul><li>4) Live storage of coa</li><li>A) Coal ready for o</li><li>B) Preheated coal</li><li>C) Storage of coal</li><li>D) Coal in transit</li></ul> | combustion          |                                               | d of the plant                   |
|     | 5) In a power plant, o means of                                                                                                                      | oal is carried fror | n storage place t                             | o boilers generally by           |
|     | A) Bucket                                                                                                                                            | B) V-belts          | C) Trolleys                                   | D) Manually                      |

| 6)  | Advantage of hydro-electric power st                                                                                                                                 | ation is                                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|     | <ul><li>A) Low operating cost</li><li>C) No fuel transportation problems</li></ul>                                                                                   | B) Free from pollution problems D) All of the above                  |
| 7)  | A two stroke engine may be identified                                                                                                                                |                                                                      |
|     | <ul><li>A) Piston size</li><li>C) Cooling system</li></ul>                                                                                                           | <ul><li>B) Absence of valves</li><li>D) Lubrication system</li></ul> |
| 8)  | Most of the heat generated in internal A) Cooling water C) Lubricating oil                                                                                           | I combustion engine is lost in B) Exhaust gases D) Radiation         |
| 9)  | In a super-heater  A) Pressure rises, temperature drops B) Pressure rises, temperature rema C) Pressure remains constant and te D) Both pressure and temperature re- | ins constant<br>mperature rises                                      |
| 10) | Photovoltaic solar energy conversion  A) Fuel cell  B) Solar cell                                                                                                    | system makes use of C) Solar pond D) None of the above               |
| 11) | Batteries used for electrical energy so A) Laclanche cells C) Lead acid cells                                                                                        | torage are<br>B) Edison cells<br>D) Any of the above                 |
| 12) | Biogas consist of A) Only methane B) Methane and carbon dioxide with C) Only ethane D) A special organic gas                                                         |                                                                      |
| 13) | In thermal power plants the size of the A) 300 mm C) 40 mm                                                                                                           | e coal after crushing<br>B) 200 – 205 mm<br>D) 20 – 25 mm            |
| 14) | Uses of power station  A) Peak load plant  C) Stand by plants                                                                                                        | B) Emergency plants D) All of the above                              |



## S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 ELECTRICAL POWER GENERATION

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### 2. Solve any four:

 $(4\times4)$ 

- 1) Explain fuels and their handling in thermal power plant.
- 2) Explain the process of nuclear fission.
- 3) Discuss factors to be considered for selection of site for thermal power plant.
- 4) Explain pelton turbine with neat diagram.
- 5) Write a short note on hydrology.

### 3. Solve **any two**:

 $(6\times2)$ 

- 1) Explain CANDU type reactor with neat diagram, also state its advantages and disadvantages.
- 2) Explain single line diagram of typical AC power system.
- 3) Draw typical layout of hydroelectric power plant and explain it briefly.

## 4. Solve any four:

 $(4\times4)$ 

- 1) Write a short note on load curve.
- 2) State application of diesel power stations.
- 3) Explain geo-thermal power plant with neat diagram also state its application.
- 4) Define bio-gas and bio-mass energy.
- 5) Explain wind power plant with block diagram also state its application.



5. Solve any two:

 $(6 \times 2)$ 

- 1) Define bio-gas and explain common circular digester with floating gas holder (KVIC digester) with neat diagram.
- 2) Explain the working of diesel power plant with the help of block diagram.
- 3) Explain the following:
  - a) Load factor
  - b) Plant capacity factor
  - c) Diversity factor
  - d) Demand factor.

Set P

|  | <br> | <br> | <br> | <br> |  |
|--|------|------|------|------|--|

| Seat |  |
|------|--|
| No.  |  |

### S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 **ELECTRICAL POWER GENERATION**

Day and Date: Tuesday, 8-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- **Instructions**: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

|     | •                                                                                                          |                                                               |           |
|-----|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------|
| Dur | ation : 30 Minutes                                                                                         |                                                               | Marks: 14 |
| 1.  | Choose the correct answer:                                                                                 |                                                               | (14×1=14) |
|     | <ol> <li>Most of the heat generated in internal</li> <li>Cooling water</li> <li>Lubricating oil</li> </ol> | al combustion engine is lost in B) Exhaust gases D) Radiation |           |
|     | 2) In a super-heater  A) Pressure rises temperature drop                                                   | 9                                                             |           |

- A) Pressure rises, temperature drops
- B) Pressure rises, temperature remains constant
- C) Pressure remains constant and temperature rises
- D) Both pressure and temperature remains constant
- 3) Photovoltaic solar energy conversion system makes use of
  - A) Fuel cell
- B) Solar cell
- C) Solar pond
- D) None of the above
- 4) Batteries used for electrical energy storage are
  - A) Laclanche cells

B) Edison cells

C) Lead acid cells

D) Any of the above

- 5) Biogas consist of
  - A) Only methane
  - B) Methane and carbon dioxide with some impurities
  - C) Only ethane
  - D) A special organic gas

6) In thermal power plants the size of the coal after crushing



|     | A) 300 mm<br>C) 40 mm                                                                                                                         | B) 200 – 205 mm<br>D) 20 – 25 mm                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 7)  | Uses of power station  A) Peak load plant  C) Stand by plants                                                                                 | B) Emergency plants D) All of the above                                          |
| -   | Out of the following which one is not A) Tidal power C) Nuclear energy                                                                        | a unconventional source of energy?  B) Geothermal energy  D) Wind power          |
| 9)  | Pulverized coal is  A) Coal free from ash  C) Coal which bums for long time                                                                   | <ul><li>B) Non-smoking coal</li><li>D) Coal broken into fine particles</li></ul> |
| 10) | Coal used in power plant is also known A) Steam coal B) Charcoal                                                                              | wn as<br>C) Coke D) Soft coal                                                    |
| 11) | Live storage of coal in a power plant A) Coal ready for combustion B) Preheated coal C) Storage of coal sufficient to meet D) Coal in transit |                                                                                  |
| 12) | In a power plant, coal is carried from means of                                                                                               |                                                                                  |
|     | ,                                                                                                                                             | C) Trolleys D) Manually                                                          |
| 13) | <ul><li>Advantage of hydro-electric power st</li><li>A) Low operating cost</li><li>C) No fuel transportation problems</li></ul>               | B) Free from pollution problems                                                  |
| 14) | A two stroke engine may be identified A) Piston size C) Cooling system                                                                        | d by B) Absence of valves D) Lubrication system                                  |



## S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 ELECTRICAL POWER GENERATION

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### 2. Solve any four:

 $(4\times4)$ 

- 1) Explain fuels and their handling in thermal power plant.
- 2) Explain the process of nuclear fission.
- 3) Discuss factors to be considered for selection of site for thermal power plant.
- 4) Explain pelton turbine with neat diagram.
- 5) Write a short note on hydrology.

### 3. Solve **any two**:

 $(6 \times 2)$ 

- 1) Explain CANDU type reactor with neat diagram, also state its advantages and disadvantages.
- 2) Explain single line diagram of typical AC power system.
- 3) Draw typical layout of hydroelectric power plant and explain it briefly.

## 4. Solve any four:

 $(4\times4)$ 

- 1) Write a short note on load curve.
- 2) State application of diesel power stations.
- 3) Explain geo-thermal power plant with neat diagram also state its application.
- 4) Define bio-gas and bio-mass energy.
- 5) Explain wind power plant with block diagram also state its application.



5. Solve any two:

 $(6 \times 2)$ 

- 1) Define bio-gas and explain common circular digester with floating gas holder (KVIC digester) with neat diagram.
- 2) Explain the working of diesel power plant with the help of block diagram.
- 3) Explain the following:
  - a) Load factor
  - b) Plant capacity factor
  - c) Diversity factor
  - d) Demand factor.

Set Q

| Seat |  |
|------|--|
| No.  |  |

### S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 **ELECTRICAL POWER GENERATION**

| Day and Date : Tuesday, 8-5-2018 | Total Marks : 70 |
|----------------------------------|------------------|
|----------------------------------|------------------|

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                                                                                                                                                                                                  | MCQ/Objective T                                                                                                                                                                                                                            | ype Questions                       |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|
| Dur                                                                                                                                                                                              | ation : 30 Minutes                                                                                                                                                                                                                         |                                     | Marks: 14              |
| 1.                                                                                                                                                                                               | Choose the correct answer:                                                                                                                                                                                                                 |                                     | (14×1=14)              |
|                                                                                                                                                                                                  | <ol> <li>In a power plant, coal is carried from<br/>means of</li> </ol>                                                                                                                                                                    | storage place to                    | b boilers generally by |
|                                                                                                                                                                                                  | A) Bucket B) V-belts                                                                                                                                                                                                                       | C) Trolleys                         | D) Manually            |
|                                                                                                                                                                                                  | <ul> <li>2) Advantage of hydro-electric power s</li> <li>A) Low operating cost</li> <li>C) No fuel transportation problems</li> <li>3) A two stroke engine may be identified</li> <li>A) Piston size</li> <li>C) Cooling system</li> </ul> | B) Free from po<br>D) All of the ab | valves                 |
| <ul> <li>4) Most of the heat generated in internal combustion engine is lost in</li> <li>A) Cooling water</li> <li>B) Exhaust gases</li> <li>C) Lubricating oil</li> <li>D) Radiation</li> </ul> |                                                                                                                                                                                                                                            |                                     |                        |
|                                                                                                                                                                                                  | <ul><li>5) In a super-heater</li><li>A) Pressure rises, temperature drop</li><li>B) Pressure rises, temperature rema</li><li>C) Pressure remains constant and temperature</li></ul>                                                        | ains constant                       |                        |

D) Both pressure and temperature remains constant

| 6)  | Photovoltaic solar e                                                                                | energy conversion               | sy  | stem makes u                                  | se o  | of                |
|-----|-----------------------------------------------------------------------------------------------------|---------------------------------|-----|-----------------------------------------------|-------|-------------------|
|     | A) Fuel cell                                                                                        | B) Solar cell                   | C)  | Solar pond                                    | D)    | None of the above |
| 7)  | Batteries used for e<br>A) Laclanche cells<br>C) Lead acid cells                                    | lectrical energy s              | B)  | ge are<br>Edison cells<br>Any of the ab       | ove   |                   |
| 8)  | Biogas consist of A) Only methane B) Methane and ca C) Only ethane D) A special organi              |                                 | sor | ne impurities                                 |       |                   |
| 9)  | In thermal power pl<br>A) 300 mm<br>C) 40 mm                                                        | ants the size of th             | B)  | oal after crush<br>200 – 205 mr<br>20 – 25 mm |       |                   |
| 10) | Uses of power stati A) Peak load plant C) Stand by plants                                           | on                              | ,   | Emergency p                                   |       | S                 |
| 11) | Out of the following  A) Tidal power  C) Nuclear energy                                             | which one is not                | B)  | nconventional<br>Geothermal e<br>Wind power   |       |                   |
| 12) | Pulverized coal is  A) Coal free from a  C) Coal which bum                                          |                                 | •   | Non-smoking<br>Coal broken i                  |       |                   |
| 13) | Coal used in power A) Steam coal                                                                    | plant is also known B) Charcoal |     | as<br>Coke                                    | D)    | Soft coal         |
| 14) | Live storage of coal A) Coal ready for coal B) Preheated coal C) Storage of coal D) Coal in transit | ombustion                       |     |                                               | of th | ne plant          |



## S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 ELECTRICAL POWER GENERATION

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### 2. Solve any four:

 $(4\times4)$ 

- 1) Explain fuels and their handling in thermal power plant.
- 2) Explain the process of nuclear fission.
- 3) Discuss factors to be considered for selection of site for thermal power plant.
- 4) Explain pelton turbine with neat diagram.
- 5) Write a short note on hydrology.

### 3. Solve **any two**:

 $(6 \times 2)$ 

- 1) Explain CANDU type reactor with neat diagram, also state its advantages and disadvantages.
- 2) Explain single line diagram of typical AC power system.
- 3) Draw typical layout of hydroelectric power plant and explain it briefly.

## 4. Solve any four:

 $(4\times4)$ 

- 1) Write a short note on load curve.
- 2) State application of diesel power stations.
- 3) Explain geo-thermal power plant with neat diagram also state its application.
- 4) Define bio-gas and bio-mass energy.
- 5) Explain wind power plant with block diagram also state its application.



5. Solve any two:

 $(6 \times 2)$ 

- 1) Define bio-gas and explain common circular digester with floating gas holder (KVIC digester) with neat diagram.
- 2) Explain the working of diesel power plant with the help of block diagram.
- 3) Explain the following:
  - a) Load factor
  - b) Plant capacity factor
  - c) Diversity factor
  - d) Demand factor.

Set R



| Seat |  |
|------|--|
| No.  |  |

### S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 **ELECTRICAL POWER GENERATION**

Day and Date: Tuesday, 8-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

5) Uses of power station A) Peak load plant

C) Stand by plants

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Ton of Page

> > B) Emergency plants

D) All of the above

|                                                                                                                                                                                         | 70                                                               | p of Fage.          |                                                        |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|--------------------------------------------------------|-----------------------------|
|                                                                                                                                                                                         | ľ                                                                | /ICQ/Objective T    | ype Questions                                          |                             |
| Duration                                                                                                                                                                                | n : 30 Minutes                                                   |                     |                                                        | Marks: 14                   |
| 1. Ch                                                                                                                                                                                   | oose the correct an                                              | swer:               |                                                        | (14×1=14)                   |
| ,                                                                                                                                                                                       | Photovoltaic solar e<br>A) Fuel cell                             | •                   |                                                        | use of D) None of the above |
|                                                                                                                                                                                         | Batteries used for e<br>A) Laclanche cells<br>C) Lead acid cells | electrical energy s | storage are<br>B) Edison cells<br>D) Any of the at     | oove                        |
| <ul> <li>3) Biogas consist of</li> <li>A) Only methane</li> <li>B) Methane and carbon dioxide with some impurities</li> <li>C) Only ethane</li> <li>D) A special organic gas</li> </ul> |                                                                  |                     |                                                        |                             |
| ,                                                                                                                                                                                       | In thermal power pl<br>A) 300 mm<br>C) 40 mm                     | ants the size of th | ne coal after crusl<br>B) 200 – 205 m<br>D) 20 – 25 mm | •                           |

| Out of the following which one is r<br>A) Tidal power<br>C) Nuclear energy                                                                                                                                                                                          | <ul><li>a unconventional source of energy ?</li><li>B) Geothermal energy</li><li>D) Wind power</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pulverized coal is  A) Coal free from ash  C) Coal which bums for long time                                                                                                                                                                                         | <ul><li>B) Non-smoking coal</li><li>D) Coal broken into fine particles</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Coal used in power plant is also k A) Steam coal B) Charcoal                                                                                                                                                                                                        | nown as C) Coke D) Soft coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| <ul> <li>Live storage of coal in a power plant means</li> <li>A) Coal ready for combustion</li> <li>B) Preheated coal</li> <li>C) Storage of coal sufficient to meet 24 hour demand of the plant</li> <li>D) Coal in transit</li> </ul>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| means of                                                                                                                                                                                                                                                            | om storage place to boilers generally by  C) Trolleys  D) Manually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Advantage of hydro-electric powe A) Low operating cost C) No fuel transportation problems                                                                                                                                                                           | B) Free from pollution problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| <ul><li>A two stroke engine may be identified.</li><li>A) Piston size</li><li>C) Cooling system</li></ul>                                                                                                                                                           | ified by B) Absence of valves D) Lubrication system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Most of the heat generated in inte<br>A) Cooling water<br>C) Lubricating oil                                                                                                                                                                                        | rnal combustion engine is lost in B) Exhaust gases D) Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| <ul> <li>In a super-heater</li> <li>A) Pressure rises, temperature drops</li> <li>B) Pressure rises, temperature remains constant</li> <li>C) Pressure remains constant and temperature rises</li> <li>D) Both pressure and temperature remains constant</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                     | A) Tidal power C) Nuclear energy Pulverized coal is A) Coal free from ash C) Coal which bums for long time Coal used in power plant is also k A) Steam coal B) Charcoal Live storage of coal in a power plant A) Coal ready for combustion B) Preheated coal C) Storage of coal sufficient to me D) Coal in transit In a power plant, coal is carried from eans of A) Bucket B) V-belts Advantage of hydro-electric powe A) Low operating cost C) No fuel transportation problem A two stroke engine may be ident A) Piston size C) Cooling system Most of the heat generated in inte A) Cooling water C) Lubricating oil In a super-heater A) Pressure rises, temperature dr B) Pressure rises, temperature re C) Pressure remains constant and |  |  |  |

\_\_\_\_\_



## S.E. (E and E) (Part – I) (Old CGPA) Examination, 2018 ELECTRICAL POWER GENERATION

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### 2. Solve any four:

 $(4\times4)$ 

- 1) Explain fuels and their handling in thermal power plant.
- 2) Explain the process of nuclear fission.
- 3) Discuss factors to be considered for selection of site for thermal power plant.
- 4) Explain pelton turbine with neat diagram.
- 5) Write a short note on hydrology.

### 3. Solve **any two**:

 $(6\times2)$ 

- 1) Explain CANDU type reactor with neat diagram, also state its advantages and disadvantages.
- 2) Explain single line diagram of typical AC power system.
- 3) Draw typical layout of hydroelectric power plant and explain it briefly.

## 4. Solve any four:

 $(4\times4)$ 

- 1) Write a short note on load curve.
- 2) State application of diesel power stations.
- 3) Explain geo-thermal power plant with neat diagram also state its application.
- 4) Define bio-gas and bio-mass energy.
- 5) Explain wind power plant with block diagram also state its application.



## 5. Solve any two:

 $(6 \times 2)$ 

- 1) Define bio-gas and explain common circular digester with floating gas holder (KVIC digester) with neat diagram.
- 2) Explain the working of diesel power plant with the help of block diagram.
- 3) Explain the following:
  - a) Load factor
  - b) Plant capacity factor
  - c) Diversity factor
  - d) Demand factor.

Set S

| Seat |  |
|------|--|
| No.  |  |

Set



# S.E. (Electrical and Electronics) (Part – I) Examination, 2018 DATA STRUCTURES (Old)

Day and Date: Saturday, 12-5-2018 Max. Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Figures to **right** indicate **full** marks.
- 3) Assume **suitable** data if necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|          | ı                                                                 | MCQ/Objective Ty                  | ype Questions                                      |         |           |
|----------|-------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|---------|-----------|
| Duration | on: 30 Minutes                                                    |                                   | •                                                  |         | Marks: 20 |
| 1. Ch    | noose the correct an                                              | swer:                             |                                                    |         | (1×20=20) |
| 1)       | Recursive function a) Stack                                       | can be implemen b) Queue          |                                                    | d) None |           |
| 2)       | Node of linked list a) Information field c) Both a) and b)        |                                   | <ul><li>b) Pointer field</li><li>d) None</li></ul> |         |           |
| 3)       | The freenode() ope<br>a) Delete first node<br>c) Insert last node | е                                 | b) Insert first noded d) Delete last noded         | е       |           |
| 4)       | Queue elements a a) Rear end                                      |                                   | c) Top end                                         | d) None |           |
| 5)       | Which operator haaa) ++                                           | s lowest priority? b) %           | c) +                                               | d)      |           |
| 6)       | Polynomial manipua) Stack                                         | lation is one of the b) Structure | • •                                                | d) Tree |           |
| 7)       | Elements of stacks a) Ordered                                     |                                   | c) Sequential                                      | d) None |           |

| 8)  | POP operation of s<br>a) 1 <sup>st</sup> inserted elem<br>c) Any element |                                    | ,    | Last inserted e                                           | lem | ent                            |
|-----|--------------------------------------------------------------------------|------------------------------------|------|-----------------------------------------------------------|-----|--------------------------------|
| 9)  | Which is the correct a) A + B                                            | t form of infix nota<br>b) +AB     |      |                                                           | d)  | None of these                  |
| 10) | This type of linked li<br>a) Circular linked li<br>c) Doubly linked lis  | st                                 | b)   | st and last node<br>Singly linked lis<br>Static list      | st  |                                |
| 11) | Overflow condition a) Front = $max - 1$                                  |                                    | c)   | Top = max - 1                                             | d)  | None                           |
| 12) | The term "push" an a) Array                                              | d "pop" is related<br>b) Lists     |      | the<br>Stacks                                             | d)  | All of above                   |
| 13) | Which of the follow a) Trees c) Arrays                                   | ing data structure                 | b)   | inear data struc<br>Graphs<br>None of above               | tur | e ?                            |
| 14) | The situation when from queue is called a) Overflow                      | d as                               |      | , -                                                       |     | delete elements  None of these |
| 15) | Tower of Hanoi car                                                       | •                                  | ng   |                                                           | ,   | Recursion                      |
| 16) | The complexity of ba a) O(n)                                             | oinary search algo                 | rith | ım is                                                     | d)  | O(n log n)                     |
| 17) | An expression conta<br>a) Priority of opera<br>c) From left to right     | tors                               | b)   | operation are se<br>Priority of opera<br>From right to le | and | _                              |
| 18) | Free function is use<br>a) Release memor<br>c) To unlink first ar        | y for node                         | ,    | To unlink the no                                          | ode | )                              |
| 19) | The complexity of Ea) O(n)                                               | Bubble sort algorit<br>b) O(log n) |      | is<br>O(n2)                                               | d)  | O(n log n)                     |
| 20) | The complexity of $li$ a) $O(n)$                                         | near search algor<br>b) O(log n)   |      | m is<br>O(n2)                                             | d)  | O(n log n)                     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Electrical and Electronics) (Part – I) Examination, 2018 DATA STRUCTURES (Old)

Day and Date: Saturday, 12-5-2018

Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.

#### SECTION - I

2. Solve any four:

 $(5 \times 4 = 20)$ 

- a) Write and explain storage classes.
- b) Write a short note on data types in C.
- c) Write a short note on:
  - i) Type conversion.
  - ii) Structures and union.
- d) Evaluate the following postfix expressions :
  - i) 98 + 382 / \* 2 + -
  - ii) 546 + \* 493 / + \*
- e) Write a short note on conversion of infix to prefix with example.

3. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Write and explain algorithm for evaluation postfix expression.
- ii) Explain implementation of stack using linked list.

4. Write a short note on:

 $(2 \times 5 = 10)$ 

- i) Stack applications.
- ii) Pointer to structure.

## 

#### SECTION - II

5. Solve any four:

 $(4 \times 5 = 20)$ 

- a) Write a short note on priority queue.
- b) Explain selection sort with example.
- c) Explain Doubly linked list.
- d) Differentiate between linear and binary search.
- e) Explain merge sort with example.

6. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Explain in brief about bubble sort.
- ii) Write a program to add, delete, search, display and count number of node using singly linked list.
- 7. Explain the concept of static storage allocation and dynamic storage allocation in case of recursion. (1×10=10)

\_\_\_\_\_

|--|--|

## S.E. (Electrical and Electronics) (Part – I) Examination, 2018 DATA STRUCTURES (Old)

| Day | and Date: | Saturday, | 12-5-2018 | Max. | Marks: | 100 |
|-----|-----------|-----------|-----------|------|--------|-----|
|     | 0.00      |           |           |      |        |     |

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figures to **right** indicate **full** marks.
- 3) Assume **suitable** data if necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                                                   | MCQ/Objective T                    | ype | e Questions                                             |     |            |
|---------|-------------------------------------------------------------------|------------------------------------|-----|---------------------------------------------------------|-----|------------|
| Duratio | n : 30 Minutes                                                    | -                                  | -   |                                                         |     | Marks: 20  |
| 1. Ch   | oose the correct ar                                               | iswer:                             |     |                                                         |     | (1×20=20)  |
| 1)      | The complexity of a) O(n)                                         | binary search algo<br>b) O (log n) |     |                                                         | d)  | O(n log n) |
| 2)      | An expression con<br>a) Priority of opera<br>c) From left to righ | ators                              | b)  | operation are s<br>Priority of oper<br>From right to le | anc | •          |
| 3)      | Free function is us<br>a) Release memo<br>c) To unlink first a    | ry for node                        | ,   |                                                         | ode | )          |
| 4)      | The complexity of a) O(n)                                         | Bubble sort algorit b) O(log n)    |     | is<br>O(n2)                                             | d)  | O(n log n) |
| 5)      | The complexity of a) O(n)                                         | _                                  |     | m is<br>O(n2)                                           | d)  | O(n log n) |
| 6)      | Recursive function a) Stack                                       | can be implemen<br>b) Queue        |     | by using<br>Linked list                                 | d)  | None       |
| 7)      | Node of linked list<br>a) Information field<br>c) Both a) and b)  |                                    | ,   | Pointer field<br>None                                   |     |            |

| 8)  | The freenode() ope<br>a) Delete first node<br>c) Insert last node        | е                                  | b) | es<br>Insert first node<br>Delete last nod           | Э   | lgorithm.                      |
|-----|--------------------------------------------------------------------------|------------------------------------|----|------------------------------------------------------|-----|--------------------------------|
| 9)  | Queue elements a a) Rear end                                             |                                    | c) | Top end                                              | d)  | None                           |
| 10) | Which operator ha                                                        | s lowest priority? b) %            | c) | +                                                    | d)  |                                |
| 11) | Polynomial manipua) Stack                                                | ulation is one of the b) Structure |    | pplications of<br>Linked list                        | d)  | Tree                           |
| 12) | Elements of stacks a) Ordered                                            |                                    | c) | Sequential                                           | d)  | None                           |
| 13) | POP operation of s<br>a) 1 <sup>st</sup> inserted elem<br>c) Any element |                                    | ,  | Last inserted e<br>None                              | lem | nent                           |
| 14) | Which is the correct a) A + B                                            | ot form of infix note<br>b) +AB    |    | n ?<br>AB+                                           | d)  | None of these                  |
| 15) | This type of linked a) Circular linked I c) Doubly linked lis            | ist                                | b) | st and last node<br>Singly linked lis<br>Static list |     |                                |
| 16) | Overflow condition<br>a) Front = max - 1                                 |                                    | c) | Top = max - 1                                        | d)  | None                           |
| 17) | The term "push" ar a) Array                                              | nd "pop" is related<br>b) Lists    |    | the<br>Stacks                                        | d)  | All of above                   |
| 18) | Which of the follow a) Trees c) Arrays                                   | ring data structure                | b) | linear data struc<br>Graphs<br>None of above         | tur | e ?                            |
| 19) | The situation when from queue is calle a) Overflow                       |                                    |    | still we are trying<br>Empty                         |     | delete elements  None of these |
| 20) | Tower of Hanoi car<br>a) Queue                                           | ,                                  | ng | Structure                                            | ,   | Recursion                      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Electrical and Electronics) (Part – I) Examination, 2018 DATA STRUCTURES (Old)

Day and Date: Saturday, 12-5-2018

Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.

#### SECTION - I

2. Solve any four:

 $(5 \times 4 = 20)$ 

- a) Write and explain storage classes.
- b) Write a short note on data types in C.
- c) Write a short note on:
  - i) Type conversion.
  - ii) Structures and union.
- d) Evaluate the following postfix expressions :
  - i) 98 + 382 / \* 2 + -
  - ii) 546 + \* 493 / + \*
- e) Write a short note on conversion of infix to prefix with example.

3. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Write and explain algorithm for evaluation postfix expression.
- ii) Explain implementation of stack using linked list.

4. Write a short note on:

 $(2 \times 5 = 10)$ 

- i) Stack applications.
- ii) Pointer to structure.

## 

#### SECTION - II

5. Solve any four:

 $(4 \times 5 = 20)$ 

- a) Write a short note on priority queue.
- b) Explain selection sort with example.
- c) Explain Doubly linked list.
- d) Differentiate between linear and binary search.
- e) Explain merge sort with example.

6. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Explain in brief about bubble sort.
- ii) Write a program to add, delete, search, display and count number of node using singly linked list.
- 7. Explain the concept of static storage allocation and dynamic storage allocation in case of recursion. (1×10=10)

\_\_\_\_\_

| Seat |  |
|------|--|
| No.  |  |

Set



# S.E. (Electrical and Electronics) (Part – I) Examination, 2018 DATA STRUCTURES (Old)

| Day and Date : Saturday, 12-5-2018 | Max. Marks: 100 |
|------------------------------------|-----------------|
|------------------------------------|-----------------|

Time: 2.30 p.m. to 5.30 p.m.

a) Priority of operators

c) From left to right

Instructions: 1) All questions are compulsory.

- 2) Figures to **right** indicate **full** marks.
- 3) Assume suitable data if necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

|         |                                        | wod/objective i     | ype ducations          |               |           |
|---------|----------------------------------------|---------------------|------------------------|---------------|-----------|
| Duratio | n : 30 Minutes                         |                     |                        |               | Marks: 20 |
| 1. Ch   | oose the correct an                    | swer:               |                        |               | (1×20=20) |
| 1)      | Overflow condition                     |                     |                        |               |           |
|         | a) Front = $max - 1$                   | b) Front $= 0$      | c) Top = $max - 1$     | d) None       |           |
| 2)      | The term "push" ar                     | nd "pop" is related | to the                 |               |           |
| ,       | a) Array                               | • •                 | c) Stacks              | d) All of ab  | oove      |
| 3)      | Which of the follow a) Trees           | ring data structure | b) Graphs              |               |           |
|         | c) Arrays                              |                     | d) None of above       |               |           |
| 4)      | The situation when from queue is calle |                     | nd still we are trying | to delete ele | ements    |
|         | a) Overflow                            | b) Underflow        | c) Empty               | d) None of    | these     |
| 5)      | Tower of Hanoi car                     | n be solved by usi  | ng                     |               |           |
|         | a) Queue                               | b) Tree             | c) Structure           | d) Recursi    | on        |
| 6)      | The complexity of I                    | oinary search algo  | orithm is              |               |           |
| ,       | a) O(n)                                | b) O (log n)        | c) O(n2)               | d) O(n log    | n)        |

7) An expression containing more than one operation are solved according to

b) Priority of operands

d) From right to left

| 8)  | Free function is use<br>a) Release memory<br>c) To unlink first a | ry for node                        | -    |                                            | ode | <del>)</del>     |
|-----|-------------------------------------------------------------------|------------------------------------|------|--------------------------------------------|-----|------------------|
| 9)  | The complexity of a) O(n)                                         | Bubble sort algorit<br>b) O(log n) |      |                                            | d)  | O(n log n)       |
| 10) | The complexity of a) O(n)                                         | _                                  |      | m is<br>O(n2)                              | d)  | O(n log n)       |
| 11) | Recursive function a) Stack                                       | can be implement<br>b) Queue       |      |                                            | d)  | None             |
| 12) | Node of linked list a) Information field c) Both a) and b)        |                                    | ,    | Pointer field<br>None                      |     |                  |
| 13) | The freenode() ope<br>a) Delete first node<br>c) Insert last node |                                    | b)   | es<br>Insert first node<br>Delete last nod | )   | lgorithm.        |
| 14) | Queue elements a a) Rear end                                      |                                    | c)   | Top end                                    | d)  | None             |
| 15) | Which operator ha                                                 | s lowest priority? b) %            | c)   | +                                          | d)  | II               |
| 16) | Polynomial manipua) Stack                                         | llation is one of the b) Structure |      |                                            | d)  | Tree             |
| 17) | Elements of stacks a) Ordered                                     |                                    | c)   | Sequential                                 | d)  | None             |
| 18) | POP operation of s<br>a) 1st inserted elem<br>c) Any element      | • •                                | ,    | Last inserted e<br>None                    | lem | ent              |
| 19) | Which is the correct a) A + B                                     | ct form of infix nota<br>b) +AB    |      | n ?<br>AB+                                 | d)  | None of these    |
| 20) | This type of linked  a) Circular linked I  c) Doubly linked list  | list does not have<br>ist          | firs |                                            | ,   | . 13.10 01 11000 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Electrical and Electronics) (Part – I) Examination, 2018 DATA STRUCTURES (Old)

Day and Date: Saturday, 12-5-2018

Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.

#### SECTION - I

2. Solve any four:

 $(5 \times 4 = 20)$ 

- a) Write and explain storage classes.
- b) Write a short note on data types in C.
- c) Write a short note on:
  - i) Type conversion.
  - ii) Structures and union.
- d) Evaluate the following postfix expressions :
  - i) 98 + 382 / \* 2 + -
  - ii) 546 + \* 493 / + \*
- e) Write a short note on conversion of infix to prefix with example.

3. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Write and explain algorithm for evaluation postfix expression.
- ii) Explain implementation of stack using linked list.

4. Write a short note on:

 $(2 \times 5 = 10)$ 

- i) Stack applications.
- ii) Pointer to structure.

-4-

## 

#### SECTION - II

5. Solve any four:

 $(4 \times 5 = 20)$ 

- a) Write a short note on priority queue.
- b) Explain selection sort with example.
- c) Explain Doubly linked list.
- d) Differentiate between linear and binary search.
- e) Explain merge sort with example.

6. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Explain in brief about bubble sort.
- ii) Write a program to add, delete, search, display and count number of node using singly linked list.
- 7. Explain the concept of static storage allocation and dynamic storage allocation in case of recursion. (1×10=10)

\_\_\_\_\_

|--|

| Seat |  |
|------|--|
| No.  |  |

Set

## S.E. (Electrical and Electronics) (Part – I) Examination, 2018 **DATA STRUCTURES (Old)**

Day and Date: Saturday, 12-5-2018 Max. Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

a) Front = max - 1b) Front = 0

a) Array

7) The term "push" and "pop" is related to the

b) Lists

- 2) Figures to **right** indicate **full** marks.
- 3) Assume **suitable** data if necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

c) Top = max - 1 d) None

c) Stacks

|    |       |                                                              | MCQ/Objective T                   | ype | e Questions                                          |     |               |
|----|-------|--------------------------------------------------------------|-----------------------------------|-----|------------------------------------------------------|-----|---------------|
| Du | ratio | n : 30 Minutes                                               | -                                 |     |                                                      |     | Marks: 20     |
| 1. | Ch    | oose the correct an                                          | iswer:                            |     |                                                      |     | (1×20=20)     |
|    | 1)    | Polynomial manipua) Stack                                    | ulation is one of th b) Structure |     | pplications of<br>Linked list                        | d)  | Tree          |
|    | 2)    | Elements of stacks a) Ordered                                |                                   | c)  | Sequential                                           | d)  | None          |
|    | 3)    | POP operation of s<br>a) 1st inserted elem<br>c) Any element |                                   | ,   | Last inserted e                                      | lem | nent          |
|    | 4)    | Which is the correct a) A + B                                | ct form of infix nota<br>b) +AB   |     | on ?<br>AB+                                          | d)  | None of these |
|    | 5)    | This type of linked a) Circular linked lic) Doubly linked li | list                              | b)  | st and last node<br>Singly linked lis<br>Static list |     |               |
|    | 6)    | Overflow condition                                           | of stack is                       |     |                                                      |     |               |

d) All of above

| 8)  | Which of the follow a) Trees c) Arrays                            | ving data structure                | b) | inear data struc<br>Graphs<br>None of above              | eture | e ?           |
|-----|-------------------------------------------------------------------|------------------------------------|----|----------------------------------------------------------|-------|---------------|
| 9)  | The situation when from queue is called                           | ed as                              |    |                                                          |       |               |
|     | a) Overflow                                                       | b) Underflow                       | •  | Empty                                                    | d)    | None of these |
| 10) | Tower of Hanoi ca<br>a) Queue                                     | n be solved by usi<br>b) Tree      | _  | Structure                                                | d)    | Recursion     |
| 11) | The complexity of a) O(n)                                         | binary search algo<br>b) O (log n) |    |                                                          | d)    | O(n log n)    |
| 12) | An expression conta) Priority of opera<br>c) From left to right   | ators                              | b) | operation are s<br>Priority of opera<br>From right to le | and   | _             |
| 13) | Free function is us<br>a) Release memo<br>c) To unlink first a    | ry for node                        | •  | To unlink the n<br>None                                  | ode   | )             |
| 14) | The complexity of a) O(n)                                         | Bubble sort algorit<br>b) O(log n) |    | is<br>O(n2)                                              | d)    | O(n log n)    |
| 15) | The complexity of a) O(n)                                         | linear search algoi<br>b) O(log n) |    | m is<br>O(n2)                                            | d)    | O(n log n)    |
| 16) | Recursive function a) Stack                                       | can be implement                   |    | by using<br>Linked list                                  | d)    | None          |
| 17) | Node of linked list<br>a) Information field<br>c) Both a) and b)  |                                    | ,  | Pointer field<br>None                                    |       |               |
| 18) | The freenode() ope<br>a) Delete first node<br>c) Insert last node | e                                  | b) | es<br>Insert first node<br>Delete last nod               | Э     | lgorithm.     |
| 19) | Queue elements a a) Rear end                                      | re added at<br>b) Front end        | c) | Top end                                                  | d)    | None          |
| 20) | Which operator ha a) ++                                           | s lowest priority? b) %            | c) | +                                                        | d)    | II            |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (Electrical and Electronics) (Part – I) Examination, 2018 DATA STRUCTURES (Old)

Day and Date: Saturday, 12-5-2018

Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.

#### SECTION - I

2. Solve any four:

 $(5 \times 4 = 20)$ 

- a) Write and explain storage classes.
- b) Write a short note on data types in C.
- c) Write a short note on:
  - i) Type conversion.
  - ii) Structures and union.
- d) Evaluate the following postfix expressions :
  - i) 98 + 382 / \* 2 + -
  - ii) 546 + \* 493 / + \*
- e) Write a short note on conversion of infix to prefix with example.

3. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Write and explain algorithm for evaluation postfix expression.
- ii) Explain implementation of stack using linked list.

4. Write a short note on:

 $(2 \times 5 = 10)$ 

- i) Stack applications.
- ii) Pointer to structure.

## 

#### SECTION - II

5. Solve any four:

 $(4 \times 5 = 20)$ 

- a) Write a short note on priority queue.
- b) Explain selection sort with example.
- c) Explain Doubly linked list.
- d) Differentiate between linear and binary search.
- e) Explain merge sort with example.

6. Solve any one:

 $(1 \times 10 = 10)$ 

- i) Explain in brief about bubble sort.
- ii) Write a program to add, delete, search, display and count number of node using singly linked list.
- 7. Explain the concept of static storage allocation and dynamic storage allocation in case of recursion. (1×10=10)

\_\_\_\_\_



| Seat        |  |
|-------------|--|
| Seat<br>No. |  |

## S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Max. Marks: 70 Day and Date: Tuesday, 15-5-2018

Time: 10.00 a.m. to 1.00 p.m.

- N. B.: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
  - 2) Attempt any three questions from each Section.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Use of calculator is allowed.
  - 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) The system of non-homogeneous equations AX = B has infinitely many solutions if
  - a) r = n
- b) r > n
- c) r < n
- d) None of these

- 2) Rank of the matrix | 1 1 1 is a) 1
- c) 3
- d) None of these
- 3) Given a scalar r, the transformation T :  $R^2 \rightarrow R^2$  defined by T(X) = rX when r > 1 is called
  - a) Dialation
- b) Translation c) Contraction
- d) Linear

- 4) The dimension of NulA is
  - a) The number of columns in A
  - b) The number of basic variables in the equation AX = 0
  - c) The number of rows in A
  - d) The number of free variables in the equation AX = 0

- 5) If vector space V has a basis of n vectors then every basis of V must consist
  - a) Less than n vectors
- b) 2n vectors
- c) Greater than n vectors
- d) Exactly n vectors
- 6) The eigen values of the matrix A are 2, 5, 8. Then eigen values of A<sup>-1</sup> are
  - a)  $\sqrt{2}$ ,  $\sqrt{5}$ ,  $2\sqrt{2}$  b)  $\frac{1}{2}$ ,  $\frac{1}{5}$ ,  $\frac{1}{8}$
- c) 2, 5, 8
- d) None of these
- 7) The eigen values of matrix  $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$  are
  - a) 1 ± i
- b)  $2 \pm i$
- c)  $\pm i$
- d) 4 ± 2i
- 8) If u = [3 4 6] and v = [0 1 1] then u.v. = \_\_\_\_\_ a) 1 0 b) 1 5 c) [0 4 6] d) None of these

- 9) Let  $\phi(n) = x_1^2 8x_1x_2 5x_2^2$ , then  $\phi(n) =$ \_\_\_\_\_ for  $x = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ .
  - a) -20
- b) 16
- c) 20
- 10) Let u be a non-zero vector. Then a unit vector in the direction of u is
  - a) ||u||
- b) ||u|| · u
- c)  $\frac{u}{\|u\|}$
- d) None of the above
- 11) The equations of lines of regression are x + 2y = 5 and 2x + 3y = 8. Then  $\bar{x}$  and  $\bar{y}$  are
  - a) 1 and 3
- b) 2 and 3
- c) 2 and 5
- d) 1 and 2
- 12) If  $b_{yx} = \frac{6}{5}$ ,  $b_{xy} = \frac{15}{8}$  then r =\_\_\_\_\_
  - a) 2.5
- b) 1.5
- c) 0.5
- d) 1
- 13) Which of the following equation is called Laplace equation?
  - a)  $\frac{\partial^2 \phi}{\partial \mathbf{v}^2} \frac{\partial^2 \phi}{\partial \mathbf{v}^2} = 0$

b)  $\frac{\partial^2 \phi}{\partial \mathbf{v}^2} + \frac{\partial^2 \phi}{\partial \mathbf{v}^2} = 0$ 

c)  $\frac{\partial \phi}{\partial \mathbf{x}} + \frac{\partial \phi}{\partial \mathbf{y}} = \mathbf{0}$ 

- d)  $\frac{\partial \phi}{\partial \mathbf{x}} \frac{\partial \phi}{\partial \mathbf{v}} = \mathbf{0}$



Seat No.

## S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

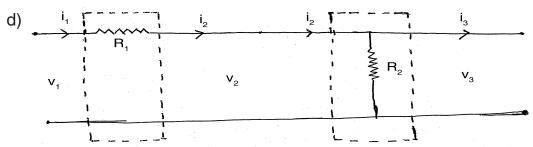
N. B.: 1) Attempt any three questions from each Section.

- 2) Figures to the right indicate full marks.
- 3) Use of calculator is allowed.

SECTION - I

2. Attempt any three from the following:

a) Solve the system:


$$x_1 - 3x_2 = 5,$$
  
 $-x_1 + x_2 + 5x_3 = 2,$   
 $x_2 + x_3 = 0.$ 

b) Let 
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
,  $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$  and  $b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$ . Determine whether 'b' can be

generated as a linear combination of  $a_1$  and  $a_2$ .

c) Let 
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, and define transformation  $T : R^2 \to R^2$  by  $T(X) = AX$ . Find

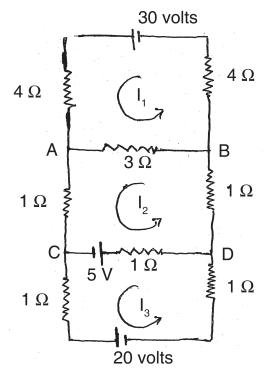
the images under T of  $u = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$  and  $v = \begin{bmatrix} a \\ b \end{bmatrix}$ .



Compute the transfer matrix of the ladder network.

9

4


3

3. a) Using LU factorization method, solve the equation AX = b where

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, b = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix} = L.U.$$

- b) Show that T is linear transformation and find standard matrix of  $T(x_1, x_2)$ . Where  $T(x_1, x_2) = (2x_2 - 3x_1, x_1 - 4x_2, 0, x_2)$ .
- c) Write the matrix equation that determines the loop currents for the circuit.



4. a) Assume that A is row equivalent to B. Find bases for NulA and ColA.

$$A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$



b) Find basis and state the dimension of

$$\left\{ \begin{bmatrix} s - 2t \\ s + t \\ 3t \end{bmatrix} : s, t \text{ in R} \right\}$$

3

3

c) Consider a basis B =  $\{b_1, b_2\}$  for R<sup>2</sup>, where  $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ , suppose

-5-

an X in R<sup>2</sup> has the co-ordinate vector  $[X]_B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ , find X.

- 5. a) Diagonalize the matrix if possible  $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$ .
  - b) Apply power method to  $A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$  with  $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  stop when K = 4 and estimate the dominant eigen value and corresponding eigen vector for A. 3
  - c) Find the characteristic equation of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

3

SECTION - II

6. a) Write down the quadratic form corresponding to the following matrices:

i) 
$$\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

ii) 
$$\begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$$
.



b) Let 
$$a = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
,  $b = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ ,  $c = \begin{bmatrix} \frac{4}{3} \\ -1 \\ \frac{2}{3} \end{bmatrix}$  and  $d = \begin{bmatrix} 5 \\ 6 \\ -1 \end{bmatrix}$ .  
i) Compute  $\frac{a \cdot b}{a \cdot a}$ 

- ii) Find ||c||.
- iii) Show that d is orthogonal to c.
- c) Show that {u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>} is an orthogonal set where,

$$u_{1} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, u_{2} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, u_{3} = \begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}.$$
OR

- c) Let u = [1, 2, 4]', v = [2, -3, 5]', w = [4, 2, -3]' be the vectors in  $\mathbb{R}^3$ , find
  - i)  $(u + v) \cdot w$
  - ii)  $\| u + v \|$ .

4

5

4

3

7. a) Find the equations of the lines of regression from the following data, also find the coefficient of correlation r.

|            |    |    |    |    |    |    |    |    |    | 75 |    |
|------------|----|----|----|----|----|----|----|----|----|----|----|
| <b>y</b> : | 82 | 56 | 50 | 48 | 60 | 62 | 64 | 65 | 70 | 74 | 90 |

b) Calculate the coefficient of correlation between height of father and height of son from the following data:

70 Height of father (x): 64 65 66 67 68 69 Height of son (y): 66 67 65 68 70 68 71

8. a) The equations of the two lines of regression are 6y = 5x + 90 and 15x = 8y + 130.

Find:

- i) The means of x and y.
- ii) The coefficient of correlation.
- iii) If variance of x is 16, also find the standard deviation of y.



3

3

b) Given Mean of x = 50.07 Mean of y = 9.98

S.D. of 
$$x = 5.26$$

S.D. of 
$$y = 2.59$$

$$r = 0.898$$

Find the equations of the lines of regression.

- c) Is  $Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2 \cdot x_3$  positive definite?
- 9. a) Verify that the real and imaginary parts of  $f(z) = e^{2z}$  are harmonic functions.
  - b) Find the image of following under the transformation  $W = \frac{1}{z}$ .

$$i) \quad z = \frac{\sqrt{5}}{2} + i$$

ii) 
$$z = \frac{2\sqrt{5}}{9} + \frac{4}{9}i$$
.

c) Find the bilinear transformation which maps the points z=1, i, -1 into the points W=i, 0, -i.

\_\_\_\_\_



| Seat |  |
|------|--|
| No.  |  |

### S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Day and Date: Tuesday, 15-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- N. B.: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Attempt any three questions from each Section.
  - 3) Figures to the right indicate full marks.
  - 4) **Use** of calculator is **allowed**.
  - 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

| Duration: 30 Minutes | Marks: 14 |
|----------------------|-----------|
|                      |           |

 $(1 \times 14 = 14)$ 1. Choose the correct answer:

- 1) If u = [3 4 6] and v = [0 1 1] then u.v. = \_\_\_\_ a) 1 0 b) 1 5 c) [0 4 6] d) None of these
- 2) Let  $\phi(n) = x_1^2 8x_1x_2 5x_2^2$ , then  $\phi(n) =$ \_\_\_\_\_ for  $x = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ .
  - b) 16 c) 20 a) -20d) 28
- 3) Let u be a non-zero vector. Then a unit vector in the direction of u is
  - c)  $\frac{u}{\|u\|}$ a) u d) None of the above
- 4) The equations of lines of regression are x + 2y = 5 and 2x + 3y = 8. Then  $\bar{x}$  and  $\bar{y}$  are
  - b) 2 and 3 c) 2 and 5 a) 1 and 3 d) 1 and 2
- 5) If  $b_{yx} = \frac{6}{5}$ ,  $b_{xy} = \frac{15}{8}$  then r =\_\_\_\_\_ a) 2.5 b) 1.5 d) 1

- 6) Which of the following equation is called Laplace equation?
  - a)  $\frac{\partial^2 \phi}{\partial \mathbf{v}^2} \frac{\partial^2 \phi}{\partial \mathbf{v}^2} = 0$

b)  $\frac{\partial^2 \phi}{\partial \mathbf{v}^2} + \frac{\partial^2 \phi}{\partial \mathbf{v}^2} = 0$ 

c)  $\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} = 0$ 

- d)  $\frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} = 0$
- 7) If an analytic function f(z) = u(x, y) + i v(x, y) then  $f'(z) = \underline{\qquad}$ a)  $u_x + v_x$  b)  $u_y + u_y$  c)  $u_x + i v_x$  d)  $u_x i v_x$

- 8) The system of non-homogeneous equations AX = B has infinitely many solutions if
  - a) r = n
- b) r > n
- c) r < n
- d) None of these

- - a) 1
- c) 3
- d) None of these
- 10) Given a scalar r, the transformation T :  $R^2 \rightarrow R^2$  defined by T(X) = rX when r > 1 is called
  - a) Dialation
- b) Translation c) Contraction
- d) Linear

- 11) The dimension of NulA is
  - a) The number of columns in A
  - b) The number of basic variables in the equation AX = 0
  - c) The number of rows in A
  - d) The number of free variables in the equation AX = 0
- 12) If vector space V has a basis of n vectors then every basis of V must consist
  - a) Less than n vectors
- b) 2n vectors
- c) Greater than n vectors
- d) Exactly n vectors
- 13) The eigen values of the matrix A are 2, 5, 8. Then eigen values of A<sup>-1</sup> are
  - a)  $\sqrt{2}$ ,  $\sqrt{5}$ ,  $2\sqrt{2}$  b)  $\frac{1}{2}$ ,  $\frac{1}{5}$ ,  $\frac{1}{8}$
- c) 2, 5, 8
- d) None of these
- 14) The eigen values of matrix  $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$  are
  - a) 1 ± i
- b)  $2 \pm i$
- c) ±i
- d)  $4 \pm 2i$



Seat No.

## S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Day and Date: Tuesday, 15-5-2018 Marks: 56

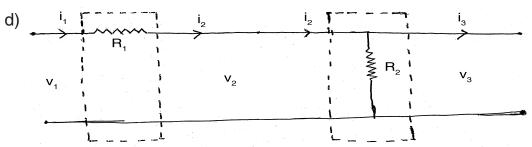
Time: 10.00 a.m. to 1.00 p.m.

N. B.: 1) Attempt any three questions from each Section.

- 2) Figures to the right indicate full marks.
- 3) Use of calculator is allowed.

2. Attempt any three from the following:

a) Solve the system:


$$x_1 - 3x_2 = 5,$$
  
 $-x_1 + x_2 + 5x_3 = 2,$   
 $x_2 + x_3 = 0.$ 

b) Let 
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
,  $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$  and  $b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$ . Determine whether 'b' can be

generated as a linear combination of  $a_1$  and  $a_2$ .

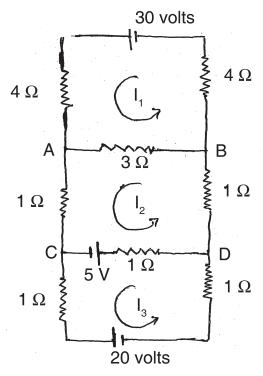
c) Let 
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, and define transformation  $T : R^2 \to R^2$  by  $T(X) = AX$ . Find

the images under T of 
$$u = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 and  $v = \begin{bmatrix} a \\ b \end{bmatrix}$ .



Compute the transfer matrix of the ladder network.

9




3. a) Using LU factorization method, solve the equation AX = b where

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, b = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix} = L.U.$$

- b) Show that T is linear transformation and find standard matrix of  $T(x_1, x_2)$ . Where  $T(x_1, x_2) = (2x_2 - 3x_1, x_1 - 4x_2, 0, x_2)$ .
- c) Write the matrix equation that determines the loop currents for the circuit. 3



4. a) Assume that A is row equivalent to B. Find bases for NulA and ColA.

$$A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

b) Find basis and state the dimension of

$$\left\{ \begin{bmatrix} s - 2t \\ s + t \\ 3t \end{bmatrix} : s, t \text{ in R} \right\}$$

3

3

c) Consider a basis B =  $\{b_1, b_2\}$  for R<sup>2</sup>, where  $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ , suppose

an X in R<sup>2</sup> has the co-ordinate vector  $[X]_B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ , find X.

- 5. a) Diagonalize the matrix if possible  $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$ .
  - b) Apply power method to  $A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$  with  $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  stop when K = 4 and estimate the dominant eigen value and corresponding eigen vector for A. 3
  - c) Find the characteristic equation of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

3

SECTION - II

- 6. a) Write down the quadratic form corresponding to the following matrices:
  - i)  $\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$
  - ii)  $\begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$ .



b) Let 
$$a = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
,  $b = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ ,  $c = \begin{bmatrix} \frac{4}{3} \\ -1 \\ \frac{2}{3} \end{bmatrix}$  and  $d = \begin{bmatrix} 5 \\ 6 \\ -1 \end{bmatrix}$ .

i) Compute  $\frac{a \cdot b}{a \cdot a}$ 

- ii) Find ||c||.
- iii) Show that d is orthogonal to c.
- c) Show that {u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>} is an orthogonal set where,

$$u_{1} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, u_{2} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, u_{3} = \begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}.$$
OR

- c) Let u = [1, 2, 4]', v = [2, -3, 5]', w = [4, 2, -3]' be the vectors in  $\mathbb{R}^3$ , find
  - i)  $(u + v) \cdot w$
  - ii)  $\| u + v \|$ .

4

7. a) Find the equations of the lines of regression from the following data, also find the coefficient of correlation r.

| 5 |
|---|
| J |

| <b>x</b> : |    |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|----|
| <b>y</b> : | 82 | 56 | 50 | 48 | 60 | 62 | 64 | 65 | 70 | 74 | 90 |

b) Calculate the coefficient of correlation between height of father and height of son from the following data:

65

Height of father (x):

64

66

68

70

70 69

Height of son (y):

66

67 65 68

67

68 71

8. a) The equations of the two lines of regression are 6y = 5x + 90 and 15x = 8y + 130.

3

4

Find:

- i) The means of x and y.
- ii) The coefficient of correlation.
- iii) If variance of x is 16, also find the standard deviation of y.



b) Given Mean of x = 50.07 Mean of y = 9.98

S.D. of 
$$x = 5.26$$

S.D. of y = 2.59

$$r = 0.898$$

Find the equations of the lines of regression.

3

c) Is  $Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2 \cdot x_3$  positive definite ?

3

9. a) Verify that the real and imaginary parts of  $f(z) = e^{2z}$  are harmonic functions.

3

b) Find the image of following under the transformation  $W = \frac{1}{z}$ .

$$i) \quad z = \frac{\sqrt{5}}{2} + i$$

ii) 
$$z = \frac{2\sqrt{5}}{9} + \frac{4}{9}i$$
.

3

3

c) Find the bilinear transformation which maps the points z = 1, i, -1 into the points W = i, 0, -i.

| Seat |  |
|------|--|
| No.  |  |

### S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Day and Date: Tuesday, 15-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- N. B.: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Attempt any three questions from each Section.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Use of calculator is allowed.
  - 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) If vector space V has a basis of n vectors then every basis of V must consist
  - a) Less than n vectors
- b) 2n vectors
- c) Greater than n vectors
- d) Exactly n vectors
- 2) The eigen values of the matrix A are 2, 5, 8. Then eigen values of A<sup>-1</sup> are
  - a)  $\sqrt{2}$ ,  $\sqrt{5}$ ,  $2\sqrt{2}$  b)  $\frac{1}{2}$ ,  $\frac{1}{5}$ ,  $\frac{1}{8}$  c) 2, 5, 8 d) None of these
- 3) The eigen values of matrix  $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$  are
  - a) 1 ± i
- b)  $2 \pm i$
- c)  $\pm i$  d)  $4 \pm 2i$
- 4) If u = [3 4 6] and v = [0 1 1] then u.v. = \_\_\_\_\_ a) 1 0 b) 1 5 c) [0 4 6] d) None of these

- 5) Let  $\phi(n) = x_1^2 8x_1x_2 5x_2^2$ , then  $\phi(n) =$ \_\_\_\_\_ for  $x = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ .
  - a) -20 b) 16 c) 20 d) 28



- 6) Let u be a non-zero vector. Then a unit vector in the direction of u is
  - a) u
- b) ||u||·u
- c)  $\frac{u}{\|u\|}$
- d) None of the above
- 7) The equations of lines of regression are x + 2y = 5 and 2x + 3y = 8. Then  $\bar{x}$  and  $\bar{y}$  are
  - a) 1 and 3
- b) 2 and 3
- c) 2 and 5
- d) 1 and 2
- 8) If  $b_{yx} = \frac{6}{5}$ ,  $b_{xy} = \frac{15}{8}$  then r =\_\_\_\_\_
  - a) 2.5
- b) 1.5

- 9) Which of the following equation is called Laplace equation?
  - a)  $\frac{\partial^2 \phi}{\partial \mathbf{v}^2} \frac{\partial^2 \phi}{\partial \mathbf{v}^2} = 0$

b)  $\frac{\partial^2 \phi}{\partial \mathbf{v}^2} + \frac{\partial^2 \phi}{\partial \mathbf{v}^2} = 0$ 

c)  $\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} = 0$ 

- d)  $\frac{\partial \phi}{\partial \mathbf{x}} \frac{\partial \phi}{\partial \mathbf{v}} = \mathbf{0}$
- 10) If an analytic function f(z) = u(x, y) + i v(x, y) then f'(z) =
  - a)  $u_x + v_x$

- b)  $u_y + u_y$  c)  $u_x + i v_x$  d)  $u_x i v_x$
- 11) The system of non-homogeneous equations AX = B has infinitely many solutions if
  - a) r = n
- b) r > n
- c) r < n
- d) None of these

- 12) Rank of the matrix \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} is \\ a) & 1
- c) 3
- d) None of these
- 13) Given a scalar r, the transformation T :  $R^2 \rightarrow R^2$  defined by T(X) = rX when r > 1 is called
  - a) Dialation
- b) Translation
- c) Contraction
- d) Linear

- 14) The dimension of NulA is
  - a) The number of columns in A
  - b) The number of basic variables in the equation AX = 0
  - c) The number of rows in A
  - d) The number of free variables in the equation AX = 0



Seat No.

## S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Day and Date: Tuesday, 15-5-2018 Marks: 56

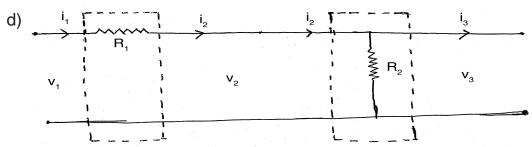
Time: 10.00 a.m. to 1.00 p.m.

N. B.: 1) Attempt any three questions from each Section.

- 2) Figures to the right indicate full marks.
- 3) Use of calculator is allowed.

2. Attempt any three from the following:

a) Solve the system:


$$x_1 - 3x_2 = 5,$$
  
 $-x_1 + x_2 + 5x_3 = 2,$   
 $x_2 + x_3 = 0.$ 

b) Let 
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
,  $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$  and  $b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$ . Determine whether 'b' can be

generated as a linear combination of  $a_1$  and  $a_2$ .

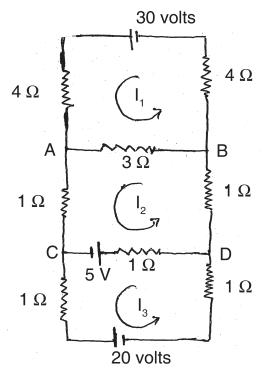
c) Let 
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, and define transformation  $T : R^2 \to R^2$  by  $T(X) = AX$ . Find

the images under T of 
$$u = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 and  $v = \begin{bmatrix} a \\ b \end{bmatrix}$ .



Compute the transfer matrix of the ladder network.

9


3

3. a) Using LU factorization method, solve the equation AX = b where

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, b = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix} = L.U.$$

- b) Show that T is linear transformation and find standard matrix of  $T(x_1, x_2)$ . Where  $T(x_1, x_2) = (2x_2 - 3x_1, x_1 - 4x_2, 0, x_2)$ .
- c) Write the matrix equation that determines the loop currents for the circuit.



4. a) Assume that A is row equivalent to B. Find bases for NulA and ColA.

$$A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

b) Find basis and state the dimension of

$$\left\{ \begin{bmatrix} s - 2t \\ s + t \\ 3t \end{bmatrix} : s, t \text{ in R} \right\}$$

3

c) Consider a basis B =  $\{b_1, b_2\}$  for R², where  $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ , suppose

an X in R<sup>2</sup> has the co-ordinate vector  $[X]_B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ , find X.

3

5. a) Diagonalize the matrix if possible  $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$ .

3

b) Apply power method to  $A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$  with  $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  stop when K = 4 and estimate the dominant eigen value and corresponding eigen vector for A.

3

c) Find the characteristic equation of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

3

SECTION - II

6. a) Write down the quadratic form corresponding to the following matrices:

i) 
$$\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

ii) 
$$\begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$$
.



b) Let 
$$a = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
,  $b = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ ,  $c = \begin{bmatrix} \frac{4}{3} \\ -1 \\ \frac{2}{3} \end{bmatrix}$  and  $d = \begin{bmatrix} 5 \\ 6 \\ -1 \end{bmatrix}$ .  
i) Compute  $\frac{a \cdot b}{a \cdot a}$ 

- ii) Find ||c||.
- iii) Show that d is orthogonal to c.
- c) Show that {u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>} is an orthogonal set where,

$$u_{1} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, u_{2} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, u_{3} = \begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}.$$
OR

- c) Let u = [1, 2, 4]', v = [2, -3, 5]', w = [4, 2, -3]' be the vectors in  $\mathbb{R}^3$ , find
  - i)  $(u + v) \cdot w$
  - ii)  $\| u + v \|$ .

4

5

4

3

7. a) Find the equations of the lines of regression from the following data, also find the coefficient of correlation r.

|            |    |    |    |    |    |    |    |    |    | 75 |    |
|------------|----|----|----|----|----|----|----|----|----|----|----|
| <b>y</b> : | 82 | 56 | 50 | 48 | 60 | 62 | 64 | 65 | 70 | 74 | 90 |

b) Calculate the coefficient of correlation between height of father and height of son from the following data:

70 Height of father (x): 64 65 66 67 68 69 Height of son (y): 66 67 65 68 70 68 71

8. a) The equations of the two lines of regression are 6y = 5x + 90 and 15x = 8y + 130.

Find:

- i) The means of x and y.
- ii) The coefficient of correlation.
- iii) If variance of x is 16, also find the standard deviation of y.



3

3

3

b) Given Mean of x = 50.07 Mean of y = 9.98

S.D. of 
$$x = 5.26$$

S.D. of 
$$y = 2.59$$

$$r = 0.898$$

Find the equations of the lines of regression.

- c) Is  $Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2 \cdot x_3$  positive definite?
- 9. a) Verify that the real and imaginary parts of  $f(z) = e^{2z}$  are harmonic functions.
  - b) Find the image of following under the transformation  $W = \frac{1}{z}$ .

$$i) \quad z = \frac{\sqrt{5}}{2} + i$$

ii) 
$$z = \frac{2\sqrt{5}}{9} + \frac{4}{9}i$$
.

c) Find the bilinear transformation which maps the points z = 1, i, -1 into the points W = i, 0, -i.

\_\_\_\_\_

Seat No.

Set S

Max. Marks: 70

## S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Day and Date: Tuesday, 15-5-2018

Time: 10.00 a.m. to 1.00 p.m.

N. B.: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Attempt any three questions from each Section.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator is allowed.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) Let u be a non-zero vector. Then a unit vector in the direction of u is
  - a) ||u||
- b)  $\|u\| \cdot u$
- c)  $\frac{u}{\|u\|}$
- d) None of the above
- 2) The equations of lines of regression are x + 2y = 5 and 2x + 3y = 8. Then  $\overline{x}$  and  $\overline{y}$  are
  - a) 1 and 3
- b) 2 and 3
  - c) 2 and 5
- d) 1 and 2
- 3) If  $b_{yx} = \frac{6}{5}$ ,  $b_{xy} = \frac{15}{8}$  then r =\_\_\_\_\_
  - a) 2.5
- b) 1.5
- c) 0.5
- d) 1
- 4) Which of the following equation is called Laplace equation?
  - a)  $\frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} = 0$

b)  $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial v^2} = 0$ 

c)  $\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} = 0$ 

d)  $\frac{\partial \phi}{\partial x} - \frac{\partial \phi}{\partial y} = 0$ 



- 5) If an analytic function f(z) = u(x, y) + i v(x, y) then  $f'(z) = \underline{\hspace{1cm}}$ b)  $u_y + u_y$  c)  $u_x + i v_x$  d)  $u_x - i v_x$ 
  - a)  $u_x + v_x$

- 6) The system of non-homogeneous equations AX = B has infinitely many solutions if
  - a) r = n
- b) r > n
- c) r < n
- d) None of these

- - a) 1
- c) 3
- d) None of these
- 8) Given a scalar r, the transformation T :  $R^2 \rightarrow R^2$  defined by T(X) = rX when r > 1 is called
  - a) Dialation
- b) Translation
- c) Contraction
- d) Linear

- 9) The dimension of NulA is
  - a) The number of columns in A
  - b) The number of basic variables in the equation AX = 0
  - c) The number of rows in A
  - d) The number of free variables in the equation AX = 0
- 10) If vector space V has a basis of n vectors then every basis of V must consist
  - a) Less than n vectors
- b) 2n vectors
- c) Greater than n vectors
- d) Exactly n vectors
- 11) The eigen values of the matrix A are 2, 5, 8. Then eigen values of A-1 are
  - a)  $\sqrt{2}$ ,  $\sqrt{5}$ ,  $2\sqrt{2}$  b)  $\frac{1}{2}$ ,  $\frac{1}{5}$ ,  $\frac{1}{8}$  c) 2, 5, 8

- d) None of these
- 12) The eigen values of matrix  $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$  are
  - a) 1 ± i
- b)  $2 \pm i$
- c)  $\pm i$  d)  $4 \pm 2i$
- 13) If u = [3 4 6] and v = [0 1 1] then u.v. = \_\_\_\_\_ a) 1 0 b) 1 5 c) [0 4 6] d) None of these

- 14) Let  $\phi(n) = x_1^2 8x_1x_2 5x_2^2$ , then  $\phi(n) =$ \_\_\_\_\_ for  $x = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ .
  - a) -20 b) 16 c) 20 d) 28



Seat No.

## S.E. (E&E) (Part – II) (Old CGPA) Examination, 2018 LINEAR ALGEBRA

Day and Date: Tuesday, 15-5-2018 Marks: 56

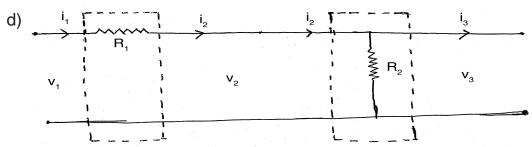
Time: 10.00 a.m. to 1.00 p.m.

N. B.: 1) Attempt any three questions from each Section.

- 2) Figures to the right indicate full marks.
- 3) Use of calculator is allowed.

2. Attempt any three from the following:

a) Solve the system:


$$x_1 - 3x_2 = 5,$$
  
 $-x_1 + x_2 + 5x_3 = 2,$   
 $x_2 + x_3 = 0.$ 

b) Let 
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
,  $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$  and  $b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$ . Determine whether 'b' can be

generated as a linear combination of  $a_1$  and  $a_2$ .

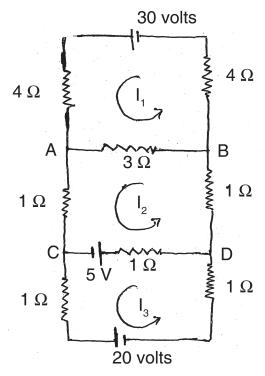
c) Let 
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, and define transformation  $T : R^2 \to R^2$  by  $T(X) = AX$ . Find

the images under T of 
$$u = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 and  $v = \begin{bmatrix} a \\ b \end{bmatrix}$ .



Compute the transfer matrix of the ladder network.

9




3. a) Using LU factorization method, solve the equation AX = b where

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, b = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix} = L.U.$$

- b) Show that T is linear transformation and find standard matrix of  $T(x_1, x_2)$ . Where  $T(x_1, x_2) = (2x_2 - 3x_1, x_1 - 4x_2, 0, x_2)$ .
- c) Write the matrix equation that determines the loop currents for the circuit. 3



4. a) Assume that A is row equivalent to B. Find bases for NulA and ColA.

$$A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

b) Find basis and state the dimension of

$$\left\{ \begin{bmatrix} s - 2t \\ s + t \\ 3t \end{bmatrix} : s, t \text{ in R} \right\}$$

3

3

c) Consider a basis B =  $\{b_1, b_2\}$  for R<sup>2</sup>, where  $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ , suppose

an X in R<sup>2</sup> has the co-ordinate vector  $[X]_B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ , find X.

- 5. a) Diagonalize the matrix if possible  $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$ .
  - b) Apply power method to  $A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$  with  $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  stop when K = 4 and estimate the dominant eigen value and corresponding eigen vector for A. 3
  - c) Find the characteristic equation of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

3

SECTION - II

6. a) Write down the quadratic form corresponding to the following matrices:

i) 
$$\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

ii) 
$$\begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$$
.



b) Let 
$$a = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
,  $b = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ ,  $c = \begin{bmatrix} \frac{4}{3} \\ -1 \\ \frac{2}{3} \end{bmatrix}$  and  $d = \begin{bmatrix} 5 \\ 6 \\ -1 \end{bmatrix}$ .

i) Compute  $\frac{a \cdot b}{a \cdot a}$ 

- ii) Find ||c||.
- iii) Show that d is orthogonal to c.
- c) Show that {u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>} is an orthogonal set where,

$$u_{1} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, u_{2} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, u_{3} = \begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}.$$
OR

- c) Let u = [1, 2, 4]', v = [2, -3, 5]', w = [4, 2, -3]' be the vectors in  $\mathbb{R}^3$ , find
  - i)  $(u + v) \cdot w$
  - ii)  $\| u + v \|$ .

4

5

4

3

7. a) Find the equations of the lines of regression from the following data, also find the coefficient of correlation r.

| x: |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|
| у: | 82 | 56 | 50 | 48 | 60 | 62 | 64 | 65 | 70 | 74 | 90 |

b) Calculate the coefficient of correlation between height of father and height of son from the following data:

70 Height of father (x): 64 65 66 67 68 69 Height of son (y): 66 67 65 68 70 68 71

8. a) The equations of the two lines of regression are 6y = 5x + 90 and 15x = 8y + 130.

Find:

- i) The means of x and y.
- ii) The coefficient of correlation.
- iii) If variance of x is 16, also find the standard deviation of y.



Mean of y = 9.98b) Given Mean of x = 50.07

S.D. of 
$$x = 5.26$$

S.D. of y = 2.59

$$r = 0.898$$

Find the equations of the lines of regression.

3

c) Is  $Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2 \cdot x_3$  positive definite ?

9. a) Verify that the real and imaginary parts of  $f(z) = e^{2z}$  are harmonic functions.

3

3

b) Find the image of following under the transformation  $W = \frac{1}{2}$ .

$$i) \quad z = \frac{\sqrt{5}}{2} + i$$

ii) 
$$z = \frac{2\sqrt{5}}{9} + \frac{4}{9}i$$
.

3

c) Find the bilinear transformation which maps the points z=1, i, -1 into the points W = i, 0, -i.

3



**SLR-TC - 486** 

Set P

### Seat No.

## S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is **compulsory**. It should be solved in **first**30 minutes in Answer Book Page No. 3. Each question carries **one** mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- The starting torque of a 3-phase induction motor can be increased by increasing
  - a) The rotor reactance

- b) The rotor resistance
- c) The stator resistance
- d) None of the above
- 2) The 'cogging' of an induction motor can be avoided by
  - a) Proper ventilation
  - b) Using DOL starter
  - c) Auto-transformer starter
  - d) Having no. of rotor slots more or less than the no. of stator slots
- 3) In case of the induction motor the torque is
  - a) Inversely proportional to V
- b) Directly proportional to S<sup>2</sup>
- c) Inversely proportional to slip
- d) Directly proportional to slip
- 4) DOL starting of induction motor is usually restricted to
  - a) Low horse power motors
- b) Variable speed motors
- c) High horse power motors
- d) High speed motors
- 5) The starting torque of a 3-phase squirrel cage induction motor is
  - a) Twice the full load torque
- b) 1.5 times the full load torque
- c) Equal to full load torque
- d) None of the above



| 6)  | Short-circuit test on an induction mot       | or cannot be used to determine      |  |  |  |  |  |  |  |
|-----|----------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|
|     | a) Windage losses                            | b) Copper losses                    |  |  |  |  |  |  |  |
|     | c) Transformer ratio                         | d) Power scale of circle diagram    |  |  |  |  |  |  |  |
| 7)  | In 3-phase induction motors sometim          | es copper bars are placed deep in   |  |  |  |  |  |  |  |
| •   | the rotor to                                 |                                     |  |  |  |  |  |  |  |
|     | a) Improve starting torque                   | b) Reduce copper losses             |  |  |  |  |  |  |  |
|     | c) Improve efficiency                        | d) Improve power factor             |  |  |  |  |  |  |  |
| 8)  | Which kind of rotor is most suitable for     | or turbo alternators which are      |  |  |  |  |  |  |  |
| ,   | designed to run at high speed?               |                                     |  |  |  |  |  |  |  |
|     | a) Salient pole type                         | b) Non-salient pole type            |  |  |  |  |  |  |  |
|     | c) Both a) and b) above                      | d) None of the above                |  |  |  |  |  |  |  |
| 9)  | The frequency of voltage generated by        | by an alternator having 8 poles and |  |  |  |  |  |  |  |
| ,   | rotating at 250 rpm is                       |                                     |  |  |  |  |  |  |  |
|     | a) 60 Hz b) 50 Hz                            | c) 25 Hz d) 16 2/3 Hz               |  |  |  |  |  |  |  |
| 10) | If the input to the prime mover of an a      | alternator is kept constant but the |  |  |  |  |  |  |  |
| -   | excitation is changed, then the              | •                                   |  |  |  |  |  |  |  |
|     | a) Reactive component of the output          | is changed                          |  |  |  |  |  |  |  |
|     | b) Active component of the output is changed |                                     |  |  |  |  |  |  |  |
|     | c) Power factor of the load remains          |                                     |  |  |  |  |  |  |  |
|     | d) Power factor of the load reduces          |                                     |  |  |  |  |  |  |  |
| 11) | For an alternator when the power fac         | tor of the load is unity            |  |  |  |  |  |  |  |
|     | a) The armature flux will have square        | e waveform                          |  |  |  |  |  |  |  |
|     | b) The armature flux will be demagned        | etizing                             |  |  |  |  |  |  |  |
|     | c) The armature flux will be cross ma        | _                                   |  |  |  |  |  |  |  |
|     | d) The armature flux will reduce to ze       | ero                                 |  |  |  |  |  |  |  |
| 12) | In order that two alternators be put in      | parallel, which of the following    |  |  |  |  |  |  |  |
|     | factors should be identical for both?        |                                     |  |  |  |  |  |  |  |
|     | a) Voltage                                   | b) Frequency                        |  |  |  |  |  |  |  |
|     | c) Phase sequence                            | d) All of the above                 |  |  |  |  |  |  |  |
| 13) | A three phase alternator has a phase         | sequence of RYB for its three       |  |  |  |  |  |  |  |
|     | output voltages. In case the field curr      | ent is reversed, the phase sequence |  |  |  |  |  |  |  |
|     | will become.                                 |                                     |  |  |  |  |  |  |  |
|     | a) RBY                                       | b) RYB                              |  |  |  |  |  |  |  |
|     | c) YRB                                       | d) None of the above                |  |  |  |  |  |  |  |
| 14) | For the same power rating, a lower ve        |                                     |  |  |  |  |  |  |  |
|     | a) More efficient                            | b) Larger in size                   |  |  |  |  |  |  |  |
|     | c) Operating at high rpm                     | d) More costly                      |  |  |  |  |  |  |  |
|     |                                              |                                     |  |  |  |  |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Find the ratio of maximum torque to full load torque of a 4-pole, 50 Hz, 3-phase I.M: the data required is as follows: Slip is 4%, Rotor impedance/phase =  $(0.3 + j 1.2) \Omega$  at standstill.
- b) What are the different types of 1-phase induction motors are there? Explain the principle of operation of shaded pole induction motor.
- c) Derive the expression for  $T_{\rm sf}/T_{\rm max}$  and  $T_{\rm ff}/T_{\rm max}$  with neat explanation.
- d) How the starting torque of squirrel cage induction motor can be improved? Explain with neat sketch.
- e) Explain the DOL starter with neat circuit diagram.

### 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Why single phase induction motor is not a self starting one? Explain with double revolving field theory and show how that backward slip  $S_B = (2-S)$  where S is forward slip.
- b) Find the mechanical power output of 185-W, 4 pole, 110-V, 50-Hz single-phase induction motor, whose constants are given below at a slip of 0.05. R1 = 1.86  $\Omega$  X1 = 2.56  $\Omega$  Xm = 53.5  $\Omega$  R2 = 3.56  $\Omega$  X2 = 2.56  $\Omega$  Core loss = 3.5 W, Friction and Windage loss = 13.5 W.
- c) Explain how rotating magnetic field is created when 3-ph supply voltage is given to the 3-ph stator winding.

#### SECTION - II

#### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Give the applications of synchronous motor.
- b) Explain why synchronous motor is not self starting.
- c) Derive EMF equation of alternator with short pitched coils and distributed winding.
- d) What is armature reaction? What its effect when RL load is connected to alternators explain with phasor diagram?
- e) Explain synchronous motor as synchronous condenser. Draw neat phasor diagram.

#### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Draw neat vector diagram of salient pole alternator and derive expression for power generated in alternator and draw P Vs  $\delta$  characteristics.
- b) Explain the operation of synchronous motor with constant load and following different type of excitation with phasor diagram.
  - i) Normal excitation
  - ii) Under excitation
  - iii) Over excitation.
- c) A 208 V, star connected 3-phase synchronous motor has a synchronous reactance of 4  $\Omega$ /phase and negligible armature winding resistance. At a certain load, the motor takes 7.2 kW at 0.8 p.f lagging. If the power developed by the motor remains the same while the excitation voltage is increased by 50% by raising the field excitation, determine
  - i) The new armature current and
  - ii) The power factor.



**SLR-TC - 486** 

Seat No. et Q

## S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is **compulsory**. It should be solved in **first**30 minutes in Answer Book Page No. 3. Each question carries **one** mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) Which kind of rotor is most suitable for turbo alternators which are designed to run at high speed?
  - a) Salient pole type

- b) Non-salient pole type
- c) Both a) and b) above
- d) None of the above
- 2) The frequency of voltage generated by an alternator having 8 poles and rotating at 250 rpm is
  - a) 60 Hz
- b) 50 Hz
- c) 25 Hz
- d) 16 2/3 Hz
- 3) If the input to the prime mover of an alternator is kept constant but the excitation is changed, then the
  - a) Reactive component of the output is changed
  - b) Active component of the output is changed
  - c) Power factor of the load remains
  - d) Power factor of the load reduces
- 4) For an alternator when the power factor of the load is unity
  - a) The armature flux will have square waveform
  - b) The armature flux will be demagnetizing
  - c) The armature flux will be cross magnetizing
  - d) The armature flux will reduce to zero



| 5)   | In order that two alternators be put in factors should be identical for both?                 | parallel, which of the following     |
|------|-----------------------------------------------------------------------------------------------|--------------------------------------|
|      | a) Voltage                                                                                    | b) Frequency                         |
|      | c) Phase sequence                                                                             | d) All of the above                  |
| 6)   | A three phase alternator has a phase                                                          | e sequence of RYB for its three      |
|      | output voltages. In case the field curr                                                       | rent is reversed, the phase sequence |
|      | will become.                                                                                  |                                      |
|      | a) RBY                                                                                        | b) RYB                               |
| ٦١   | c) YRB                                                                                        | d) None of the above                 |
| 7)   | For the same power rating, a lower v                                                          |                                      |
|      | a) More efficient                                                                             | b) Larger in size                    |
| 0)   | c) Operating at high rpm                                                                      | d) More costly                       |
| 0)   | The starting torque of a 3-phase induincreasing                                               | ction motor can be increased by      |
|      | a) The rotor reactance                                                                        | b) The rotor resistance              |
|      | c) The stator resistance                                                                      | d) None of the above                 |
| 9)   | The 'cogging' of an induction motor of                                                        | ,                                    |
| 0)   | a) Proper ventilation                                                                         | an se avelaca sy                     |
|      | b) Using DOL starter                                                                          |                                      |
|      | c) Auto-transformer starter                                                                   |                                      |
|      | d) Having no. of rotor slots more or le                                                       | ess than the no. of stator slots     |
| 10)  | In case of the induction motor the tor                                                        | •                                    |
|      | a) Inversely proportional to V                                                                |                                      |
|      | c) Inversely proportional to slip                                                             | d) Directly proportional to slip     |
| 11)  | DOL starting of induction motor is us                                                         | -                                    |
|      | a) Low horse power motors                                                                     | •                                    |
| 4.0\ | c) High horse power motors                                                                    | d) High speed motors                 |
| 12)  | The starting torque of a 3-phase squi                                                         | <u> </u>                             |
|      | a) Twice the full load torque                                                                 | b) 1.5 times the full load torque    |
| 10)  | <ul><li>c) Equal to full load torque</li><li>Short–circuit test on an induction mot</li></ul> | d) None of the above                 |
| 13)  | a) Windage losses                                                                             | b) Copper losses                     |
|      | c) Transformer ratio                                                                          | d) Power scale of circle diagram     |
| 14)  | In 3-phase induction motors sometim                                                           | -                                    |
| 17)  | the rotor to                                                                                  | nes copper bars are placed deep in   |
|      | a) Improve starting torque                                                                    | b) Reduce copper losses              |
|      | c) Improve efficiency                                                                         | d) Improve power factor              |
|      | -<br>-                                                                                        |                                      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Find the ratio of maximum torque to full load torque of a 4-pole, 50 Hz, 3-phase I.M: the data required is as follows: Slip is 4%, Rotor impedance/phase =  $(0.3 + j 1.2) \Omega$  at standstill.
- b) What are the different types of 1-phase induction motors are there? Explain the principle of operation of shaded pole induction motor.
- c) Derive the expression for  $T_{\rm sf}/T_{\rm max}$  and  $T_{\rm ff}/T_{\rm max}$  with neat explanation.
- d) How the starting torque of squirrel cage induction motor can be improved? Explain with neat sketch.
- e) Explain the DOL starter with neat circuit diagram.

### 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Why single phase induction motor is not a self starting one? Explain with double revolving field theory and show how that backward slip  $S_B = (2-S)$  where S is forward slip.
- b) Find the mechanical power output of 185-W, 4 pole, 110-V, 50-Hz single-phase induction motor, whose constants are given below at a slip of 0.05. R1 = 1.86  $\Omega$  X1 = 2.56  $\Omega$  Xm = 53.5  $\Omega$  R2 = 3.56  $\Omega$  X2 = 2.56  $\Omega$  Core loss = 3.5 W, Friction and Windage loss = 13.5 W.
- c) Explain how rotating magnetic field is created when 3-ph supply voltage is given to the 3-ph stator winding.

#### SECTION - II

#### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Give the applications of synchronous motor.
- b) Explain why synchronous motor is not self starting.
- c) Derive EMF equation of alternator with short pitched coils and distributed winding.
- d) What is armature reaction? What its effect when RL load is connected to alternators explain with phasor diagram?
- e) Explain synchronous motor as synchronous condenser. Draw neat phasor diagram.

#### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Draw neat vector diagram of salient pole alternator and derive expression for power generated in alternator and draw P Vs  $\delta$  characteristics.
- b) Explain the operation of synchronous motor with constant load and following different type of excitation with phasor diagram.
  - i) Normal excitation
  - ii) Under excitation
  - iii) Over excitation.
- c) A 208 V, star connected 3-phase synchronous motor has a synchronous reactance of 4  $\Omega$ /phase and negligible armature winding resistance. At a certain load, the motor takes 7.2 kW at 0.8 p.f lagging. If the power developed by the motor remains the same while the excitation voltage is increased by 50% by raising the field excitation, determine
  - i) The new armature current and
  - ii) The power factor.



Set R

## Seat No.

## S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is **compulsory**. It should be solved in **first**30 minutes in Answer Book Page No. 3. Each question carries **one** mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions **Duration: 30 Minutes** Marks: 14 1. Choose the correct answer:  $(1 \times 14 = 14)$ 1) The starting torque of a 3-phase squirrel cage induction motor is a) Twice the full load torque b) 1.5 times the full load torque c) Equal to full load torque d) None of the above 2) Short-circuit test on an induction motor cannot be used to determine a) Windage losses b) Copper losses c) Transformer ratio d) Power scale of circle diagram 3) In 3-phase induction motors sometimes copper bars are placed deep in the rotor to a) Improve starting torque b) Reduce copper losses c) Improve efficiency d) Improve power factor

4) Which kind of rotor is most suitable for turbo alternators which are designed to run at high speed?

designed to run at high speed ?

a) Salient pole type

b) Non-salient pole type

a) Salient pole typeb) Non-salient pole typec) Both a) and b) aboved) None of the above

5) The frequency of voltage generated by an alternator having 8 poles and rotating at 250 rpm is

a) 60 Hz b) 50 Hz c) 25 Hz d) 16 2/3 Hz



-2-6) If the input to the prime mover of an alternator is kept constant but the excitation is changed, then the a) Reactive component of the output is changed b) Active component of the output is changed c) Power factor of the load remains d) Power factor of the load reduces 7) For an alternator when the power factor of the load is unity a) The armature flux will have square waveform b) The armature flux will be demagnetizing c) The armature flux will be cross magnetizing d) The armature flux will reduce to zero 8) In order that two alternators be put in parallel, which of the following factors should be identical for both? a) Voltage b) Frequency c) Phase sequence d) All of the above 9) A three phase alternator has a phase sequence of RYB for its three output voltages. In case the field current is reversed, the phase sequence

will become. a) RBY b) RYB c) YRB d) None of the above 10) For the same power rating, a lower voltage alternator will be a) More efficient b) Larger in size c) Operating at high rpm d) More costly

- 11) The starting torque of a 3-phase induction motor can be increased by increasing
  - a) The rotor reactance

b) The rotor resistance

c) The stator resistance

- d) None of the above
- 12) The 'cogging' of an induction motor can be avoided by
  - a) Proper ventilation
  - b) Using DOL starter
  - c) Auto-transformer starter
  - d) Having no. of rotor slots more or less than the no. of stator slots
- 13) In case of the induction motor the torque is
  - a) Inversely proportional to V

b) Directly proportional to S<sup>2</sup>

c) Inversely proportional to slip

- d) Directly proportional to slip
- 14) DOL starting of induction motor is usually restricted to
  - a) Low horse power motors

b) Variable speed motors

c) High horse power motors

d) High speed motors



| Seat |  |
|------|--|
| No.  |  |

## S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Find the ratio of maximum torque to full load torque of a 4-pole, 50 Hz, 3-phase I.M: the data required is as follows: Slip is 4%, Rotor impedance/phase =  $(0.3 + j 1.2) \Omega$  at standstill.
- b) What are the different types of 1-phase induction motors are there? Explain the principle of operation of shaded pole induction motor.
- c) Derive the expression for  $T_{\rm sf}/T_{\rm max}$  and  $T_{\rm ff}/T_{\rm max}$  with neat explanation.
- d) How the starting torque of squirrel cage induction motor can be improved? Explain with neat sketch.
- e) Explain the DOL starter with neat circuit diagram.

### 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Why single phase induction motor is not a self starting one? Explain with double revolving field theory and show how that backward slip  $S_B = (2-S)$  where S is forward slip.
- b) Find the mechanical power output of 185-W, 4 pole, 110-V, 50-Hz single-phase induction motor, whose constants are given below at a slip of 0.05. R1 = 1.86  $\Omega$  X1 = 2.56  $\Omega$  Xm = 53.5  $\Omega$  R2 = 3.56  $\Omega$  X2 = 2.56  $\Omega$  Core loss = 3.5 W, Friction and Windage loss = 13.5 W.
- c) Explain how rotating magnetic field is created when 3-ph supply voltage is given to the 3-ph stator winding.

#### SECTION - II

#### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Give the applications of synchronous motor.
- b) Explain why synchronous motor is not self starting.
- c) Derive EMF equation of alternator with short pitched coils and distributed winding.
- d) What is armature reaction? What its effect when RL load is connected to alternators explain with phasor diagram?
- e) Explain synchronous motor as synchronous condenser. Draw neat phasor diagram.

#### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Draw neat vector diagram of salient pole alternator and derive expression for power generated in alternator and draw P Vs  $\delta$  characteristics.
- b) Explain the operation of synchronous motor with constant load and following different type of excitation with phasor diagram.
  - i) Normal excitation
  - ii) Under excitation
  - iii) Over excitation.
- c) A 208 V, star connected 3-phase synchronous motor has a synchronous reactance of 4  $\Omega$ /phase and negligible armature winding resistance. At a certain load, the motor takes 7.2 kW at 0.8 p.f lagging. If the power developed by the motor remains the same while the excitation voltage is increased by 50% by raising the field excitation, determine
  - i) The new armature current and
  - ii) The power factor.



Set S

### Seat No.

## S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first

30 minutes in Answer Book Page No. 3. Each question

carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on

Top of Page.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) If the input to the prime mover of an alternator is kept constant but the excitation is changed, then the
  - a) Reactive component of the output is changed
  - b) Active component of the output is changed
  - c) Power factor of the load remains
  - d) Power factor of the load reduces
- 2) For an alternator when the power factor of the load is unity
  - a) The armature flux will have square waveform
  - b) The armature flux will be demagnetizing
  - c) The armature flux will be cross magnetizing
  - d) The armature flux will reduce to zero
- 3) In order that two alternators be put in parallel, which of the following factors should be identical for both?

a) Voltage

b) Frequency

c) Phase sequence

- d) All of the above
- 4) A three phase alternator has a phase sequence of RYB for its three output voltages. In case the field current is reversed, the phase sequence will become.
  - a) RBY

b) RYB

c) YRB

d) None of the above

P.T.O.



| 5)  | For the same power                        | er rating, a lower v |       | _               |                   |
|-----|-------------------------------------------|----------------------|-------|-----------------|-------------------|
|     | a) More efficient                         |                      | ,     | Larger in size  |                   |
| ٥)  | c) Operating at hig                       | •                    | ,     | More costly     |                   |
| 6)  | The starting torque increasing            | of a 3-phase indu    | ictio | on motor can b  | be increased by   |
|     | a) The rotor reacta                       | ince                 | b)    | The rotor resi  | istance           |
|     | c) The stator resist                      | tance                | d)    | None of the a   | lbove             |
| 7)  | The 'cogging' of an a) Proper ventilation | on                   | an    | be avoided by   | ,                 |
|     | b) Using DOL start                        |                      |       |                 |                   |
|     | c) Auto-transforme                        |                      |       |                 |                   |
|     | d) Having no. of ro                       |                      |       |                 | of stator slots   |
| 8)  | In case of the induc                      |                      | •     |                 |                   |
|     | a) Inversely propor                       |                      | -     |                 |                   |
|     | c) Inversely propor                       | rtional to slip      | d)    | Directly propo  | ortional to slip  |
| 9)  | DOL starting of ind                       |                      |       | -               |                   |
|     | a) Low horse power                        |                      | •     | Variable spee   |                   |
|     | c) High horse pow                         |                      | ,     | High speed n    |                   |
| 10) | The starting torque                       | •                    |       | _               |                   |
|     | a) Twice the full loa                     | •                    | •     |                 | full load torque  |
|     | c) Equal to full load                     | •                    | ,     | None of the a   |                   |
| 11) | Short-circuit test of                     |                      |       |                 |                   |
|     | a) Windage losses                         |                      | ,     | Copper losse    |                   |
| 10\ | c) Transformer ratio                      |                      |       |                 | of circle diagram |
| 12) | In 3-phase induction the rotor to         | n motors sometim     | ies   | copper pars a   | re placed deep in |
|     | a) Improve starting                       | n torque             | h)    | Reduce copp     | er losses         |
|     | c) Improve efficien                       | · ·                  | -     | Improve power   |                   |
| 13) | Which kind of rotor                       | •                    | ,     |                 |                   |
| ,   | designed to run at                        |                      |       |                 |                   |
|     | a) Salient pole type                      | е                    | b)    | Non-salient p   | ole type          |
|     | c) Both a) and b) a                       | above                | d)    | None of the a   | lbove             |
| 14) | The frequency of ve                       |                      | оу а  | an alternator h | aving 8 poles and |
|     | rotating at 250 rpm                       |                      |       | 05.11           | 1) 40 0 (0 1 1    |
|     | a) 60 Hz                                  | b) 50 Hz             | C)    | 25 Hz           | d) 16 2/3 Hz      |
|     |                                           |                      |       |                 |                   |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (Part – II) (E&E) Old-CGPA Examination, 2018 AC MACHINES

Day and Date: Thursday 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Find the ratio of maximum torque to full load torque of a 4-pole, 50 Hz, 3-phase I.M: the data required is as follows: Slip is 4%, Rotor impedance/phase =  $(0.3 + j 1.2) \Omega$  at standstill.
- b) What are the different types of 1-phase induction motors are there? Explain the principle of operation of shaded pole induction motor.
- c) Derive the expression for  $T_{\rm sf}/T_{\rm max}$  and  $T_{\rm ff}/T_{\rm max}$  with neat explanation.
- d) How the starting torque of squirrel cage induction motor can be improved? Explain with neat sketch.
- e) Explain the DOL starter with neat circuit diagram.

### 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Why single phase induction motor is not a self starting one? Explain with double revolving field theory and show how that backward slip  $S_B = (2-S)$  where S is forward slip.
- b) Find the mechanical power output of 185-W, 4 pole, 110-V, 50-Hz single-phase induction motor, whose constants are given below at a slip of 0.05. R1 = 1.86  $\Omega$  X1 = 2.56  $\Omega$  Xm = 53.5  $\Omega$  R2 = 3.56  $\Omega$  X2 = 2.56  $\Omega$  Core loss = 3.5 W, Friction and Windage loss = 13.5 W.
- c) Explain how rotating magnetic field is created when 3-ph supply voltage is given to the 3-ph stator winding.



#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- a) Give the applications of synchronous motor.
- b) Explain why synchronous motor is not self starting.
- c) Derive EMF equation of alternator with short pitched coils and distributed winding.
- d) What is armature reaction? What its effect when RL load is connected to alternators explain with phasor diagram?
- e) Explain synchronous motor as synchronous condenser. Draw neat phasor diagram.

#### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- a) Draw neat vector diagram of salient pole alternator and derive expression for power generated in alternator and draw P Vs  $\delta$  characteristics.
- b) Explain the operation of synchronous motor with constant load and following different type of excitation with phasor diagram.
  - i) Normal excitation
  - ii) Under excitation
  - iii) Over excitation.
- c) A 208 V, star connected 3-phase synchronous motor has a synchronous reactance of 4  $\Omega$ /phase and negligible armature winding resistance. At a certain load, the motor takes 7.2 kW at 0.8 p.f lagging. If the power developed by the motor remains the same while the excitation voltage is increased by 50% by raising the field excitation, determine
  - i) The new armature current and
  - ii) The power factor.



| Seat |  |
|------|--|
| No.  |  |

Set



## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### **MCQ/Objective Type Questions**

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) Which instruments has the highest frequency range with accuracy within reasonable limits?
  - a) PMMC

b) Electrodynamometer

c) Thermocouple

- d) Rectifier
- 2) The value of resistance of an earthing electrode depends upon
  - a) Shape and material of electrode
  - b) Depth to which electrode is driven into earth
  - c) Specific resistance of soil
  - d) All of the above
- 3) Time division multiplexing is used when
  - a) Data to be transmitted is slow changing
  - b) Data to be transmitted has small bandwidth
  - c) Data to be transmitted is slow changing and low bandwidth
  - d) None of the above
- 4) Which of the following are integrating instruments?
  - a) Ammeters
  - b) Voltmeters
  - c) Wattmeters
  - d) Ampere-hour and watt-hour meters

| 5)  | The household energy meter is a) an indicating instrument c) an integrating instrument                                                                                                                   | <ul><li>b) a recording instrument</li><li>d) none of the above</li></ul>    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 6)  | In majority of instruments damping is a) fluid friction c) eddy currents                                                                                                                                 | ,                                                                           |
| 7)  | In a low power factor wattmeter the pa) to the supply side of the current colb) to the load side of the current coil c) in any of the two meters at connecd) none of the above                           | oil                                                                         |
| 8)  | The electrical power to a meggar is part a) Battery b) Permanent magnet D. C. generate c) AC Generator d) Any of the above                                                                               | •                                                                           |
| 9)  | An induction meter can handle currer a) 10 A b) 30 A                                                                                                                                                     | nt upto<br>c) 60 A d) 100 A                                                 |
| 10) | For measurement of mutual inductar<br>a) Anderson bridge<br>c) Heaviside bridge                                                                                                                          | ce we can use b) Maxwell's bridge d) Any of the above                       |
| 11) | <ul><li>A Lissajous patterns are used to mea</li><li>a) Voltage and frequency</li><li>b) Frequency and phase shift</li><li>c) Frequency and amplitude distortion</li><li>d) Amplitude and flux</li></ul> |                                                                             |
| 12) | Which meter is suitable for the meas a) Moving iron voltmeter c) Moving coil voltmeter                                                                                                                   | urement of 10 mV at 50 MHz ?<br>b) VTVM<br>d) CRO                           |
| 13) | Jewels are used in instruments for that a) Damping c) Suppressing noise                                                                                                                                  | e purpose of<br>b) Torque control<br>d) Bearing                             |
| 14) | <ul><li>A galvanometer has</li><li>a) Air friction damping</li><li>c) Spring coil damping</li></ul>                                                                                                      | <ul><li>b) Fluid friction damping</li><li>d) Eddy current damping</li></ul> |
|     |                                                                                                                                                                                                          |                                                                             |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- a) Explain construction and operation of PMMC type instrument.
- b) Explain construction and operation of current transformer in detail.
- c) Explain the following terms related to instrument transformer:
  - i) Transformation ratio
  - ii) Nomial ratio
  - iii) Turns ratio
  - iv) Ratio correction factor
- d) Explain shunts and multipliers.
- e) A simple slide wire is used for measurement of current in a circuit. The voltage drop across a standard resistor of 0.1  $\Omega$  is balanced at 75 cm. Find the magnitude of the current if the standard cell emf of 1.45 V is balanced at 50 cm.
- f) Explain induction type energy meter.

#### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- a) Two wattmeters are connected to measure the input to a balanced 3-phase circuit indicate 2000 W and 500 W respectively. Find the power factor of the circuit
  - i) when both the readings are positive.
  - ii) when the later reading is obtained after reversing the connections to the current coil of first instrument.
- b) Explain Hays bridge with neat phasor diagram.
- c) Draw the equivalent circuit diagram and typical phasor diagram of potential transformer. Write the actual transformation ratio error and phase angle error.

## 

#### SECTION - II

4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain LCD display with diagram also state its advantages.
- 2) What are the front panel control details of dual trace oscilloscope?
- 3) Explain X-Y recorder with neat diagram.
- 4) Explain the electrical pressure transducer with neat diagram.
- 5) With neat sketch explain 1Ø electrodynamometer power factor meter.
- 6) Explain working of Q-meter with neat diagram.

5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain construction and operation of dual trace oscilloscope.
- 2) Explain construction and working of LVDT also state its advantages and disadvantages.
- 3) Explain different types of phase sequence indicator with neat diagram.

Set P



| Seat |  |
|------|--|
| No.  |  |

Set



## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### **MCQ/Objective Type Questions**

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) The electrical power to a meggar is provided by
  - a) Battery
  - b) Permanent magnet D. C. generator
  - c) AC Generator
  - d) Any of the above
- 2) An induction meter can handle current upto
  - a) 10 A
- b) 30 A
- c) 60 A
- d) 100 A
- 3) For measurement of mutual inductance we can use
  - a) Anderson bridge

b) Maxwell's bridge

c) Heaviside bridge

- d) Any of the above
- 4) A Lissajous patterns are used to measure
  - a) Voltage and frequency
  - b) Frequency and phase shift
  - c) Frequency and amplitude distortion
  - d) Amplitude and flux
- 5) Which meter is suitable for the measurement of 10 mV at 50 MHz?
  - a) Moving iron voltmeter
- b) VTVM
- c) Moving coil voltmeter
- d) CRO

| 6)  | Jewels are used in instruments for th                                                                                                                                       | ne p       | ourpose of                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------|
|     | a) Damping                                                                                                                                                                  | b)         | Torque control                           |
|     | c) Suppressing noise                                                                                                                                                        | d)         | Bearing                                  |
| 7)  | A galvanometer has                                                                                                                                                          |            |                                          |
| ,   | a) Air friction damping                                                                                                                                                     | b)         | Fluid friction damping                   |
|     | c) Spring coil damping                                                                                                                                                      | ,          | Eddy current damping                     |
| 8)  | Which instruments has the highest f reasonable limits?                                                                                                                      | -          |                                          |
|     | a) PMMC                                                                                                                                                                     | b)         | Electrodynamometer                       |
|     | c) Thermocouple                                                                                                                                                             | ,          | Rectifier                                |
| ŕ   | The value of resistance of an earthin a) Shape and material of electrode b) Depth to which electrode is driver c) Specific resistance of soil d) All of the above           | g e        | lectrode depends upon<br>to earth        |
| 10) | Time division multiplexing is used wha) Data to be transmitted is slow chab) Data to be transmitted has small look of the above                                             | ang<br>bar | ing<br>Idwidth                           |
| 11) | <ul><li>Which of the following are integrating</li><li>a) Ammeters</li><li>b) Voltmeters</li><li>c) Wattmeters</li><li>d) Ampere-hour and watt-hour meter</li></ul>         |            | struments?                               |
| 12) | The household energy meter is                                                                                                                                               |            |                                          |
| ,   | <ul><li>a) an indicating instrument</li><li>c) an integrating instrument</li></ul>                                                                                          | ,          | a recording instrument none of the above |
| 13) | In majority of instruments damping is a) fluid friction c) eddy currents                                                                                                    | b)         | ovided by<br>spring<br>all of the above  |
| 14) | In a low power factor wattmeter the pa) to the supply side of the current cb) to the load side of the current coil c) in any of the two meters at conned) none of the above | oil        |                                          |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- a) Explain construction and operation of PMMC type instrument.
- b) Explain construction and operation of current transformer in detail.
- c) Explain the following terms related to instrument transformer:
  - i) Transformation ratio
  - ii) Nomial ratio
  - iii) Turns ratio
  - iv) Ratio correction factor
- d) Explain shunts and multipliers.
- e) A simple slide wire is used for measurement of current in a circuit. The voltage drop across a standard resistor of 0.1  $\Omega$  is balanced at 75 cm. Find the magnitude of the current if the standard cell emf of 1.45 V is balanced at 50 cm.
- f) Explain induction type energy meter.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- a) Two wattmeters are connected to measure the input to a balanced 3-phase circuit indicate 2000 W and 500 W respectively. Find the power factor of the circuit
  - i) when both the readings are positive.
  - ii) when the later reading is obtained after reversing the connections to the current coil of first instrument.
- b) Explain Hays bridge with neat phasor diagram.
- c) Draw the equivalent circuit diagram and typical phasor diagram of potential transformer. Write the actual transformation ratio error and phase angle error.

## 

#### SECTION - II

4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain LCD display with diagram also state its advantages.
- 2) What are the front panel control details of dual trace oscilloscope?
- 3) Explain X-Y recorder with neat diagram.
- 4) Explain the electrical pressure transducer with neat diagram.
- 5) With neat sketch explain 1Ø electrodynamometer power factor meter.
- 6) Explain working of Q-meter with neat diagram.

5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain construction and operation of dual trace oscilloscope.
- 2) Explain construction and working of LVDT also state its advantages and disadvantages.
- 3) Explain different types of phase sequence indicator with neat diagram.

Set Q



| Seat |  |
|------|--|
| No.  |  |

Set



## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### **MCQ/Objective Type Questions**

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) The household energy meter is
  - a) an indicating instrument
- b) a recording instrument
- c) an integrating instrument
- d) none of the above
- 2) In majority of instruments damping is provided by
  - a) fluid friction

b) spring

c) eddy currents

- d) all of the above
- 3) In a low power factor wattmeter the pressure coil is connected
  - a) to the supply side of the current coil
  - b) to the load side of the current coil
  - c) in any of the two meters at connection
  - d) none of the above
- 4) The electrical power to a meggar is provided by
  - a) Battery
  - b) Permanent magnet D. C. generator
  - c) AC Generator
  - d) Any of the above
- 5) An induction meter can handle current upto
  - a) 10 A
- b) 30 A
- c) 60 A
- d) 100 A

| 6)  | For measurement of mutual inductar<br>a) Anderson bridge<br>c) Heaviside bridge                                                                                                                          | nce we can use<br>b) Maxwell's bridge<br>d) Any of the above                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 7)  | <ul><li>A Lissajous patterns are used to mea</li><li>a) Voltage and frequency</li><li>b) Frequency and phase shift</li><li>c) Frequency and amplitude distortion</li><li>d) Amplitude and flux</li></ul> |                                                                             |
| 8)  | Which meter is suitable for the meas<br>a) Moving iron voltmeter<br>c) Moving coil voltmeter                                                                                                             | surement of 10 mV at 50 MHz ?<br>b) VTVM<br>d) CRO                          |
| 9)  | Jewels are used in instruments for that a) Damping c) Suppressing noise                                                                                                                                  | he purpose of<br>b) Torque control<br>d) Bearing                            |
| 10) | <ul><li>A galvanometer has</li><li>a) Air friction damping</li><li>c) Spring coil damping</li></ul>                                                                                                      | <ul><li>b) Fluid friction damping</li><li>d) Eddy current damping</li></ul> |
| 11) | Which instruments has the highest f reasonable limits?  a) PMMC c) Thermocouple                                                                                                                          | frequency range with accuracy within  b) Electrodynamometer d) Rectifier    |
| 12) | The value of resistance of an earthin a) Shape and material of electrode b) Depth to which electrode is driver c) Specific resistance of soil d) All of the above                                        |                                                                             |
| 13) | Time division multiplexing is used wha) Data to be transmitted is slow chab) Data to be transmitted has small be c) Data to be transmitted is slow chab) None of the above                               | anging<br>bandwidth                                                         |
| 14) | Which of the following are integrating a) Ammeters b) Voltmeters c) Wattmeters d) Ampere-hour and watt-hour mete                                                                                         |                                                                             |
|     |                                                                                                                                                                                                          |                                                                             |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- a) Explain construction and operation of PMMC type instrument.
- b) Explain construction and operation of current transformer in detail.
- c) Explain the following terms related to instrument transformer:
  - i) Transformation ratio
  - ii) Nomial ratio
  - iii) Turns ratio
  - iv) Ratio correction factor
- d) Explain shunts and multipliers.
- e) A simple slide wire is used for measurement of current in a circuit. The voltage drop across a standard resistor of 0.1  $\Omega$  is balanced at 75 cm. Find the magnitude of the current if the standard cell emf of 1.45 V is balanced at 50 cm.
- f) Explain induction type energy meter.

#### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- a) Two wattmeters are connected to measure the input to a balanced 3-phase circuit indicate 2000 W and 500 W respectively. Find the power factor of the circuit
  - i) when both the readings are positive.
  - ii) when the later reading is obtained after reversing the connections to the current coil of first instrument.
- b) Explain Hays bridge with neat phasor diagram.
- c) Draw the equivalent circuit diagram and typical phasor diagram of potential transformer. Write the actual transformation ratio error and phase angle error.

## 

#### SECTION - II

-4-

4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain LCD display with diagram also state its advantages.
- 2) What are the front panel control details of dual trace oscilloscope?
- 3) Explain X-Y recorder with neat diagram.
- 4) Explain the electrical pressure transducer with neat diagram.
- 5) With neat sketch explain 1Ø electrodynamometer power factor meter.
- 6) Explain working of Q-meter with neat diagram.

5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain construction and operation of dual trace oscilloscope.
- 2) Explain construction and working of LVDT also state its advantages and disadvantages.
- 3) Explain different types of phase sequence indicator with neat diagram.

Set R



| Seat |  |
|------|--|
| No.  |  |

Set

S

## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) For measurement of mutual inductance we can use
  - a) Anderson bridge

b) Maxwell's bridge

c) Heaviside bridge

- d) Any of the above
- 2) A Lissajous patterns are used to measure
  - a) Voltage and frequency
  - b) Frequency and phase shift
  - c) Frequency and amplitude distortion
  - d) Amplitude and flux
- 3) Which meter is suitable for the measurement of 10 mV at 50 MHz?
  - a) Moving iron voltmeter

b) VTVM

c) Moving coil voltmeter

- d) CRO
- 4) Jewels are used in instruments for the purpose of
  - a) Damping

b) Torque control

c) Suppressing noise

d) Bearing

- 5) A galvanometer has
  - a) Air friction damping
- b) Fluid friction damping
- c) Spring coil damping
- d) Eddy current damping
- 6) Which instruments has the highest frequency range with accuracy within reasonable limits?
  - a) PMMC

b) Electrodynamometer

c) Thermocouple

d) Rectifier

| R-T( | C – 487                                                                                                                                                                           | -2-                                            |       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|
| 7)   | The value of resistance of an eart a) Shape and material of electrod b) Depth to which electrode is drive. Specific resistance of soil d) All of the above                        | le                                             | upon  |
| 8)   | Time division multiplexing is used<br>a) Data to be transmitted is slow of<br>b) Data to be transmitted has small<br>c) Data to be transmitted is slow of<br>d) None of the above | changing<br>all bandwidth                      | width |
| 9)   | <ul><li>Which of the following are integrated:</li><li>a) Ammeters</li><li>b) Voltmeters</li><li>c) Wattmeters</li><li>d) Ampere-hour and watt-hour metals</li></ul>              |                                                |       |
| 10)  | The household energy meter is a) an indicating instrument c) an integrating instrument                                                                                            | b) a recording instru<br>d) none of the abov   |       |
| l 1) | In majority of instruments damping a) fluid friction c) eddy currents                                                                                                             | g is provided by b) spring d) all of the above |       |
| 12)  | In a low power factor wattmeter that a) to the supply side of the current b) to the load side of the current c) in any of the two meters at cond) none of the above               | nt coil<br>coil                                | ected |
| 13)  | The electrical power to a meggar a) Battery b) Permanent magnet D. C. gene c) AC Generator d) Any of the above                                                                    |                                                |       |

c) 60 A d) 100 A

14) An induction meter can handle current upto

b) 30 A

a) 10 A



| Seat |  |
|------|--|
| No.  |  |

## S.E. (E and E) (Part – II) (Old CGPA) Examination, 2018 ELECTRICAL AND ELECTRONICS MEASUREMENTS

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- a) Explain construction and operation of PMMC type instrument.
- b) Explain construction and operation of current transformer in detail.
- c) Explain the following terms related to instrument transformer:
  - i) Transformation ratio
  - ii) Nomial ratio
  - iii) Turns ratio
  - iv) Ratio correction factor
- d) Explain shunts and multipliers.
- e) A simple slide wire is used for measurement of current in a circuit. The voltage drop across a standard resistor of 0.1  $\Omega$  is balanced at 75 cm. Find the magnitude of the current if the standard cell emf of 1.45 V is balanced at 50 cm.
- f) Explain induction type energy meter.

#### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- a) Two wattmeters are connected to measure the input to a balanced 3-phase circuit indicate 2000 W and 500 W respectively. Find the power factor of the circuit
  - i) when both the readings are positive.
  - ii) when the later reading is obtained after reversing the connections to the current coil of first instrument.
- b) Explain Hays bridge with neat phasor diagram.
- c) Draw the equivalent circuit diagram and typical phasor diagram of potential transformer. Write the actual transformation ratio error and phase angle error.

#### -4-

## 

#### SECTION - II

4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain LCD display with diagram also state its advantages.
- 2) What are the front panel control details of dual trace oscilloscope?
- 3) Explain X-Y recorder with neat diagram.
- 4) Explain the electrical pressure transducer with neat diagram.
- 5) With neat sketch explain 1Ø electrodynamometer power factor meter.
- 6) Explain working of Q-meter with neat diagram.

5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain construction and operation of dual trace oscilloscope.
- 2) Explain construction and working of LVDT also state its advantages and disadvantages.
- 3) Explain different types of phase sequence indicator with neat diagram.

Set S

Set |

## Seat No.

# S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

| Daν  | and Date : Tuesday, 22-5-2018  | Total Marks: 70  |
|------|--------------------------------|------------------|
| _ ~, | and Bate : raceday, EE e Ee le | rotal marto : 70 |

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         | 3) <b>All</b><br>4) If <b>r</b>                        | Page. questions are con<br>necessary, assume<br>nure to right indicat | su  | itable data.     |                |           |
|---------|--------------------------------------------------------|-----------------------------------------------------------------------|-----|------------------|----------------|-----------|
|         | , -                                                    | MCQ/Objective Ty                                                      |     |                  |                |           |
| Duratio | n : 30 Minutes                                         |                                                                       |     |                  |                | Marks: 14 |
| 1. Ch   | noose the correct answ                                 | /er:                                                                  |     |                  |                | (14×1=14) |
| 1)      | 1) z-transform converts convolution of time-signals to |                                                                       |     |                  |                |           |
|         | A) addition                                            |                                                                       | B)  | subtraction      |                |           |
|         | C) multiplication                                      |                                                                       | D)  | division         |                |           |
| 2)      | Convolution is the                                     |                                                                       |     |                  |                |           |
|         | A) Sum product                                         |                                                                       | B)  | Product sum      |                |           |
|         | C) Sum product sum                                     |                                                                       | D)  | Product sum p    | roduct         |           |
| 3)      | Regen of Conversion                                    | is the rang of                                                        |     |                  |                |           |
|         | A) S                                                   | Β) jΩ                                                                 | C)  | Ω                | D) σ           |           |
| 4)      | $X(n)^*h(n) = h(n)^*x(n)$                              |                                                                       |     |                  |                |           |
|         | A) Associative prope                                   | rty                                                                   | B)  | Distributive pro | perty          |           |
|         | C) Commutative prop                                    | perty                                                                 | D)  | None of above    | <b>;</b>       |           |
| 5)      | The function which ha                                  | as its Fourier transf                                                 | orm | ı, Laplace trans | form and Z tra | ınsform   |
|         | A) Gaussian                                            | B) Impulse                                                            | C)  | Sine             | D) Pulse       |           |

| 6)  | The discrete-time signal x (n) =                                                                          | (-1) <sup>n</sup> is periodic with fundamental period    |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
|     | A) 6 B) 4                                                                                                 | C) 2 D) 0                                                |  |  |  |
| 7)  | The impulse response of a system is $h(n) = a^n u(n)$ . The condition for the system to be BIBO stable is |                                                          |  |  |  |
|     | A) a is real and positive                                                                                 | B) a is real and negative                                |  |  |  |
|     | C)  a  > 1                                                                                                | D)  a  < 1                                               |  |  |  |
| 8)  | The Fourier transform (FT) of a                                                                           | function x (t) is X (f). The FT of dx (t)/dt will be     |  |  |  |
|     | A) $dX(f)/df$ B) $j2pf X$                                                                                 | (f) C) $jf X(f)$ D) $X(f)/(jf)$                          |  |  |  |
| 9)  | If the Fourier series coefficients                                                                        | of a signal are periodic then the signal must be         |  |  |  |
|     | A) continuous-time, periodic                                                                              | B) discrete-time, periodic                               |  |  |  |
|     | C) continuous-time, non-period                                                                            | ic D) discrete-time, non-periodic                        |  |  |  |
| 10) | The region of convergence of the                                                                          | the z-transform of the signal $x(n) = \{2, 1, 1, 2\}$ is |  |  |  |
|     |                                                                                                           | <u>^</u>                                                 |  |  |  |
|     |                                                                                                           | n = 0                                                    |  |  |  |
|     | A) all z, except $z = 0$ and $z = \infty$                                                                 | B) all $z$ , except $z = 0$                              |  |  |  |
|     | C) all z, except $z = \infty$                                                                             | D) all z                                                 |  |  |  |
| 11) | The Laplace transform of u (t) is                                                                         | S                                                        |  |  |  |
|     | A) $\frac{1}{s}$ B) $s^2$                                                                                 | C) $\frac{1}{s^2}$ D) s                                  |  |  |  |
| 12) | Sampled frequency less than n                                                                             | quist rate is called                                     |  |  |  |
|     | A) under sampling                                                                                         | B) over sampling                                         |  |  |  |
|     | C) critical sampling                                                                                      | D) nyquist sampling                                      |  |  |  |
| 13) | Product of two functions in spat                                                                          | ial domain is what, in frequency domain                  |  |  |  |
|     | A) Correlation                                                                                            | B) Convolution                                           |  |  |  |
|     | C) Fourier transform                                                                                      | D) Fast Fourier transform                                |  |  |  |
| 14) | x(t) is the combination of                                                                                |                                                          |  |  |  |
|     | A) ramp and unit component                                                                                | B) sin and cos component                                 |  |  |  |
|     | C) even and odd component                                                                                 | D) similar and dissimilar component                      |  |  |  |
|     |                                                                                                           |                                                          |  |  |  |

Marks: 56

 $(4 \times 3 = 12)$ 

Seat No.

### S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

Day and Date: Tuesday, 22-5-2018

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) If necessary, assume suitable data.

3) Figure to **right** indicates **full** marks.

SECTION - I

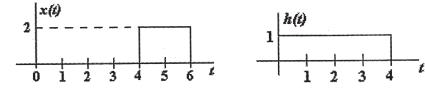
#### 2. Solve any three:

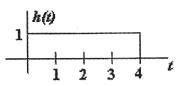
a) Find signal are energy, power signals

i) 
$$x(t) = \cos^2 \omega_0 t$$

ii) 
$$x(t)u(t) - u(t-1)$$

b) State and proof any one property of convolution.


c) Laplace transform of x (t) =  $\cos \Omega 0t$ .


d) Find the convolution of two sequences.  $X(n) = \{1, 4, 3, 2\}$ ;  $h(n) = \{1, 3, 2, 1\}$ .

### 3. Solve any two:

 $(2 \times 8 = 16)$ 

a) Find the convolution of two rectangular pulse signals shown below.





b) Find inverse Laplace transform of  $\frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$ .

c) Find convolution of sequence x(n) = u(n) - u(n-7); h(n) = u(n-1) - u(n-4).

## 

#### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- a) Give the application of signal and system.
- b) Explain short time Fourier transforms.
- c) Find Fourier transform if m (t) =  $e^{-at}u$  (t).
- d) Find z transform and ROC  $x(n) = \frac{2^n}{3}u(n) + \left(-\frac{1}{2}\right)^n u(n)$ .

5. Solve any two:

 $(2 \times 8 = 16)$ 

- a) The signal  $x(t) = 10\cos(10\pi t)$  is sampled at rate 8 samples per second. Plot the amplitude spectrum for  $|\Omega| \le 30~\pi$ . Can the original signal can be recovered from samples ? Explain.
- b) Find inverse z-transform of  $\frac{z+4}{z^2-4z+3}\,.$
- c) Prove that convolution in time domain is equivalent with multiplication in frequency domain.



| et | Q |
|----|---|
|----|---|

## Seat No.

### S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

Day and Date: Tuesday, 22-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries **one** mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) All questions are compulsory.

|      |      | ,                   | If <b>necessary</b> , ass<br>Figure to <b>right</b> ind |                      |                                   |           |
|------|------|---------------------|---------------------------------------------------------|----------------------|-----------------------------------|-----------|
|      |      |                     | MCQ/Objective                                           | e Type Question      | s                                 |           |
| Dura | atio | n : 30 Minutes      |                                                         |                      |                                   | Marks: 14 |
| 1.   | Ch   | oose the correct a  | answer:                                                 |                      |                                   | (14×1=14) |
|      | 1)   | The Fourier trans   | sform (FT) of a func                                    | tion x (t) is X (f). | The FT of dx (t)/dt w             | vill be   |
|      |      | A) dX(f)/df         | B) j2pf X(f)                                            | C) jf X(f)           | D) $X(f)/(jf)$                    |           |
|      | 2)   | If the Fourier seri | es coefficients of a                                    | signal are period    | ic then the signal m              | ust be    |
|      |      | A) continuous-tin   | me, periodic                                            | B) discrete-t        | ime, periodic                     |           |
|      |      | C) continuous-tin   | ne, non-periodic                                        | D) discrete-t        | ime, non-periodic                 |           |
|      | 3)   | The region of cor   | nvergence of the z-t                                    | transform of the s   | ignal x(n) = {2, 1, 1<br>↑<br>n = |           |
|      |      | A) all z, except z  | $z = 0$ and $z = \infty$                                | B) all z, exce       | ept z = 0                         |           |
|      |      | C) all z, except z  | : = ∞                                                   | D) all z             |                                   |           |
|      | 4)   | The Laplace trans   | sform of u (t) is                                       |                      |                                   |           |
|      |      | A) $\frac{1}{s}$    | B) s <sup>2</sup>                                       | C) $\frac{1}{s^2}$   | D) s                              |           |

| 5)  | Sampled frequency less than nyquist rate is called                                                        |                           |                           |                  |                   |
|-----|-----------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|------------------|-------------------|
|     | A) under sampling                                                                                         |                           | B)                        | over sampling    |                   |
|     | C) critical sampling                                                                                      |                           | D)                        | nyquist samplir  | ng                |
| 6)  | Product of two functions in spatial domain is what, in frequency domain                                   |                           |                           |                  |                   |
|     | A) Correlation                                                                                            |                           | B) Convolution            |                  |                   |
|     | C) Fourier transform                                                                                      |                           | D)                        | Fast Fourier tra | ansform           |
| 7)  | x(t) is the combination                                                                                   | n of                      |                           |                  |                   |
|     | A) ramp and unit con                                                                                      | nponent                   | B) sin and cos component  |                  |                   |
|     | C) even and odd con                                                                                       | nponent                   | D)                        | similar and diss | similar component |
| 8)  | z-transform converts                                                                                      | convolution of time       | -sig                      | nals to          |                   |
|     | A) addition                                                                                               |                           | B)                        | subtraction      |                   |
|     | C) multiplication                                                                                         |                           | D)                        | division         |                   |
| 9)  | Convolution is the                                                                                        |                           |                           |                  |                   |
|     | A) Sum product                                                                                            |                           | B)                        | Product sum      |                   |
|     | C) Sum product sum                                                                                        |                           | D)                        | Product sum p    | roduct            |
| 10) | Regen of Conversion is the rang of                                                                        |                           |                           |                  |                   |
|     | A) S                                                                                                      | B) jΩ                     | C)                        | Ω                | <b>D</b> ) σ      |
| 11) | $X(n)^*h(n) = h(n)^*x(n)$                                                                                 |                           |                           |                  |                   |
|     | A) Associative prope                                                                                      | rty                       | B) Distributive property  |                  |                   |
|     | C) Commutative property                                                                                   |                           | D)                        | None of above    |                   |
| 12) | The function which has its Fourier transform, Laplace transform and Z transform unity is                  |                           |                           |                  |                   |
|     | A) Gaussian                                                                                               | B) Impulse                | C)                        | Sine             | D) Pulse          |
| 13) | The discrete-time sign                                                                                    | nal x (n) = $(-1)^n$ is p | peri                      | odic with fundar | mental period     |
|     | A) 6                                                                                                      | B) 4                      | C)                        | 2                | D) 0              |
| 14) | The impulse response of a system is $h(n) = a^n u(n)$ . The condition for the system to be BIBO stable is |                           |                           |                  |                   |
|     | A) a is real and positive                                                                                 |                           | B) a is real and negative |                  |                   |
|     | C)  a  > 1                                                                                                |                           | D)  a  < 1                |                  |                   |
|     |                                                                                                           |                           |                           |                  |                   |

Seat No.

## S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) If necessary, assume suitable data.

3) Figure to **right** indicates **full** marks.

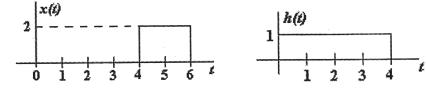
SECTION - I

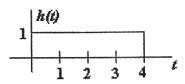
2. Solve any three:

a) Find signal are energy, power signals

i) 
$$x(t) = \cos^2 \omega_0 t$$

ii) 
$$x(t)u(t) - u(t-1)$$


b) State and proof any one property of convolution.


c) Laplace transform of x (t) =  $\cos \Omega 0t$ .

d) Find the convolution of two sequences.  $X(n) = \{1, 4, 3, 2\}$ ;  $h(n) = \{1, 3, 2, 1\}$ .

3. Solve any two:  $(2 \times 8 = 16)$ 

a) Find the convolution of two rectangular pulse signals shown below.





b) Find inverse Laplace transform of  $\frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$ .

c) Find convolution of sequence x(n) = u(n) - u(n-7); h(n) = u(n-1) - u(n-4).

 $(4 \times 3 = 12)$ 



#### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- a) Give the application of signal and system.
- b) Explain short time Fourier transforms.
- c) Find Fourier transform if m (t) =  $e^{-at}u$  (t).
- d) Find z transform and ROC  $x(n) = \frac{2^n}{3}u(n) + \left(-\frac{1}{2}\right)^n u(n)$ .

5. Solve any two:

 $(2 \times 8 = 16)$ 

- a) The signal  $x(t) = 10\cos(10\pi t)$  is sampled at rate 8 samples per second. Plot the amplitude spectrum for  $|\Omega| \le 30~\pi$ . Can the original signal can be recovered from samples ? Explain.
- b) Find inverse z-transform of  $\frac{z+4}{z^2-4z+3}$  .
- c) Prove that convolution in time domain is equivalent with multiplication in frequency domain.

| Set | R |
|-----|---|
|-----|---|

### Seat No.

A) continuous-time, periodic

C) continuous-time, non-periodic

# S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           | OIGHT/LEG / L                                   | 12 010121110                                                  |                                                                        |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|--|
| -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Date : Tuesday,<br>0.00 a.m. to 1.00                                                                    |                                                 |                                                               | Total Marks: 70                                                        |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,<br>3,<br>4,                                                                                            | carries <b>one</b> mark. <b>Answer MCQ/Obje</b> | wer Book Page Nective type quest to mention, Q.P. compulsory. | lo. 3. Each question<br>tions on Page No. 3<br>2. Set (P/Q/R/S) on Top |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           | MCQ/Objective                                   | Type Questions                                                | 5                                                                      |  |
| Dura | atio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n : 30 Minutes                                                                                            |                                                 |                                                               | Marks: 14                                                              |  |
| 1.   | Choose the correct answer :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |                                                 | (14×1=14)                                                     |                                                                        |  |
|      | The function which has its Fourier trans<br>unity is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           |                                                 | nsform, Laplace t                                             | sform, Laplace transform and Z transform                               |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A) Gaussian                                                                                               | B) Impulse                                      | C) Sine                                                       | D) Pulse                                                               |  |
|      | 2) The discrete-time signal $x(n) = (-1)^n$ is periodic with fundamental periodic with fundamen |                                                                                                           |                                                 |                                                               | ındamental period                                                      |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A) 6                                                                                                      | B) 4                                            | C) 2                                                          | D) 0                                                                   |  |
|      | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The impulse response of a system is $h(n) = a^n u(n)$ . The condition for the system to be BIBO stable is |                                                 |                                                               |                                                                        |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A) a is real and positive                                                                                 |                                                 | B) a is real and negative                                     |                                                                        |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C) $ a  > 1$                                                                                              |                                                 | D)  a  < 1                                                    |                                                                        |  |
|      | 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The Fourier transform (FT) of a function $x$ (t) is $X$ (f). The FT of $dx$ (t)/ $dt$ will be             |                                                 |                                                               |                                                                        |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A) dX(f)/df                                                                                               | B) j2pf X(f)                                    | C) jf X(f)                                                    | D) X(f)/(jf)                                                           |  |
|      | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | If the Fourier ser                                                                                        | ies coefficients of a s                         | signal are periodi                                            | then the signal must be                                                |  |

B) discrete-time, periodic

D) discrete-time, non-periodic

- 6) The region of convergence of the z-transform of the signal  $x(n) = \{2, 1, 1, 2\}$  is  $\uparrow$  n = 0
  - A) all z, except z = 0 and  $z = \infty$
- B) all z, except z = 0

C) all z, except  $z = \infty$ 

- D) all z
- 7) The Laplace transform of u (t) is
  - A)  $\frac{1}{s}$

- B) s<sup>2</sup>
- C)  $\frac{1}{s^2}$
- D) s
- 8) Sampled frequency less than nyquist rate is called
  - A) under sampling

B) over sampling

C) critical sampling

- D) nyquist sampling
- 9) Product of two functions in spatial domain is what, in frequency domain
  - A) Correlation

B) Convolution

C) Fourier transform

D) Fast Fourier transform

- 10) x(t) is the combination of
  - A) ramp and unit component
- B) sin and cos component
- C) even and odd component
- D) similar and dissimilar component
- 11) z-transform converts convolution of time-signals to
  - A) addition

B) subtraction

C) multiplication

D) division

- 12) Convolution is the
  - A) Sum product

B) Product sum

C) Sum product sum

- D) Product sum product
- 13) Regen of Conversion is the rang of
  - A) S

- Β) jΩ
- **C**) Ω
- D) σ

- 14) X(n)\*h(n) = h(n)\*x(n)
  - A) Associative property

- B) Distributive property
- C) Commutative property
- D) None of above

-3-

Seat No.

### S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) If necessary, assume suitable data.

3) Figure to **right** indicates **full** marks.

SECTION - I

#### 2. Solve any three:

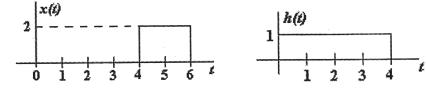
 $(4 \times 3 = 12)$ 

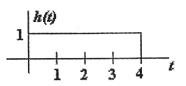
a) Find signal are energy, power signals

i) 
$$x(t) = \cos^2 \omega_0 t$$

ii) 
$$x(t)u(t) - u(t-1)$$

b) State and proof any one property of convolution.


c) Laplace transform of x (t) =  $\cos \Omega 0t$ .


d) Find the convolution of two sequences.  $X(n) = \{1, 4, 3, 2\}$ ;  $h(n) = \{1, 3, 2, 1\}$ .

### 3. Solve any two:

 $(2 \times 8 = 16)$ 

a) Find the convolution of two rectangular pulse signals shown below.





b) Find inverse Laplace transform of  $\frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$ .

c) Find convolution of sequence x(n) = u(n) - u(n-7); h(n) = u(n-1) - u(n-4).

## 

#### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- a) Give the application of signal and system.
- b) Explain short time Fourier transforms.
- c) Find Fourier transform if m (t) =  $e^{-at}u$  (t).
- d) Find z transform and ROC  $x(n) = \frac{2^n}{3}u(n) + \left(-\frac{1}{2}\right)^n u(n)$ .

5. Solve any two:

 $(2 \times 8 = 16)$ 

- a) The signal  $x(t) = 10\cos(10\pi t)$  is sampled at rate 8 samples per second. Plot the amplitude spectrum for  $|\Omega| \le 30~\pi$ . Can the original signal can be recovered from samples ? Explain.
- b) Find inverse z-transform of  $\frac{z+4}{z^2-4z+3}$  .
- c) Prove that convolution in time domain is equivalent with multiplication in frequency domain.



**SLR-TC - 488** 

# Seat No.

### S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

| Daν  | and Date : Tuesday, 22-5-2018  | Total Marks: 70   |
|------|--------------------------------|-------------------|
| _ ~, | and Bate : raceday, EE e Ee le | Total Marito : 70 |

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries **one** mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3

|      | only. Don't forgo<br>of Page.<br>3) All questions are<br>4) If necessary, ass<br>5) Figure to right in | e <b>compulsory</b> .<br>sume suitable da |                             | т Тор     |
|------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-----------|
|      | MCQ/Objectiv                                                                                           | ve Type Questio                           | ns                          |           |
| Dura | ation : 30 Minutes                                                                                     |                                           |                             | Marks: 14 |
| 1.   | Choose the correct answer:                                                                             |                                           |                             | (14×1=14) |
|      | 1) The region of convergence of the z-                                                                 | -transform of the                         | signal $x(n) = \{2, 1, 1\}$ | 1, 2} is  |
|      |                                                                                                        |                                           | n =                         | : 0       |
|      | A) all z, except $z = 0$ and $z = \infty$                                                              | B) all z, ex                              | cept z = 0                  |           |
|      | C) all z, except $z = \infty$                                                                          | D) all z                                  |                             |           |
|      | 2) The Laplace transform of u (t) is                                                                   |                                           |                             |           |
|      | A) $\frac{1}{s}$ B) $s^2$                                                                              | C) $\frac{1}{s^2}$                        | D) s                        |           |
|      | 3) Sampled frequency less than nyqui                                                                   | st rate is called                         |                             |           |
|      | A) under sampling                                                                                      | B) over sar                               | mpling                      |           |
|      | C) critical sampling                                                                                   | D) nyquist                                | sampling                    |           |
|      | 4) Product of two functions in spatial of                                                              | domain is what, ir                        | n frequency domain          |           |
|      | A) Correlation                                                                                         | B) Convolu                                | ıtion                       |           |
|      | C) Fourier transform                                                                                   | D) Fast Fo                                | urier transform             |           |

| 5)  | x(t) is the combination                             | n of                      |       |                              |                        |
|-----|-----------------------------------------------------|---------------------------|-------|------------------------------|------------------------|
|     | A) ramp and unit con                                | nponent                   | B)    | sin and cos cor              | mponent                |
|     | C) even and odd com                                 | nponent                   | D)    | similar and diss             | similar component      |
| 6)  | z-transform converts convolution of time-signals to |                           |       |                              |                        |
|     | A) addition                                         |                           | B)    | subtraction                  |                        |
|     | C) multiplication                                   |                           | D)    | division                     |                        |
| 7)  | Convolution is the                                  |                           |       |                              |                        |
|     | A) Sum product                                      |                           | B)    | Product sum                  |                        |
|     | C) Sum product sum                                  |                           | D)    | Product sum p                | roduct                 |
| 8)  | Regen of Conversion                                 | is the rang of            |       |                              |                        |
|     | A) S                                                | Β) jΩ                     | C)    | Ω                            | <b>D</b> ) σ           |
| 9)  | $X(n)^*h(n) = h(n)^*x(n)$                           |                           |       |                              |                        |
|     | A) Associative prope                                | rty                       | B)    | Distributive pro             | perty                  |
|     | C) Commutative prop                                 | perty                     | D)    | None of above                |                        |
| 10) | The function which ha                               | as its Fourier transf     | orm   | n, Laplace trans             | form and Z transform   |
|     | A) Gaussian                                         | B) Impulse                | C)    | Sine                         | D) Pulse               |
| 11) | The discrete-time sign                              | nal x (n) = $(-1)^n$ is p | oeri  | odic with fundar             | mental period          |
|     | A) 6                                                | B) 4                      | C)    | 2                            | D) 0                   |
| 12) | The impulse response to be BIBO stable is           | e of a system is h(r      | า) =  | a <sup>n</sup> u(n). The cor | ndition for the system |
|     | A) a is real and posit                              | ive                       | B)    | a is real and ne             | egative                |
|     | C)  a  > 1                                          |                           | D)    | a  < 1                       |                        |
| 13) | The Fourier transform                               | n (FT) of a function      | x (t  | i) is X (f). The F           | T of dx (t)/dt will be |
|     | A) dX(f)/df                                         | B) j2pf X(f)              | C)    | jf X(f)                      | D) $X(f)/(jf)$         |
| 14) | If the Fourier series c                             | oefficients of a sigr     | nal a | are periodic the             | n the signal must be   |
|     | A) continuous-time, p                               | periodic                  | B)    | discrete-time, p             | periodic               |
|     | C) continuous-time, r                               | non-periodic              | D)    | discrete-time, r             | non-periodic           |

Set S

Seat No.

# S.E. (Electrical & Electronics Engineering) (Part – II) (Old CGPA) Examination, 2018 SIGNALS AND SYSTEMS

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) If necessary, assume suitable data.

3) Figure to **right** indicates **full** marks.

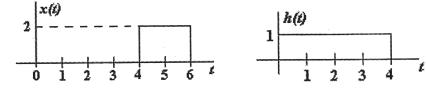
SECTION - I

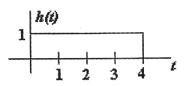
## 2. Solve any three:

a) Find signal are energy, power signals

i) 
$$x(t) = \cos^2 \omega_0 t$$

ii) 
$$x(t)u(t) - u(t-1)$$


b) State and proof any one property of convolution.


c) Laplace transform of x (t) =  $\cos \Omega 0t$ .

d) Find the convolution of two sequences.  $X(n) = \{1, 4, 3, 2\}$ ;  $h(n) = \{1, 3, 2, 1\}$ .

#### 3. Solve any two: $(2 \times 8 = 16)$

a) Find the convolution of two rectangular pulse signals shown below.





b) Find inverse Laplace transform of  $\frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$ .

c) Find convolution of sequence x(n) = u(n) - u(n-7); h(n) = u(n-1) - u(n-4).

 $(4 \times 3 = 12)$ 

# 

### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- a) Give the application of signal and system.
- b) Explain short time Fourier transforms.
- c) Find Fourier transform if m (t) =  $e^{-at}u$  (t).
- d) Find z transform and ROC  $x(n) = \frac{2^n}{3}u(n) + \left(-\frac{1}{2}\right)^n u(n)$ .

5. Solve any two:

 $(2 \times 8 = 16)$ 

- a) The signal  $x(t) = 10\cos(10\pi t)$  is sampled at rate 8 samples per second. Plot the amplitude spectrum for  $|\Omega| \le 30~\pi$ . Can the original signal can be recovered from samples ? Explain.
- b) Find inverse z-transform of  $\frac{z+4}{z^2-4z+3}\,.$
- c) Prove that convolution in time domain is equivalent with multiplication in frequency domain.

| <br> | <br> |
|------|------|

**SLR-TC - 489** 

| Seat No. Se | t |
|-------------|---|
|-------------|---|

### S.E. (Part – II) (Electrical and Electronics Engg.) (Old-CGPA) Examination, 2018 **DIGITAL TECHNIQUES**

Day and Date: Thursday, 24-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Ton of Page

|     |      | 3) <b>A</b>          | <b>II</b> questions are<br>ake suitable as | e compulsory.<br>esumption if nec | essary.   |           |
|-----|------|----------------------|--------------------------------------------|-----------------------------------|-----------|-----------|
|     |      | ı                    | MCQ/Objective                              | Type Questio                      | ns        |           |
| Dur | atic | on : 30 Minutes      |                                            |                                   |           | Marks: 14 |
| 1.  | Cł   | noose the correct ar | nswer:                                     |                                   |           | (14×1=14) |
|     | 1)   | The code used for    | K-Map is                                   |                                   |           |           |
|     |      | a) 8-4-2-1 Binary    | code                                       | b) Gray cod                       | de        |           |
|     |      | c) Octal             |                                            | d) Hexadeo                        | cimal     |           |
|     | 2)   | Which of the follow  | ving is Universa                           | l Gate ?                          |           |           |
|     |      | a) AND               | b) NAND                                    | c) OR                             | d) XNOR   |           |
|     | 3)   | Multiplexer is also  | called                                     |                                   |           |           |
|     |      | a) Decoder           |                                            | b) Encoder                        |           |           |
|     |      | c) Data Selector     |                                            | d) None of                        | the above |           |
|     | 4)   | While obtaining mi   | nimal SOP exp                              | ression                           |           |           |
|     | ,    | a) All don't cares a | are ignored                                |                                   |           |           |
|     |      | b) All don't cares a | are treated as lo                          | ogic ones                         |           |           |
|     |      | c) All don't cares a |                                            |                                   |           |           |

d) Only such don't cares that help minimisation are treated as logic Ones

| 5)  | How many inputs ar                     | nd outputs does fu   | ull adder have?    |                      |
|-----|----------------------------------------|----------------------|--------------------|----------------------|
|     | a) 2 i/p, 2 o/p                        | b) 2 i/p, 1 o/p      | c) 3 i/p, 2 o/p    | d) 2 i/p, 3 o/p      |
| 6)  | Which of the following                 | ng IC is used as c   | comparator?        |                      |
|     | a) IC7483                              | b) IC7490            | c) IC74181         | d) IC7485            |
| 7)  | An example of Cano                     | onical SOP is        |                    |                      |
|     | a) $ABC + BC + AB$                     | b) AB                | c) ABC + AB        | d) AB'C + AB"C       |
| 8)  | A MOD-6 synchrono counts skipped by it |                      |                    | -flop, the number of |
|     | a) 6                                   | b) 5                 | c) 3               | d) 2                 |
| 9)  | A sequential circuit                   | is one, whose out    | put depends on     |                      |
|     | a) Present input                       |                      | b) Past output     |                      |
|     | c) Both a) and b)                      |                      | d) None            |                      |
| 10) | Intyp                                  | e of shift register, | we have access     | only to leftmost and |
|     | rightmost flip-flops.                  | -                    |                    |                      |
|     | a) SISO                                | b) PIPO              | c) SIPO            | d) PISO              |
| 11) | The output frequence signal is         | cy of decade cou     | nter, when it is c | locked by 100 KHz    |
|     | a) 10 KHz                              | b) 20 KHz            | c) 1 KHz           | d) 50 KHz            |
| 12) | The maximum coun flip-flops is         |                      | ained by a counte  | er which is having 5 |
|     | a) 32                                  | b) 31                | c) 5               | d) None              |
| 13) | Flip-flop is                           | mult                 | ivibrator.         |                      |
|     | a) Monostable                          |                      | b) Bistable        |                      |
|     | c) Both a) and b)                      |                      | d) None            |                      |
| 14) | A BCD counter has                      |                      | _ different states |                      |
|     | a) 3                                   | b) 4                 | c) 10              | d) 9                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Electrical and Electronics Engg.) (Old-CGPA) Examination, 2018 DIGITAL TECHNIQUES

Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

SECTION - I

2. Solve the following:

 $(3 \times 4 = 12)$ 

- 1) Explain Demorgan's and Duality Theorem in detail.
- 2) Minimise using k-map and realise using Basic gates.

$$F(ABCD) = \pi M (0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6).$$

3) Explain full subtractor in detail. Using Boolean Expression show that  $AB + AC + \overline{B}C = AB + \overline{B}C$ .

3. Solve **any two**:

 $(2 \times 8 = 16)$ 

- 1) Implement following using:
  - a) 16:1 Multiplexer b) 8:1 Multiplexer.

$$F = \text{Em}(0, 1, 2, 3, 7, 8, 9, 11, 14).$$

- 2) Explain 2-bit digital comparator in detail.
- 3) Design a combinational circuit for Binary to Gray Code conversion.

SECTION - II

4. Attempt any three:

 $(3\times 4=12)$ 

- 1) Explain the characteristics of flip-flop.
- 2) What is excitation table? Draw excitation table of JK, T flip-flop, D flip-flop.



- 3) Determine the number of flip-flops required to construct a register capable of storing :
  - a) 6 bit binary no.
  - b) Decimal number upto 31
  - c) Hexadecimal number up to F
  - d) Octal number up to 10.
- 4) Design MOD-6 counter using IC 7490.
- 5) Explain any one type of shift register in detail.
- 5. Attempt any two of the following:

 $(2 \times 8 = 16)$ 

- 1) Explain the following flip-flop with circuit diagram, truth table, characteristic table, characteristic equation.
  - a) D flip-flop
- b) JK flip-flop.
- 2) Design asynchronous 4-bit up/down counter with waveforms.
- 3) Draw internal architecture of IC 7490. Design a asynchronous counter which counts from 000 to 100.

| <br> | <br>==. |  |
|------|---------|--|

**SLR-TC - 489** 

| Seat<br>No. | Set | Q |
|-------------|-----|---|
| IVO.        |     | • |

# S.E. (Part – II) (Electrical and Electronics Engg.) (Old-CGPA)

|                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                   | ation, 2018<br>ECHNIQUES |                    |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|--------------------------|--------------------|----------------------|
| -                                                                                                                                                                                                                                                                                                                                                                                            | nd Date : Thursday<br>10.00 a.m. to 1.00 |                   |                          | Tot                | al Marks : 70        |
| <ul> <li>Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.</li> <li>2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.</li> <li>3) All questions are compulsory.</li> <li>4) Make suitable assumption if necessary.</li> </ul> |                                          |                   |                          |                    | question<br>ge No. 3 |
|                                                                                                                                                                                                                                                                                                                                                                                              |                                          | MCQ/Objective     | e Type Question          | ns                 |                      |
| Duratio                                                                                                                                                                                                                                                                                                                                                                                      | on : 30 Minutes                          |                   |                          |                    | Marks: 14            |
| 1. Cł                                                                                                                                                                                                                                                                                                                                                                                        | noose the correct a                      | ınswer:           |                          |                    | (14×1=14)            |
| 1)                                                                                                                                                                                                                                                                                                                                                                                           | A MOD-6 synchro<br>counts skipped by     |                   | •                        | K flip-flop, the n | umber of             |
|                                                                                                                                                                                                                                                                                                                                                                                              | a) 6                                     | b) 5              | c) 3                     | d) 2               |                      |
| 2)                                                                                                                                                                                                                                                                                                                                                                                           | A sequential circu                       | iit is one, whose | output depends           | on                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                              | a) Present input                         |                   | b) Past outp             | out                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                              | c) Both a) and b)                        |                   | d) None                  |                    |                      |
| 3)                                                                                                                                                                                                                                                                                                                                                                                           | Int rightmost flip-flop                  |                   | ter, we have acc         | ess only to lefti  | most and             |
|                                                                                                                                                                                                                                                                                                                                                                                              | a) SISO                                  | b) PIPO           | c) SIPO                  | d) PISO            |                      |
| 4)                                                                                                                                                                                                                                                                                                                                                                                           | The output freque                        | ency of decade    | counter, when it         | is clocked by      | 100 KHz              |

a) 10 KHz b) 20 KHz c) 1 KHz d) 50 KHz

| <ol> <li>The maximum count that can be obtained by a counter which is f<br/>flip-flops is</li> </ol> |                       |                   | er which is having 5 |                     |
|------------------------------------------------------------------------------------------------------|-----------------------|-------------------|----------------------|---------------------|
|                                                                                                      | a) 32                 | b) 31             | c) 5                 | d) None             |
| 6)                                                                                                   | Flip-flop is          | mul               | tivibrator.          |                     |
|                                                                                                      | a) Monostable         |                   | b) Bistable          |                     |
|                                                                                                      | c) Both a) and b)     |                   | d) None              |                     |
| 7)                                                                                                   | A BCD counter has     |                   | different states     | S.                  |
|                                                                                                      | a) 3                  | b) 4              | c) 10                | d) 9                |
| 8)                                                                                                   | The code used for h   | K-Map is          |                      |                     |
|                                                                                                      | a) 8-4-2-1 Binary co  | ode               | b) Gray code         |                     |
|                                                                                                      | c) Octal              |                   | d) Hexadecimal       |                     |
| 9)                                                                                                   | Which of the followi  | ng is Universal G | ate ?                |                     |
|                                                                                                      | a) AND                | b) NAND           | c) OR                | d) XNOR             |
| 10)                                                                                                  | Multiplexer is also c | alled             |                      |                     |
|                                                                                                      | a) Decoder            |                   | b) Encoder           |                     |
|                                                                                                      | c) Data Selector      |                   | d) None of the a     | above               |
| 11)                                                                                                  | While obtaining min   | imal SOP expres   | sion                 |                     |
|                                                                                                      | a) All don't cares a  | re ignored        |                      |                     |
|                                                                                                      | b) All don't cares a  |                   |                      |                     |
|                                                                                                      | c) All don't cares a  | J                 |                      |                     |
|                                                                                                      | •                     | -                 |                      | eated as logic Ones |
| 12)                                                                                                  | How many inputs a     | -                 |                      |                     |
|                                                                                                      | a) 2 i/p, 2 o/p       |                   |                      | d) 2 i/p, 3 o/p     |
| 13)                                                                                                  | Which of the followi  | _                 | -                    |                     |
|                                                                                                      | a) IC7483             | b) IC7490         | c) IC74181           | d) IC7485           |
| 14)                                                                                                  | An example of Cano    |                   |                      |                     |
|                                                                                                      | a) ABC + BC + AB      | b) AB             | c) ABC + AB          | d) AB'C + AB"C      |
|                                                                                                      |                       |                   |                      |                     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Electrical and Electronics Engg.) (Old-CGPA) Examination, 2018 DIGITAL TECHNIQUES

Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

SECTION - I

2. Solve the following:

 $(3 \times 4 = 12)$ 

- 1) Explain Demorgan's and Duality Theorem in detail.
- 2) Minimise using k-map and realise using Basic gates.

$$F(ABCD) = \pi M (0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6).$$

3) Explain full subtractor in detail. Using Boolean Expression show that  $AB + AC + \overline{B}C = AB + \overline{B}C$ .

3. Solve **any two**:

 $(2 \times 8 = 16)$ 

- 1) Implement following using:
  - a) 16:1 Multiplexer b) 8:1 Multiplexer.

$$F = \text{Em}(0, 1, 2, 3, 7, 8, 9, 11, 14).$$

- 2) Explain 2-bit digital comparator in detail.
- 3) Design a combinational circuit for Binary to Gray Code conversion.

SECTION - II

4. Attempt any three:

 $(3\times 4=12)$ 

- 1) Explain the characteristics of flip-flop.
- 2) What is excitation table? Draw excitation table of JK, T flip-flop, D flip-flop.



- 3) Determine the number of flip-flops required to construct a register capable of storing :
  - a) 6 bit binary no.
  - b) Decimal number upto 31
  - c) Hexadecimal number up to F
  - d) Octal number up to 10.
- 4) Design MOD-6 counter using IC 7490.
- 5) Explain any one type of shift register in detail.
- 5. Attempt any two of the following:

 $(2 \times 8 = 16)$ 

- 1) Explain the following flip-flop with circuit diagram, truth table, characteristic table, characteristic equation.
  - a) D flip-flop
- b) JK flip-flop.
- 2) Design asynchronous 4-bit up/down counter with waveforms.
- 3) Draw internal architecture of IC 7490. Design a asynchronous counter which counts from 000 to 100.



c) Both a) and b)

**SLR-TC - 489** 

|      | <u>-</u> |   |
|------|----------|---|
| Seat |          | В |
| No.  | Set      | K |
|      | L        |   |

| S.E. (Part – II) (                                               | Electrical and E<br>Examinati<br>DIGITAL TE                                     | ion, 2018                                           | g.) (Old-CGPA)                                               |
|------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| Day and Date : Thursday<br>Time : 10.00 a.m. to 1.00             |                                                                                 |                                                     | Total Marks : 70                                             |
| 2) A<br>3) A                                                     | <b>30 minutes</b> in Ans<br>carries <b>one</b> mark.<br><b>Answer MCQ/Obj</b> e | ective type quest<br>to mention, Q.P<br>compulsory. | lo. 3. Each question tions on Page No. 3 2. Set (P/Q/R/S) on |
|                                                                  | MCQ/Objective                                                                   | Type Questions                                      |                                                              |
| Duration: 30 Minutes                                             |                                                                                 |                                                     | Marks : 14                                                   |
| Choose the correct a                                             | nswer:                                                                          |                                                     | (14×1=14)                                                    |
| 1) How many inputs                                               | and outputs does                                                                | full adder have ?                                   |                                                              |
| a) 2 i/p, 2 o/p                                                  | b) 2 i/p, 1 o/p                                                                 | c) 3 i/p, 2 o/p                                     | d) 2 i/p, 3 o/p                                              |
| 2) Which of the follow                                           | wing IC is used as                                                              | comparator?                                         |                                                              |
| a) IC7483                                                        | b) IC7490                                                                       | c) IC74181                                          | d) IC7485                                                    |
| 3) An example of Ca                                              | nonical SOP is                                                                  |                                                     |                                                              |
| a) ABC + BC + A                                                  | B b) AB                                                                         | c) ABC + AB                                         | d) AB'C + AB''C                                              |
| -                                                                | nous counter is de                                                              |                                                     | ip-flop, the number of                                       |
| a) 6                                                             | b) 5                                                                            | c) 3                                                | d) 2                                                         |
| <ol> <li>A sequential circular</li> <li>Present input</li> </ol> | it is one, whose o                                                              | utput depends on b) Past output                     |                                                              |

d) None

| In typ rightmost flip-flops.                  | e of shift register,                                                                                    | we                                                                                                                                                             | have access                                                                                                                                                              | only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to leftmost and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) SISO                                       | b) PIPO                                                                                                 | c)                                                                                                                                                             | SIPO                                                                                                                                                                     | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The output frequen signal is                  | cy of decade cou                                                                                        | nte                                                                                                                                                            | r, when it is c                                                                                                                                                          | lock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed by 100 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a) 10 KHz                                     | b) 20 KHz                                                                                               | c)                                                                                                                                                             | 1 KHz                                                                                                                                                                    | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                               |                                                                                                         | aine                                                                                                                                                           | ed by a counte                                                                                                                                                           | er w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hich is having 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) 32                                         | b) 31                                                                                                   | c)                                                                                                                                                             | 5                                                                                                                                                                        | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Flip-flop is                                  | mult                                                                                                    | ivik                                                                                                                                                           | orator.                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a) Monostable                                 |                                                                                                         | b)                                                                                                                                                             | Bistable                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c) Both a) and b)                             |                                                                                                         | d)                                                                                                                                                             | None                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A BCD counter has                             |                                                                                                         | _ different states.                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a) 3                                          | b) 4                                                                                                    | c)                                                                                                                                                             | 10                                                                                                                                                                       | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The code used for h                           | K-Map is                                                                                                |                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a) 8-4-2-1 Binary co                          | ode                                                                                                     | b)                                                                                                                                                             | Gray code                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c) Octal                                      |                                                                                                         | d)                                                                                                                                                             | Hexadecimal                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Which of the followi                          | ng is Universal Ga                                                                                      | ate                                                                                                                                                            | ?                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a) AND                                        | b) NAND                                                                                                 | c)                                                                                                                                                             | OR                                                                                                                                                                       | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XNOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Multiplexer is also o                         | alled                                                                                                   |                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a) Decoder                                    |                                                                                                         | b)                                                                                                                                                             | Encoder                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c) Data Selector                              |                                                                                                         | d)                                                                                                                                                             | None of the a                                                                                                                                                            | bov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4) While obtaining minimal SOP expression     |                                                                                                         |                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a) All don't cares are ignored                |                                                                                                         |                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b) All don't cares are treated as logic ones  |                                                                                                         |                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c) All don't cares are treated as logic Zeros |                                                                                                         |                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                         |                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               | rightmost flip-flops.  a) SISO The output frequency signal is  a) 10 KHz The maximum countilip-flops is | rightmost flip-flops.  a) SISO b) PIPO  The output frequency of decade coursignal is  a) 10 KHz b) 20 KHz  The maximum count that can be obtated flip-flops is | rightmost flip-flops.  a) SISO b) PIPO c)  The output frequency of decade countersignal is  a) 10 KHz b) 20 KHz c)  The maximum count that can be obtained flip-flops is | rightmost flip-flops.  a) SISO b) PIPO c) SIPO  The output frequency of decade counter, when it is or signal is  a) 10 KHz b) 20 KHz c) 1 KHz  The maximum count that can be obtained by a counter flip-flops is  a) 32 b) 31 c) 5  Flip-flop is multivibrator.  a) Monostable b) Bistable c) Both a) and b) d) None  A BCD counter has different states a) 3 b) 4 c) 10  The code used for K-Map is  a) 8-4-2-1 Binary code b) Gray code c) Octal d) Hexadecimal Which of the following is Universal Gate?  a) AND b) NAND c) OR  Multiplexer is also called  a) Decoder b) Encoder c) Data Selector d) None of the aux of the property | a) SISO b) PIPO c) SIPO d) The output frequency of decade counter, when it is clock signal is a) 10 KHz b) 20 KHz c) 1 KHz d) The maximum count that can be obtained by a counter w flip-flops is a) 32 b) 31 c) 5 d) Flip-flop is multivibrator. a) Monostable b) Bistable c) Both a) and b) d) None A BCD counter has different states. a) 3 b) 4 c) 10 d) The code used for K-Map is a) 8-4-2-1 Binary code b) Gray code c) Octal d) Hexadecimal Which of the following is Universal Gate? a) AND b) NAND c) OR d) Multiplexer is also called a) Decoder b) Encoder c) Data Selector d) None of the abov While obtaining minimal SOP expression a) All don't cares are ignored b) All don't cares are treated as logic ones |

\_\_\_\_\_



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Electrical and Electronics Engg.) (Old-CGPA) Examination, 2018 DIGITAL TECHNIQUES

Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

SECTION - I

2. Solve the following:

 $(3 \times 4 = 12)$ 

- 1) Explain Demorgan's and Duality Theorem in detail.
- 2) Minimise using k-map and realise using Basic gates.

$$F(ABCD) = \pi M (0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6).$$

3) Explain full subtractor in detail. Using Boolean Expression show that  $AB + AC + \overline{B}C = AB + \overline{B}C$ .

3. Solve **any two**:

 $(2 \times 8 = 16)$ 

- 1) Implement following using:
  - a) 16:1 Multiplexer b) 8:1 Multiplexer.

$$F = \text{Em}(0, 1, 2, 3, 7, 8, 9, 11, 14).$$

- 2) Explain 2-bit digital comparator in detail.
- 3) Design a combinational circuit for Binary to Gray Code conversion.

SECTION - II

4. Attempt any three:

 $(3\times 4=12)$ 

- 1) Explain the characteristics of flip-flop.
- 2) What is excitation table? Draw excitation table of JK, T flip-flop, D flip-flop.



- 3) Determine the number of flip-flops required to construct a register capable of storing :
  - a) 6 bit binary no.
  - b) Decimal number upto 31
  - c) Hexadecimal number up to F
  - d) Octal number up to 10.
- 4) Design MOD-6 counter using IC 7490.
- 5) Explain any one type of shift register in detail.
- 5. Attempt any two of the following:

 $(2 \times 8 = 16)$ 

- 1) Explain the following flip-flop with circuit diagram, truth table, characteristic table, characteristic equation.
  - a) D flip-flop
- b) JK flip-flop.
- 2) Design asynchronous 4-bit up/down counter with waveforms.
- 3) Draw internal architecture of IC 7490. Design a asynchronous counter which counts from 000 to 100.

**SLR-TC - 489** 

| Seat |  |
|------|--|
| No.  |  |

Set S

# S.E. (Part – II) (Electrical and Electronics Engg.) (Old-CGPA) Examination, 2018 DIGITAL TECHNIQUES

Day and Date: Thursday, 24-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) All questions are compulsory.
  - 4) Make suitable assumption if necessary.

## **MCQ/Objective Type Questions**

| Dur | ation : 30 Minut                                                                       | es                  |                    |                   | Marks: 14 |
|-----|----------------------------------------------------------------------------------------|---------------------|--------------------|-------------------|-----------|
| 1.  | Choose the co                                                                          | rrect answer :      |                    |                   | (14×1=14) |
|     | 1) In<br>rightmost fl                                                                  | type of shift regi  | ister, we have acc | ess only to leftm | ost and   |
|     | a) SISO                                                                                | b) PIPO             | c) SIPO            | d) PISO           |           |
|     | 2) The output signal is                                                                | frequency of decade | counter, when it   | is clocked by 1   | 00 KHz    |
|     | a) 10 KHz                                                                              | b) 20 KHz           | c) 1 KHz           | d) 50 KHz         |           |
|     | 3) The maximum count that can be obtained by a counter which is having 5 flip-flops is |                     |                    |                   |           |
|     | a) 32                                                                                  | b) 31               | c) 5               | d) None           |           |
|     | 4) Flip-flop is                                                                        |                     | multivibrator.     |                   |           |
|     | a) Monosta                                                                             | able                | b) Bistable        |                   |           |
|     | c) Both a)                                                                             | and b)              | d) None            |                   |           |

| 5)  | A BCD counter has                                                                                  |                     | different states. |                 |  |
|-----|----------------------------------------------------------------------------------------------------|---------------------|-------------------|-----------------|--|
|     | a) 3                                                                                               | b) 4                | c) 10             | d) 9            |  |
| 6)  | The code used for k                                                                                | K-Map is            |                   |                 |  |
|     | a) 8-4-2-1 Binary co                                                                               | ode                 | b) Gray code      |                 |  |
|     | c) Octal                                                                                           |                     | d) Hexadecimal    |                 |  |
| 7)  | Which of the following                                                                             | ng is Universal G   | ate?              |                 |  |
|     | a) AND                                                                                             | b) NAND             | c) OR             | d) XNOR         |  |
| 8)  | Multiplexer is also c                                                                              | alled               |                   |                 |  |
|     | a) Decoder                                                                                         |                     | b) Encoder        |                 |  |
|     | c) Data Selector                                                                                   |                     | d) None of the a  | bove            |  |
| 9)  | While obtaining min                                                                                | imal SOP expres     | sion              |                 |  |
|     | a) All don't cares ar                                                                              | e ignored           |                   |                 |  |
|     | b) All don't cares ar                                                                              | re treated as logic | ones              |                 |  |
|     | c) All don't cares ar                                                                              | e treated as logic  | Zeros             |                 |  |
|     | d) Only such don't cares that help minimisation are treated as logic Ones                          |                     |                   |                 |  |
| 10) | How many inputs ar                                                                                 | nd outputs does f   | ull adder have?   |                 |  |
|     | a) 2 i/p, 2 o/p                                                                                    | b) 2 i/p, 1 o/p     | c) 3 i/p, 2 o/p   | d) 2 i/p, 3 o/p |  |
| 11) | Which of the following                                                                             | ng IC is used as o  | comparator?       |                 |  |
|     | a) IC7483                                                                                          | b) IC7490           | c) IC74181        | d) IC7485       |  |
| 12) | An example of Can                                                                                  | onical SOP is       |                   |                 |  |
|     | a) $ABC + BC + AB$                                                                                 | b) AB               | c) ABC + AB       | d) AB'C + AB"C  |  |
| 13) | ) A MOD-6 synchronous counter is designed by 3 JK flip-flop, the number of counts skipped by it is |                     |                   |                 |  |
|     | a) 6                                                                                               | b) 5                | c) 3              | d) 2            |  |
| 14) | A sequential circuit                                                                               | is one, whose out   | tput depends on   |                 |  |
|     | a) Present input                                                                                   |                     | b) Past output    |                 |  |
|     | c) Both a) and b)                                                                                  |                     | d) None           |                 |  |
|     |                                                                                                    |                     |                   |                 |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Electrical and Electronics Engg.) (Old-CGPA) Examination, 2018 DIGITAL TECHNIQUES

Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

SECTION - I

2. Solve the following:

 $(3 \times 4 = 12)$ 

- 1) Explain Demorgan's and Duality Theorem in detail.
- 2) Minimise using k-map and realise using Basic gates.

$$F(ABCD) = \pi M (0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6).$$

3) Explain full subtractor in detail. Using Boolean Expression show that  $AB + AC + \overline{B}C = AB + \overline{B}C$ .

3. Solve **any two**:

 $(2 \times 8 = 16)$ 

- 1) Implement following using:
  - a) 16:1 Multiplexer b) 8:1 Multiplexer.

$$F = \text{Em}(0, 1, 2, 3, 7, 8, 9, 11, 14).$$

- 2) Explain 2-bit digital comparator in detail.
- 3) Design a combinational circuit for Binary to Gray Code conversion.

SECTION - II

4. Attempt any three:

 $(3\times 4=12)$ 

- 1) Explain the characteristics of flip-flop.
- 2) What is excitation table? Draw excitation table of JK, T flip-flop, D flip-flop.



- 3) Determine the number of flip-flops required to construct a register capable of storing :
  - a) 6 bit binary no.
  - b) Decimal number upto 31
  - c) Hexadecimal number up to F
  - d) Octal number up to 10.
- 4) Design MOD-6 counter using IC 7490.
- 5) Explain any one type of shift register in detail.
- 5. Attempt any two of the following:

 $(2 \times 8 = 16)$ 

- 1) Explain the following flip-flop with circuit diagram, truth table, characteristic table, characteristic equation.
  - a) D flip-flop
- b) JK flip-flop.
- 2) Design asynchronous 4-bit up/down counter with waveforms.
- 3) Draw internal architecture of IC 7490. Design a asynchronous counter which counts from 000 to 100.

## **SLR-TC - 490**

| Seat | Cat |   |
|------|-----|---|
| No.  | Set | P |
|      |     |   |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTROMAGNETIC ENGINEERING

Day and Date : Thursday, 3-5-2018 Max. Marks : 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Make suitable assumptions if **necessary**.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

- 1. Choose the correct answer:
  - 1) The value of the unit vector is
    - a) 0

- b) -1
- c) 1
- d) 2

- 2) Unit of potential difference is
  - a) Coulomb

b) Joules

c) Coulomb/Joules

- d) Joules/Coulomb
- 3) If dot product of two vectors is zero, the vectors are
  - a) Perpendicular

b) Parallel

c) Oblique

- d) None of these
- 4) Which of the following are not vector functions in Electromagnetics?
  - a) Gradient
  - b) Divergence
  - c) Curl
  - d) There is no non-vector functions in Electromagnetics
- 5) Vector is the quantity which is completely defined by its
  - a) Magnitude

b) Direction

c) Both a) and b)

d) None of these

| 6 | ax.ay   | = |
|---|---------|---|
| • | , un.uv |   |

- a) az
- b) ax
- c) ay
- d) zero

## 7) For the volume density $\rho_{\nu}$ , the divergence of the E will be equal to

- a)  $\frac{\rho v}{\epsilon}$
- b)  $\rho_{v} \epsilon$
- c)  $\epsilon^2 \rho_v$
- d)  $\frac{\rho v}{\epsilon^2}$

8) For free space 
$$\alpha$$
 value is

- a) 1.5
- b) 0
- c) 2.5
- d) 5.6

9) A charge of 
$$2 \times 10^{-7}$$
 C is acted upon by a force of 0.1N. Determine the distance to the other charge of  $4.5 \times 10^{-7}$ C; both the charges are in vacuum.

- a) 0.03
- b) 0.05
- c) 0.07
- d) 0.09

a)  $3 \times 10^8$  cm/s

b)  $3 \times 10^8$  m/hou

c)  $3 \times 10^8$  m/s

d)  $3 \times 10^{12} \,\text{m/s}$ 

11) 
$$\nabla \times \overline{E} = -\mu \frac{\partial H}{\partial t}$$
 is

a) Coulomb's law

b) Gauss law

c) Faradays law

d) Ohm's law

a)  $F = Q \times [E + V \times B]$ 

b)  $F = Q[E + V \times B]$ 

c)  $F = Q \times [V + E \times B]$ 

d)  $F = Q[B + V \times B]$ 

### 13) The electric flux density is the

- a) Product of permittivity and electric field intensity
- b) Product of number of flux lines and permittivity
- c) Product of permeability and electric field intensity
- d) Product of number of flux lines and permeability

## 14) For static magnetic field

a)  $\nabla \times B = \rho$ 

b)  $\nabla \times \overline{B} = \mu \overline{J}$ 

c)  $\nabla \cdot B = \mu \cdot J$ 

d)  $\nabla \times B = 0$ 



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTROMAGNETIC ENGINEERING

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumptions if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and prove divergence theorem.
- 2) Show that  $E = -\nabla V$ .
- 3) Derive the continuity equation for current in integral form and point form.
- 4) Explain various charge configurations in electrostatic field.
- 5) Find the force on a 100  $\mu$ C charge at (0, 0, 3) m if four like charges of 20  $\mu$ C are located on the x and y axis at  $\pm$  4m.

### 3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Given that  $D = (10 \times 3/3) ax (c/m^2)$ , evaluate both sides of the divergence theorem for the volume of a cube 2 m on the edge, centered at origin and with edges parallel to the axis.
- 2) Derive the expression for electric field intensity due to infinitely long line charge.
- 3) Derive point form of the Gauss's law.

### SECTION - II

## 4. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) Derive the expression on the axis of a circular loop.
- 2) A current filament of  $3\overline{a}_x$  amp. Lies along the x-axis. Find H components at P(-1, 3, 2).



- 3) What is Lorentz force?
- 4) Write Maxwell's equations for static fields.
- 5) A circular loop located on  $x^2 + y^2 = 9$ , z = 0 carries a direct current of 10 A along  $\overline{a_{\phi}}$ . Determine H at (0, 0, 4).

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Derive an expression for magnetic field intensity due to finite long straight current filament.
- 2) Derive expression for point form of Ampere's law.
- 3) Evaluate both sides of Stroke's theorem for the field

$$\overline{H} = \left(\frac{y^2 z}{x}\right) \overline{a_x} + \left(\frac{0.5 y^2 z^2}{x^2}\right) \overline{a_z}$$

And find current in the  $\overline{a_y}$  direction crossing the square surface in the plane y = 2 bounded by x = z = 1 and x = z = 2.

Set P

| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTROMAGNETIC ENGINEERING

Day and Date: Thursday, 3-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Make suitable assumptions if **necessary**.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

- 1. Choose the correct answer:
  - 1) For free space  $\alpha$  value is
    - a) 1.5
- b) 0
- c) 2.5
- d) 5.6
- 2) A charge of  $2\times 10^{-7}$  C is acted upon by a force of 0.1N. Determine the distance to the other charge of  $4.5\times 10^{-7}$ C; both the charges are in vacuum.
  - a) 0.03
- b) 0.05
- c) 0.07
- d) 0.09

- 3) The velocity of EM wave in free space is
  - a)  $3 \times 10^8$  cm/s

b)  $3 \times 10^8$  m/hou

c)  $3 \times 10^8$  m/s

d)  $3 \times 10^{12} \,\text{m/s}$ 

- 4)  $\nabla \times \overline{E} = -\mu \frac{\partial H}{\partial t}$  is
  - a) Coulomb's law

b) Gauss law

c) Faradays law

- d) Ohm's law
- 5) Lorentz force equation is
  - a)  $F = Q \times [E + V \times B]$

b)  $F = Q[E + V \times B]$ 

c)  $F = Q \times [V + E \times B]$ 

d)  $F = Q [B + V \times B]$ 

| 6 | The    | electric | flux | density | / is | the |
|---|--------|----------|------|---------|------|-----|
| U | , ,,,, | CICCLIIC | IIUA | uchony  | / 13 | uic |

- a) Product of permittivity and electric field intensity
- b) Product of number of flux lines and permittivity
- c) Product of permeability and electric field intensity
- d) Product of number of flux lines and permeability

| 7) For static magnetic field | 7 | ) For | static | magnetic | field |
|------------------------------|---|-------|--------|----------|-------|
|------------------------------|---|-------|--------|----------|-------|

a)  $\nabla \times B = \rho$ 

b)  $\nabla \times \overline{B} = \mu \overline{J}$ 

c)  $\nabla \cdot B = \mu J$ 

- d)  $\nabla \times B = 0$
- 8) The value of the unit vector is
  - a) 0

- b) -1
- c) 1

d) 2

- 9) Unit of potential difference is
  - a) Coulomb

b) Joules

c) Coulomb/Joules

- d) Joules/Coulomb
- 10) If dot product of two vectors is zero, the vectors are
  - a) Perpendicular

b) Parallel

c) Oblique

- d) None of these
- 11) Which of the following are not vector functions in Electromagnetics?
  - a) Gradient
  - b) Divergence
  - c) Curl
  - d) There is no non-vector functions in Electromagnetics
- 12) Vector is the quantity which is completely defined by its
  - a) Magnitude

b) Direction

c) Both a) and b)

d) None of these

- 13) ax.ay =
  - a) az
- b) ax
- c) ay
- d) zero
- 14) For the volume density  $\rho_{\nu}$  the divergence of the E will be equal to
  - a)  $\frac{\rho v}{\epsilon}$
- b)  $\rho_v \epsilon$
- c)  $\epsilon^{\!\scriptscriptstyle 2} \rho_{\scriptscriptstyle \nu}$
- d)  $\frac{\rho v}{\epsilon^2}$



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTROMAGNETIC ENGINEERING

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumptions if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and prove divergence theorem.
- 2) Show that  $E = -\nabla V$ .
- 3) Derive the continuity equation for current in integral form and point form.
- 4) Explain various charge configurations in electrostatic field.
- 5) Find the force on a 100  $\mu$ C charge at (0, 0, 3) m if four like charges of 20  $\mu$ C are located on the x and y axis at  $\pm$  4m.

### 3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Given that  $D = (10 \times 3/3) ax (c/m^2)$ , evaluate both sides of the divergence theorem for the volume of a cube 2 m on the edge, centered at origin and with edges parallel to the axis.
- 2) Derive the expression for electric field intensity due to infinitely long line charge.
- 3) Derive point form of the Gauss's law.

### SECTION - II

### 4. Solve any three:

 $(3\times 4=12)$ 

- 1) Derive the expression on the axis of a circular loop.
- 2) A current filament of  $3\overline{a_x}$  amp. Lies along the x-axis. Find H components at P(-1, 3, 2).



- 3) What is Lorentz force?
- 4) Write Maxwell's equations for static fields.
- 5) A circular loop located on  $x^2 + y^2 = 9$ , z = 0 carries a direct current of 10 A along  $\overline{a_{\phi}}$ . Determine H at (0, 0, 4).

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Derive an expression for magnetic field intensity due to finite long straight current filament.
- 2) Derive expression for point form of Ampere's law.
- 3) Evaluate both sides of Stroke's theorem for the field

$$\overline{H} = \left(\frac{y^2 z}{x}\right) \overline{a_x} + \left(\frac{0.5 y^2 z^2}{x^2}\right) \overline{a_z}$$

And find current in the  $\overline{a_y}$  direction crossing the square surface in the plane y = 2 bounded by x = z = 1 and x = z = 2.

Set Q

| Seat |  |
|------|--|
| No.  |  |

### T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 **ELECTROMAGNETIC ENGINEERING**

Day and Date: Thursday, 3-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

| 1  | Choose | the | correct | answer  |  |
|----|--------|-----|---------|---------|--|
| 1. |        | шс  | COLLECT | allowel |  |

|       | 01                                                                      | nly. Don't forget i<br>f Page.   | ective type questi<br>to mention, Q.P. S<br>mptions if necessa | Set (P/Q/R/S                   | _         |
|-------|-------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|--------------------------------|-----------|
|       |                                                                         | MCQ/Objective T                  | ype Questions                                                  |                                |           |
| ratio | n : 30 Minutes                                                          |                                  |                                                                |                                | Marks: 14 |
| Ch    | oose the correct an                                                     | swer:                            |                                                                |                                |           |
| 1)    | Vector is the quant<br>a) Magnitude<br>c) Both a) and b)                | tity which is compl              | letely defined by its<br>b) Direction<br>d) None of these      | 3                              |           |
| 2)    | ax.ay =<br>a) az                                                        | b) ax                            | c) ay                                                          | d) zero                        |           |
| 3)    | For the volume der                                                      | nsity $ ho_{_{ m v}}$ the diverg | ence of the E will b                                           | e equal to                     |           |
|       | a) $\frac{\rho v}{\epsilon}$                                            | b) $\rho_{\nu} \epsilon$         | c) $\epsilon^2 \rho_{\nu}$                                     | d) $\frac{\rho v}{\epsilon^2}$ |           |
| 4)    | For free space $\alpha$ va a) 1.5                                       | alue is<br>b) 0                  | c) 2.5                                                         | d) 5.6                         |           |
| 5)    | A charge of $2 \times 10^{\circ}$ distance to the ot vacuum.<br>a) 0.03 | ther charge of 4.5               |                                                                |                                |           |
| 6)    | The velocity of EM                                                      | •                                | •                                                              | ,                              |           |

a)  $3 \times 10^8$  cm/s

b)  $3 \times 10^8$  m/hou

c)  $3 \times 10^8$  m/s

d)  $3 \times 10^{12} \,\text{m/s}$ 



- 7)  $\nabla \times \overline{E} = -\mu \frac{\partial H}{\partial t}$  is
  - a) Coulomb's law
  - c) Faradays law

- b) Gauss law
- d) Ohm's law
- 8) Lorentz force equation is
  - a)  $F = Q \times [E + V \times B]$
  - c)  $F = Q \times [V + E \times B]$

- b)  $F = Q[E + V \times B]$
- d)  $F = Q [B + V \times B]$
- 9) The electric flux density is the
  - a) Product of permittivity and electric field intensity
  - b) Product of number of flux lines and permittivity
  - c) Product of permeability and electric field intensity
  - d) Product of number of flux lines and permeability
- 10) For static magnetic field
  - a)  $\nabla \times B = \rho$

b)  $\nabla \times \overline{B} = \mu \overline{J}$ 

c)  $\nabla \cdot B = \mu J$ 

- d)  $\nabla \times B = 0$
- 11) The value of the unit vector is
  - a) 0

- b) -1
- c) 1
- d) 2

- 12) Unit of potential difference is
  - a) Coulomb

b) Joules

c) Coulomb/Joules

- d) Joules/Coulomb
- 13) If dot product of two vectors is zero, the vectors are
  - a) Perpendicular

b) Parallel

c) Oblique

- d) None of these
- 14) Which of the following are not vector functions in Electromagnetics?
  - a) Gradient
  - b) Divergence
  - c) Curl
  - d) There is no non-vector functions in Electromagnetics



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTROMAGNETIC ENGINEERING

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumptions if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and prove divergence theorem.
- 2) Show that  $E = -\nabla V$ .
- 3) Derive the continuity equation for current in integral form and point form.
- 4) Explain various charge configurations in electrostatic field.
- 5) Find the force on a 100  $\mu$ C charge at (0, 0, 3) m if four like charges of 20  $\mu$ C are located on the x and y axis at  $\pm$  4m.

## 3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Given that  $D = (10 \times 3/3) ax (c/m^2)$ , evaluate both sides of the divergence theorem for the volume of a cube 2 m on the edge, centered at origin and with edges parallel to the axis.
- 2) Derive the expression for electric field intensity due to infinitely long line charge.
- 3) Derive point form of the Gauss's law.

### SECTION - II

## 4. Solve any three:

 $(3\times 4=12)$ 

- 1) Derive the expression on the axis of a circular loop.
- 2) A current filament of  $3\overline{a_x}$  amp. Lies along the x-axis. Find H components at P(-1, 3, 2).

Set R



- 3) What is Lorentz force?
- 4) Write Maxwell's equations for static fields.
- 5) A circular loop located on  $x^2 + y^2 = 9$ , z = 0 carries a direct current of 10 A along  $\overline{a_{\phi}}$ . Determine H at (0, 0, 4).

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Derive an expression for magnetic field intensity due to finite long straight current filament.
- 2) Derive expression for point form of Ampere's law.
- 3) Evaluate both sides of Stroke's theorem for the field

$$\overline{H} = \left(\frac{y^2 z}{x}\right) \overline{a_x} + \left(\frac{0.5 y^2 z^2}{x^2}\right) \overline{a_z}$$

And find current in the  $\overline{a_y}$  direction crossing the square surface in the plane y = 2 bounded by x = z = 1 and x = z = 2.

Set R

| Seat |  |
|------|--|
| No.  |  |

Set S

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTROMAGNETIC ENGINEERING

Day and Date: Thursday, 3-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

3) Make suitable assumptions if **necessary**.

### **MCQ/Objective Type Questions**

Duration: 30 Minutes Marks: 14

- 1. Choose the correct answer:
  - 1) The velocity of EM wave in free space is

a) 
$$3 \times 10^8$$
 cm/s

b)  $3 \times 10^8$  m/hou

c) 
$$3 \times 10^8$$
 m/s

d)  $3 \times 10^{12} \,\text{m/s}$ 

2) 
$$\nabla \times \overline{E} = -\mu \frac{\partial H}{\partial t}$$
 is

a) Coulomb's law

b) Gauss law

c) Faradays law

- d) Ohm's law
- 3) Lorentz force equation is

a) 
$$F = Q \times [E + V \times B]$$

b) 
$$F = Q[E + V \times B]$$

c) 
$$F = Q \times [V + E \times B]$$

d) 
$$F = Q[B + V \times B]$$

- 4) The electric flux density is the
  - a) Product of permittivity and electric field intensity
  - b) Product of number of flux lines and permittivity
  - c) Product of permeability and electric field intensity
  - d) Product of number of flux lines and permeability

vacuum.

a) 0.03

| 5)  | For static magnetic a) $\nabla \times B = \rho$ c) $\nabla \cdot B = \mu J$                                                | c field                                              |     |                                                 |     |                               |
|-----|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|-------------------------------------------------|-----|-------------------------------|
| 6)  | The value of the una) 0                                                                                                    | nit vector is<br>b) -1                               | c)  | 1                                               | d)  | 2                             |
| 7)  | Unit of potential difa) Coulomb  c) Coulomb/Joules                                                                         |                                                      | ,   | Joules Joules/Coulom                            | b   |                               |
| 8)  | If dot product of tw<br>a) Perpendicular<br>c) Oblique                                                                     | o vectors is zero,                                   | b)  | vectors are<br>Parallel<br>None of these        |     |                               |
| 9)  | <ul><li>Which of the follow</li><li>a) Gradient</li><li>b) Divergence</li><li>c) Curl</li><li>d) There is no nor</li></ul> |                                                      |     |                                                 |     | agnetics ?                    |
| 10) | Vector is the quant<br>a) Magnitude<br>c) Both a) and b)                                                                   | ity which is compl                                   | b)  | ly defined by its<br>Direction<br>None of these |     |                               |
| 11) | ax.ay =<br>a) az                                                                                                           | b) ax                                                | c)  | ay                                              | d)  | zero                          |
| 12) | For the volume de                                                                                                          | nsity $ ho_{_{\scriptscriptstyle  m V}}$ the diverge | enc | e of the E will b                               | e e | qual to                       |
|     | a) $\frac{\rho v}{\epsilon}$                                                                                               | b) $\rho_{\nu}\epsilon$                              | c)  | $\epsilon^2 \rho_{_{\nu}}$                      | d)  | $\frac{\rho \nu}{\epsilon^2}$ |
| 13) | For free space $\alpha$ value a) 1.5                                                                                       | alue is<br>b) 0                                      | c)  | 2.5                                             | d)  | 5.6                           |
| 14) | A charge of $2 \times 10^{\circ}$ distance to the ot                                                                       |                                                      |     | -                                               |     |                               |

b) 0.05 c) 0.07 d) 0.09



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTROMAGNETIC ENGINEERING

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumptions if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and prove divergence theorem.
- 2) Show that  $E = -\nabla V$ .
- 3) Derive the continuity equation for current in integral form and point form.
- 4) Explain various charge configurations in electrostatic field.
- 5) Find the force on a 100  $\mu$ C charge at (0, 0, 3) m if four like charges of 20  $\mu$ C are located on the x and y axis at  $\pm$  4m.

### 3. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Given that  $D = (10 \times 3/3) ax (c/m^2)$ , evaluate both sides of the divergence theorem for the volume of a cube 2 m on the edge, centered at origin and with edges parallel to the axis.
- 2) Derive the expression for electric field intensity due to infinitely long line charge.
- 3) Derive point form of the Gauss's law.

### SECTION - II

## 4. Solve any three:

 $(3\times 4=12)$ 

- 1) Derive the expression on the axis of a circular loop.
- 2) A current filament of  $3\overline{a_x}$  amp. Lies along the x-axis. Find H components at P(-1, 3, 2).



- 3) What is Lorentz force?
- 4) Write Maxwell's equations for static fields.
- 5) A circular loop located on  $x^2 + y^2 = 9$ , z = 0 carries a direct current of 10 A along  $\overline{a_{\phi}}$ . Determine H at (0, 0, 4).

5. Solve any two:

 $(2 \times 8 = 16)$ 

- 1) Derive an expression for magnetic field intensity due to finite long straight current filament.
- 2) Derive expression for point form of Ampere's law.
- 3) Evaluate both sides of Stroke's theorem for the field

$$\overline{H} = \left(\frac{y^2 z}{x}\right) \overline{a_x} + \left(\frac{0.5 y^2 z^2}{x^2}\right) \overline{a_z}$$

And find current in the  $\overline{a_y}$  direction crossing the square surface in the plane y = 2 bounded by x = z = 1 and x = z = 2.

Set S



**SLR-TC - 491** 

| Seat |  |
|------|--|
| No.  |  |

## T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 **INSTRUMENTATION TECHNIQUES**

Day and Date: Friday, 4-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

- 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Assume suitable data wherever necessary.
- 4) Non-programmable calculators are **permitted**.

#### **MCQ/Objective Type Questions**

**Duration: 30 Minutes** Marks: 14  $(14 \times 1 = 14)$ 1. Solve the following:

- 1) In an LVDT the two secondary windings are connected in differential to obtain
  - a) Higher output voltage
  - b) An output voltage which is phase sensitive i.e. the output voltage has a phase which can lead us to conclusion whether the displacement of the core tool place from right to left or from left to right
  - c) In order to establish the null or the reference point for the displacement of the core
  - d) Both b and c
- 2) The dynamic characteristics of capacitive transducers are similar to those of
  - a) Low pass filter
- b) High pass filter c) Notch filter
- d) Band stop filters

- 3) Quartz and Rochelle salt belong to
  - a) Nature group of piezo electric material
  - b) Synthetic group of piezo-electric material
  - c) Can belong to nature or synthetic group of piezo-electric material provided properly polarized
  - d) All of these
- 4) Piezo-elecric transducers are
  - a) Passive transducers

b) Active transducers

c) Inverse transducers

d) b and c

- 5) In FM systems operate at
  - a) VHF and UHF
- b) Only VHF
- c) Only MF
- d) MF and HF

d) None of these



| 6)  | Time division multiplexing requires                                                                                     |                                                   |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
|     | a) Constant data transmission                                                                                           | b) Transmission of data sample                    |  |  |  |
|     | c) Transmission of data at random                                                                                       | d) Transmission of data of only one measured      |  |  |  |
| 7)  | Modem is an acronym of                                                                                                  |                                                   |  |  |  |
|     | a) Modulation                                                                                                           | b) Demodulation                                   |  |  |  |
|     | c) Modulation and demodulation                                                                                          | d) All of these                                   |  |  |  |
| 8)  | If an information is required to be stored over                                                                         | er a short interval of time                       |  |  |  |
|     | a) A single number/devices should be used                                                                               | I                                                 |  |  |  |
|     | b) A storage type oscilloscope should be us                                                                             | sed                                               |  |  |  |
|     | c) A CRO with photographic equipment sho                                                                                | ould be used                                      |  |  |  |
|     | d) A direct writing recorder or a magnetic to                                                                           | ape recorder should be used                       |  |  |  |
| 9)  | The machine interpretable output from an ar                                                                             | nalog transducer can be had from                  |  |  |  |
|     | a) Magnetic tapes                                                                                                       | b) Punched cards and tapes                        |  |  |  |
|     | c) Teletypewriter                                                                                                       | d) All of these                                   |  |  |  |
| 10) | Period measurement is done in frequency m                                                                               | neters for achieving high accuracy in the case of |  |  |  |
|     | a) High frequencies                                                                                                     | b) Medium frequencies                             |  |  |  |
|     | c) DC                                                                                                                   | d) Low frequencies                                |  |  |  |
| 11) | A digital voltmeter uses an A/D converter v<br>comparator and has a relatively fixed convers<br>The A to D converter is |                                                   |  |  |  |
|     | a) Successive approximation converter                                                                                   | b) Digital ramp converter                         |  |  |  |
|     | c) Digital slope converter                                                                                              | d) All of these                                   |  |  |  |
| 12) | X-Y recorders                                                                                                           |                                                   |  |  |  |
|     | a) Record one quantity with respect to another                                                                          | ther quantity                                     |  |  |  |
|     | b) Record one quantity on X axis with response                                                                          | ect to time on Y axis                             |  |  |  |
|     | c) Record one quantity on Y axis with response                                                                          | ect to time on X axis                             |  |  |  |
|     | d) None of these                                                                                                        |                                                   |  |  |  |
| 13) | The advantages of FM magnetic tape record                                                                               | ding are                                          |  |  |  |
|     | a) It can record from dc to several KHz                                                                                 |                                                   |  |  |  |
|     | b) It is free from dropout effects                                                                                      |                                                   |  |  |  |
|     | <ul> <li>c) It is independent of amplitude variations<br/>of input signal</li> </ul>                                    | and accurately reproduces the waveform            |  |  |  |
|     | d) All of these                                                                                                         |                                                   |  |  |  |
| 14) | When measuring strain, ballast circuits use done when,                                                                  | a capacitor to act as high pass filter. This is   |  |  |  |
|     | a) Static strains are being measured                                                                                    | a) Static strains are being measured              |  |  |  |
|     | b) Dynamic strains are being measured                                                                                   |                                                   |  |  |  |
|     | c) Both static and dynamics strains are bei                                                                             | ng measured                                       |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Assume suitable data **wherever** necessary.

2) Non-programmable calculators are **permitted**.

SECTION - I

2. Solve any three : (3×4=12)

- a) State the errors occurring in the instrumentation system and discuss the methods to minimise them.
- b) What is mean transducer? State types of transducer. Explain any one.
- c) Explain comparator with necessary diagram.
- d) Draw block diagram of instrumentation system and explain the function of each block.

3. Solve any two: (2×8=16)

- a) Short note on:
  - I) Modulator
  - II) Demodulator
- b) Explain the passive filter with its frequency graph.
- c) Explain the working principle and construction of LVDT and thermocouple.

SECTION - II

4. Solve any three: (3×4=12)

- a) Explain seven segment displays with necessary diagram.
- b) Explain Radio frequency telemetry system.
- c) Describe the oscilloscope with suitable diagram.
- d) Draw and explain architecture of PLC.

- 5. Solve any two: (2×8=16)
  - a) Short note on:
    - I) Function Generator
    - II) Spectrum analyser.
  - b) Explain the working of Tape recorder and give classification of recorders. State the advantages of recorder.
  - c) Draw Ladder diagram of PLC. What is the role of PLC in automation?

# **SLR-TC - 491**

| Seat |  |
|------|--|
| No.  |  |

Set Q

# T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 4-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

- 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Assume suitable data **wherever** necessary.
- 4) Non-programmable calculators are **permitted**.

#### **MCQ/Objective Type Questions**

Duration : 30 Minutes

1. Solve the following : (14×1=14)

- 1) If an information is required to be stored over a short interval of time
  - a) A single number/devices should be used
  - b) A storage type oscilloscope should be used
  - c) A CRO with photographic equipment should be used
  - d) A direct writing recorder or a magnetic tape recorder should be used
- 2) The machine interpretable output from an analog transducer can be had from
  - a) Magnetic tapes

b) Punched cards and tapes

c) Teletypewriter

- d) All of these
- 3) Period measurement is done in frequency meters for achieving high accuracy in the case of
  - a) High frequencies

b) Medium frequencies

c) DC

- d) Low frequencies
- 4) A digital voltmeter uses an A/D converter which needs a start pulse, uses an analog comparator and has a relatively fixed conversion time independent of the applied voltage. The A to D converter is
  - a) Successive approximation converter
- b) Digital ramp converter

c) Digital slope converter

d) All of these

- 5) X-Y recorders
  - a) Record one quantity with respect to another quantity
  - b) Record one quantity on X axis with respect to time on Y axis
  - c) Record one quantity on Y axis with respect to time on X axis
  - d) None of these



- 6) The advantages of FM magnetic tape recording are
  - a) It can record from dc to several KHz
  - b) It is free from dropout effects
  - c) It is independent of amplitude variations and accurately reproduces the waveform of input signal
  - d) All of these
- 7) When measuring strain, ballast circuits use a capacitor to act as high pass filter. This is done when.
  - a) Static strains are being measured
  - b) Dynamic strains are being measured
  - c) Both static and dynamics strains are being measured
  - d) None of these
- 8) In an LVDT the two secondary windings are connected in differential to obtain
  - a) Higher output voltage
  - b) An output voltage which is phase sensitive i.e. the output voltage has a phase which can lead us to conclusion whether the displacement of the core tool place from right to left or from left to right
  - c) In order to establish the null or the reference point for the displacement of the core
  - d) Both b and c
- 9) The dynamic characteristics of capacitive transducers are similar to those of
  - a) Low pass filter
- b) High pass filter c) Notch filter
- d) Band stop filters

- 10) Quartz and Rochelle salt belong to
  - a) Nature group of piezo electric material
  - b) Synthetic group of piezo-electric material
  - c) Can belong to nature or synthetic group of piezo-electric material provided properly polarized
  - d) All of these
- 11) Piezo-elecric transducers are
  - a) Passive transducers

b) Active transducers

c) Inverse transducers

d) b and c

- 12) In FM systems operate at
  - a) VHF and UHF
- b) Only VHF
- c) Only MF
- d) MF and HF

- 13) Time division multiplexing requires
  - a) Constant data transmission
  - c) Transmission of data at random
- b) Transmission of data sample
- d) Transmission of data of only one measured

- 14) Modem is an acronym of
  - a) Modulation

- b) Demodulation
- c) Modulation and demodulation
- d) All of these



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Assume suitable data **wherever** necessary.

2) Non-programmable calculators are **permitted**.

SECTION - I

2. Solve any three : (3×4=12)

- a) State the errors occurring in the instrumentation system and discuss the methods to minimise them.
- b) What is mean transducer? State types of transducer. Explain any one.
- c) Explain comparator with necessary diagram.
- d) Draw block diagram of instrumentation system and explain the function of each block.

3. Solve any two: (2×8=16)

- a) Short note on:
  - I) Modulator
  - II) Demodulator
- b) Explain the passive filter with its frequency graph.
- c) Explain the working principle and construction of LVDT and thermocouple.

SECTION - II

4. Solve any three: (3×4=12)

- a) Explain seven segment displays with necessary diagram.
- b) Explain Radio frequency telemetry system.
- c) Describe the oscilloscope with suitable diagram.
- d) Draw and explain architecture of PLC.

5. Solve any two: (2×8=16)

- a) Short note on:
  - I) Function Generator
  - II) Spectrum analyser.
- b) Explain the working of Tape recorder and give classification of recorders. State the advantages of recorder.
- c) Draw Ladder diagram of PLC. What is the role of PLC in automation?



# **SLR-TC - 491**

| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 **INSTRUMENTATION TECHNIQUES**

| Day and Date : Friday, 4-5-201 | 3 Total Marks: | 70 |
|--------------------------------|----------------|----|

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

- 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 2) Answer MCQ/Objective type questions on Page No. 3 only.

|      | , , , , , , , , , , , , , , , , , , ,           | -                               | •                |
|------|-------------------------------------------------|---------------------------------|------------------|
|      | MCQ/Objective 1                                 | Гуре Questions                  |                  |
| Dura | ation : 30 Minutes                              |                                 | Marks: 14        |
| 1.   | Solve the following:                            |                                 | (14×1=14)        |
|      | 1) In FM systems operate at                     |                                 |                  |
|      | a) VHF and UHF b) Only VHF                      | c) Only MF d) MF and            | HF               |
|      | 2) Time division multiplexing requires          |                                 |                  |
|      | a) Constant data transmission                   | b) Transmission of data sample  | ;                |
|      | c) Transmission of data at random               | d) Transmission of data of only | one measured     |
|      | 3) Modem is an acronym of                       |                                 |                  |
|      | a) Modulation                                   | b) Demodulation                 |                  |
|      | c) Modulation and demodulation                  | d) All of these                 |                  |
|      | 4) If an information is required to be stored o | ver a short interval of time    |                  |
|      | a) A single number/devices should be us         | ed                              |                  |
|      | b) A storage type oscilloscope should be        |                                 |                  |
|      | c) A CRO with photographic equipment s          |                                 |                  |
|      | d) A direct writing recorder or a magnetic      |                                 |                  |
|      | 5) The machine interpretable output from an     | •                               | 1                |
|      | a) Magnetic tapes                               | b) Punched cards and tapes      |                  |
|      | c) Teletypewriter                               | d) All of these                 |                  |
|      | 6) Period measurement is done in frequency      |                                 | / in the case of |
|      | a) High frequencies                             | b) Medium frequencies           |                  |
|      | c) DC                                           | d) Low frequencies              |                  |



| 7) | A digital voltmeter uses an A/D converter which needs a start pulse, uses an ana       | log |
|----|----------------------------------------------------------------------------------------|-----|
|    | comparator and has a relatively fixed conversion time independent of the applied volta | ge. |
|    | The A to D converter is                                                                | _   |

- a) Successive approximation converter
- b) Digital ramp converter

c) Digital slope converter

d) All of these

- 8) X-Y recorders
  - a) Record one quantity with respect to another quantity
  - b) Record one quantity on X axis with respect to time on Y axis
  - c) Record one quantity on Y axis with respect to time on X axis
  - d) None of these
- 9) The advantages of FM magnetic tape recording are
  - a) It can record from dc to several KHz
  - b) It is free from dropout effects
  - c) It is independent of amplitude variations and accurately reproduces the waveform of input signal
  - d) All of these
- 10) When measuring strain, ballast circuits use a capacitor to act as high pass filter. This is done when.
  - a) Static strains are being measured
  - b) Dynamic strains are being measured
  - c) Both static and dynamics strains are being measured
  - d) None of these
- 11) In an LVDT the two secondary windings are connected in differential to obtain
  - a) Higher output voltage
  - b) An output voltage which is phase sensitive i.e. the output voltage has a phase which can lead us to conclusion whether the displacement of the core tool place from right to left or from left to right
  - c) In order to establish the null or the reference point for the displacement of the core
  - d) Both b and c
- 12) The dynamic characteristics of capacitive transducers are similar to those of
  - a) Low pass filter
- b) High pass filter c) Notch filter
- d) Band stop filters

- 13) Quartz and Rochelle salt belong to
  - a) Nature group of piezo electric material
  - b) Synthetic group of piezo-electric material
  - c) Can belong to nature or synthetic group of piezo-electric material provided properly polarized
  - d) All of these
- 14) Piezo-elecric transducers are
  - a) Passive transducers

b) Active transducers

c) Inverse transducers

d) b and c



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Assume suitable data **wherever** necessary.

2) Non-programmable calculators are **permitted**.

SECTION - I

2. Solve any three : (3×4=12)

- a) State the errors occurring in the instrumentation system and discuss the methods to minimise them.
- b) What is mean transducer? State types of transducer. Explain any one.
- c) Explain comparator with necessary diagram.
- d) Draw block diagram of instrumentation system and explain the function of each block.

3. Solve any two: (2×8=16)

- a) Short note on:
  - I) Modulator
  - II) Demodulator
- b) Explain the passive filter with its frequency graph.
- c) Explain the working principle and construction of LVDT and thermocouple.

SECTION - II

4. Solve any three: (3×4=12)

- a) Explain seven segment displays with necessary diagram.
- b) Explain Radio frequency telemetry system.
- c) Describe the oscilloscope with suitable diagram.
- d) Draw and explain architecture of PLC.

5. Solve any two: (2×8=16)

- a) Short note on:
  - I) Function Generator
  - II) Spectrum analyser.
- b) Explain the working of Tape recorder and give classification of recorders. State the advantages of recorder.
- c) Draw Ladder diagram of PLC. What is the role of PLC in automation?



**SLR-TC - 491** 

Set S

# Seat No.

# T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 4-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

- Q. No. 1 is compulsory. It should be solved in first
   30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Assume suitable data wherever necessary.
- 4) Non-programmable calculators are permitted.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Solve the following: (14×1=14)

- 1) Period measurement is done in frequency meters for achieving high accuracy in the case of
  - a) High frequencies

b) Medium frequencies

c) DC

- d) Low frequencies
- A digital voltmeter uses an A/D converter which needs a start pulse, uses an analog comparator and has a relatively fixed conversion time independent of the applied voltage. The A to D converter is
  - a) Successive approximation converter
- b) Digital ramp converter

c) Digital slope converter

d) All of these

- 3) X-Y recorders
  - a) Record one quantity with respect to another quantity
  - b) Record one quantity on X axis with respect to time on Y axis
  - c) Record one quantity on Y axis with respect to time on X axis
  - d) None of these
- 4) The advantages of FM magnetic tape recording are
  - a) It can record from dc to several KHz
  - b) It is free from dropout effects
  - It is independent of amplitude variations and accurately reproduces the waveform of input signal
  - d) All of these



| R-T | C – 491                                                                                                                             | -2-           |                |                         |              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-------------------------|--------------|
| 5)  | When measuring strain, ballast circudone when,                                                                                      | its use a ca  | pacitor to a   | ct as high pass filter. | This is      |
|     | a) Static strains are being measure                                                                                                 | d             |                |                         |              |
|     | b) Dynamic strains are being measi                                                                                                  |               |                |                         |              |
|     | c) Both static and dynamics strains                                                                                                 | are being r   | neasured       |                         |              |
|     | d) None of these                                                                                                                    |               |                |                         |              |
| 6)  | In an LVDT the two secondary windi                                                                                                  | ngs are cor   | nected in di   | fferential to obtain    |              |
| •   | a) Higher output voltage                                                                                                            |               |                |                         |              |
|     | <ul> <li>An output voltage which is phase<br/>which can lead us to conclusion<br/>from right to left or from left to rig</li> </ul> | whether the   |                |                         |              |
|     | c) In order to establish the null or th                                                                                             | e reference   | point for the  | e displacement of the   | core         |
|     | d) Both b and c                                                                                                                     |               |                |                         |              |
| 7)  | The dynamic characteristics of capa                                                                                                 | citive transc | ducers are s   | milar to those of       |              |
|     | a) Low pass filter b) High pas                                                                                                      | s filter c)   | Notch filter   | d) Band stop fi         | Iters        |
| 8)  | Quartz and Rochelle salt belong to                                                                                                  |               |                |                         |              |
|     | a) Nature group of piezo electric ma                                                                                                | aterial       |                |                         |              |
|     | b) Synthetic group of piezo-electric                                                                                                | material      |                |                         |              |
|     | c) Can belong to nature or synthetic (                                                                                              | group of piez | zo-electric ma | aterial provided proper | ly polarized |
|     | d) All of these                                                                                                                     |               |                |                         |              |
| 9)  | Piezo-elecric transducers are                                                                                                       |               |                |                         |              |
|     | a) Passive transducers                                                                                                              | b)            | Active trans   | ducers                  |              |
|     | c) Inverse transducers                                                                                                              | d)            | b and c        |                         |              |
| 10) | In FM systems operate at                                                                                                            |               |                |                         |              |
|     | a) VHF and UHF b) Only VH                                                                                                           | F c)          | Only MF        | d) MF and HF            |              |
| 11) | Time division multiplexing requires                                                                                                 |               |                |                         |              |
|     | a) Constant data transmission                                                                                                       | b)            | Transmission   | on of data sample       |              |
|     | c) Transmission of data at random                                                                                                   | d)            | Transmission   | on of data of only one  | measured     |
| 12) | Modem is an acronym of                                                                                                              |               |                |                         |              |
|     | a) Modulation                                                                                                                       | b)            | Demodulati     | on                      |              |
|     | c) Modulation and demodulation                                                                                                      | d)            | All of these   |                         |              |
| 13) | If an information is required to be sto                                                                                             | red over a    | short interva  | l of time               |              |
|     | a) A single number/devices should                                                                                                   | be used       |                |                         |              |
|     | b) A storage type oscilloscope shou                                                                                                 |               |                |                         |              |
|     | c) A CRO with photographic equipm                                                                                                   | nent should   | be used        |                         |              |

a) Magnetic tapes

b) Punched cards and tapes

c) Teletypewriter

d) All of these



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Assume suitable data **wherever** necessary.

2) Non-programmable calculators are **permitted**.

SECTION - I

2. Solve any three : (3×4=12)

- a) State the errors occurring in the instrumentation system and discuss the methods to minimise them.
- b) What is mean transducer? State types of transducer. Explain any one.
- c) Explain comparator with necessary diagram.
- d) Draw block diagram of instrumentation system and explain the function of each block.

3. Solve any two: (2×8=16)

- a) Short note on:
  - I) Modulator
  - II) Demodulator
- b) Explain the passive filter with its frequency graph.
- c) Explain the working principle and construction of LVDT and thermocouple.

SECTION - II

4. Solve any three: (3×4=12)

- a) Explain seven segment displays with necessary diagram.
- b) Explain Radio frequency telemetry system.
- c) Describe the oscilloscope with suitable diagram.
- d) Draw and explain architecture of PLC.

- 5. Solve any two: (2×8=16)
  - a) Short note on:
    - I) Function Generator
    - II) Spectrum analyser.
  - b) Explain the working of Tape recorder and give classification of recorders. State the advantages of recorder.
  - c) Draw Ladder diagram of PLC. What is the role of PLC in automation?



| Seat<br>No. | Set | P |
|-------------|-----|---|
| 110.        |     |   |

## T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 **MICROPROCESSOR AND ITS APPLICATIONS**

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| MCQ/Objective                         | e Type Questions         |           |
|---------------------------------------|--------------------------|-----------|
| Duration : 30 Minutes                 |                          | Marks: 14 |
| 1. Choose the correct alternative:    |                          | (14×1=14) |
| 1) Minimum clock frequency of 8085    | microprocessors is       |           |
| a) 300 kHz                            | b) 100 kHz               |           |
| c) 500 kHz                            | d) 400 kHz               |           |
| 2) Which one is the bi-directional?   |                          |           |
| a) Address bus                        | b) Data bus              |           |
| c) Both a) and b)                     | d) None of the above     |           |
| 3) Which one is the not special purpo | ose resister?            |           |
| a) Stack pointer                      | b) Program counter       |           |
| c) Increment/Decrement latch          | d) Accumulator           |           |
| 4) LHLD address is a                  |                          |           |
| a) Direct addressing                  | b) Indirect addressing   |           |
| c) Resister addressing                | d) None of the above add | ressing   |

| 5)  | LDA address is a      |                       |       |                       |    |                |  |
|-----|-----------------------|-----------------------|-------|-----------------------|----|----------------|--|
|     | a) 1 byte instruction |                       |       | b) 2 byte instruction |    |                |  |
|     | c) 3 byte instruction | on                    | d)    | 4 byte instruction    | on |                |  |
| 6)  | Take odd man out      | : TRAP, INTR, $S_0$ , | RS    | T 7.5.                |    |                |  |
|     | a) TRAP               | b) INTR               | c)    | RST 7.5               | d) | S <sub>o</sub> |  |
| 7)  | Signal required for   | demultiplexing of a   | add   | ress and data b       | us |                |  |
|     | a) ALE                | b) $S_0$ and $S_1$    | c)    | IO/M                  | d) | All of these   |  |
| 8)  | Which of below is     | a functional block o  | of 82 | 255 ?                 |    |                |  |
|     | a) Modem control      |                       | b)    | Receive buffer        |    |                |  |
|     | c) Group A contro     | ol                    | d)    | Transmit buffer       |    |                |  |
| 9)  | Control word nece     | ssary only in casca   | .de   | mode of 8259 P        | lC |                |  |
|     | a) ICW1               | b) ICW2               | c)    | ICW3                  | d) | ICW4           |  |
| 10) | Which of below is     | not a functional blo  | ck (  | of 8251 ?             |    |                |  |
|     | a) Read/write con     | trol logic            | b)    | Modem control         |    |                |  |
|     | c) Group A contro     | ol                    | d)    | Data bus buffer       | r  |                |  |
| 11) | Which of below is     | not a functional blo  | ck (  | of 8259 ?             |    |                |  |
|     | a) In service regis   | ster                  | b)    | Modem control         |    |                |  |
|     | c) Priority resolve   | r                     | d)    | Data bus buffer       | r  |                |  |
| 12) | RIM instruction for   | mat bit D4 is         |       |                       |    |                |  |
|     | a) SID                | b) IE                 | c)    | I 5.5                 | d) | M 7.5          |  |
| 13) | SIM instruction for   | mat bit D4 is         |       |                       |    |                |  |
|     | a) SID                | b) SOD                | c)    | R 7.5                 | d) | None of these  |  |
| 14) | 8259 is a             |                       |       |                       |    |                |  |
|     | a) USART              |                       | b)    | PPI                   |    |                |  |
|     | c) PIT                |                       | d)    | PIC                   |    |                |  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSOR AND ITS APPLICATIONS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

#### 2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw the timing diagram of memory read cycle.
- 2) Explain following instructions:
  - a) Accumulator
  - b) ALE
  - c) ALU
  - d) General purpose resister.
- 3) Classify memory and explain one of them.
- 4) Write a program to multiply two 8 bit numbers. Also give the result.
- 5) List out the features of 8085 microprocessor.

#### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Draw and explain internal architecture of 8085.
- 2) Write a program of arranging 10 numbers in descending order. Assume suitable data and addresses.
- 3) Explain the different types of memory in detail.

#### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is ICW2 of 8259 PIC?
- 2) List out the features of 8251.
- 3) Comparison between synchronous and asynchronous I/O.
- 4) Draw the block diagram of 8255.
- 5) Explain dual slope ADC.
- 5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What is DAC? Explain weighted register DAC.
- 2) Draw and explain detailed interfacing of 8254 with 8085. Assume suitable addresses.
- 3) Explain with block diagram, frequency measurement using 8085.

Set P



| No. |
|-----|
|-----|

## T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSOR AND ITS APPLICATIONS

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Ton of Page

|         |                     | rop or rage.     |           |           |         |           |
|---------|---------------------|------------------|-----------|-----------|---------|-----------|
|         |                     | MCQ/Objecti      | ve Type   | Question  | s       |           |
| Duratio | on : 30 Minutes     |                  |           |           |         | Marks: 14 |
| 1. Cł   | noose the correct a | Ilternative :    |           |           |         | (14×1=14) |
| 1)      | Which of below is   | s a functional b | lock of 8 | 255 ?     |         |           |
|         | a) Modem contr      | ol               | b)        | Receive b | ouffer  |           |
|         | c) Group A cont     | rol              | d)        | Transmit  | buffer  |           |
| 2)      | Control word nec    | essary only in o | cascade   | mode of 8 | 259 PIC |           |
|         | a) ICW1             | b) ICW2          | c)        | ICW3      | d) ICV  | V4        |
| 3)      | Which of below is   | s not a function | al block  | of 8251?  |         |           |
|         | a) Read/write co    | ontrol logic     | b)        | Modem co  | ontrol  |           |
|         | c) Group A cont     | rol              | d)        | Data bus  | buffer  |           |
| 4)      | Which of below is   | s not a function | al block  | of 8259?  |         |           |
|         | a) In service reg   | ister            | b)        | Modem co  | ontrol  |           |
|         | c) Priority resolv  | ver              | d)        | Data bus  | buffer  |           |
| 5)      | RIM instruction for | ormat bit D4 is  |           |           |         |           |
|         | a) SID              | b) IE            | c)        | I 5.5     | d) M 7  | '.5       |

| 6)  | SIM instruction for                               | mat bit D4 is         |      |                    |     |                |
|-----|---------------------------------------------------|-----------------------|------|--------------------|-----|----------------|
|     | a) SID                                            | b) SOD                | c)   | R 7.5              | d)  | None of these  |
| 7)  | 8259 is a                                         |                       |      |                    |     |                |
|     | a) USART                                          |                       | b)   | PPI                |     |                |
|     | c) PIT                                            |                       | d)   | PIC                |     |                |
| 8)  | Minimum clock fre                                 | quency of 8085 mid    | crop | processors is      |     |                |
|     | a) 300 kHz                                        |                       | b)   | 100 kHz            |     |                |
|     | c) 500 kHz                                        |                       | d)   | 400 kHz            |     |                |
| 9)  | Which one is the b                                | oi-directional ?      |      |                    |     |                |
|     | a) Address bus                                    |                       | b)   | Data bus           |     |                |
|     | c) Both a) and b)                                 |                       | d)   | None of the ab     | ove | •              |
| 10) | 0) Which one is the not special purpose resister? |                       |      |                    |     |                |
|     | a) Stack pointer                                  |                       | b)   | Program count      | er  |                |
|     | c) Increment/Dec                                  | rement latch          | d)   | Accumulator        |     |                |
| 11) | LHLD address is a                                 | l                     |      |                    |     |                |
|     | a) Direct address                                 | ing                   | b)   | Indirect addres    | sin | g              |
|     | c) Resister addre                                 | ssing                 | d)   | None of the ab     | ove | addressing     |
| 12) | LDA address is a                                  |                       |      |                    |     |                |
|     | a) 1 byte instructi                               | on                    | b)   | 2 byte instruction | on  |                |
|     | c) 3 byte instructi                               | on                    | d)   | 4 byte instruction | on  |                |
| 13) | Take odd man out                                  | : TRAP, INTR, $S_0$ , | RS   | T 7.5.             |     |                |
|     | a) TRAP                                           | b) INTR               | c)   | RST 7.5            | d)  | S <sub>0</sub> |
| 14) | Signal required for                               | demultiplexing of a   | add  | ress and data b    | us  |                |
|     | a) ALE                                            | b) $S_0$ and $S_1$    | c)   | IO/M               | d)  | All of these   |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSOR AND ITS APPLICATIONS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

#### 2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw the timing diagram of memory read cycle.
- 2) Explain following instructions:
  - a) Accumulator
  - b) ALE
  - c) ALU
  - d) General purpose resister.
- 3) Classify memory and explain one of them.
- 4) Write a program to multiply two 8 bit numbers. Also give the result.
- 5) List out the features of 8085 microprocessor.

## 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Draw and explain internal architecture of 8085.
- 2) Write a program of arranging 10 numbers in descending order. Assume suitable data and addresses.
- 3) Explain the different types of memory in detail.

# 

#### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is ICW2 of 8259 PIC?
- 2) List out the features of 8251.
- 3) Comparison between synchronous and asynchronous I/O.
- 4) Draw the block diagram of 8255.
- 5) Explain dual slope ADC.

5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What is DAC? Explain weighted register DAC.
- 2) Draw and explain detailed interfacing of 8254 with 8085. Assume suitable addresses.
- 3) Explain with block diagram, frequency measurement using 8085.

Set Q



|      | _   |   |
|------|-----|---|
| Seat | Set | R |
| No.  | Set | ח |

## T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSOR AND ITS APPLICATIONS

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

|                      |                         | . , po da cononc          |                 |   |
|----------------------|-------------------------|---------------------------|-----------------|---|
| Duration: 30 Minutes | 3                       |                           | Marks: 14       | 1 |
| 1. Choose the corre  | ect alternative :       |                           | (14×1=14        | ) |
| 1) LDA address       | is a                    |                           |                 |   |
| a) 1 byte ins        | truction                | b) 2 byte instru          | uction          |   |
| c) 3 byte ins        | truction                | d) 4 byte instru          | uction          |   |
| 2) Take odd ma       | n out : TRAP, INTR, S   | S <sub>0</sub> , RST 7.5. |                 |   |
| a) TRAP              | b) INTR                 | c) RST 7.5                | d) $S_0$        |   |
| 3) Signal require    | ed for demultiplexing o | of address and dat        | a bus           |   |
| a) ALE               | b) $S_0$ and $S_1$      | c) IO/M                   | d) All of these |   |
| 4) Which of belo     | w is a functional bloc  | k of 8255 ?               |                 |   |
| a) Modem co          | ontrol                  | b) Receive but            | ffer            |   |
| c) Group A           | control                 | d) Transmit bu            | ıffer           |   |
| 5) Control word      | necessary only in cas   | cade mode of 825          | 9 PIC           |   |
| a) ICW1              | b) ICW2                 | c) ICW3                   | d) ICW4         |   |

| 6)  | Which of below is not a functional block of 8251 ?    |                    |                               |      |                 |     |               |  |
|-----|-------------------------------------------------------|--------------------|-------------------------------|------|-----------------|-----|---------------|--|
|     | a)                                                    | Read/write con     | ontrol logic b) Modem control |      |                 |     |               |  |
|     | c)                                                    | Group A contro     | ol .                          | d)   | Data bus buffe  | r   |               |  |
| 7)  | Wh                                                    | nich of below is i | not a functional blo          | ck ( | of 8259 ?       |     |               |  |
|     | a)                                                    | In service regis   | ter                           | b)   | Modem control   |     |               |  |
|     | c)                                                    | Priority resolve   | r                             | d)   | Data bus buffe  | r   |               |  |
| 8)  | RII                                                   | M instruction for  | mat bit D4 is                 |      |                 |     |               |  |
|     | a)                                                    | SID                | b) IE                         | c)   | I 5.5           | d)  | M 7.5         |  |
| 9)  | SIN                                                   | A instruction for  | mat bit D4 is                 |      |                 |     |               |  |
|     | a)                                                    | SID                | b) SOD                        | c)   | R 7.5           | d)  | None of these |  |
| 10) | 82                                                    | 59 is a            |                               |      |                 |     |               |  |
|     | a)                                                    | USART              |                               | b)   | PPI             |     |               |  |
|     | c)                                                    | PIT                |                               | d)   | PIC             |     |               |  |
| 11) | 1) Minimum clock frequency of 8085 microprocessors is |                    |                               |      |                 |     |               |  |
|     | a)                                                    | 300 kHz            |                               | b)   | 100 kHz         |     |               |  |
|     | c)                                                    | 500 kHz            |                               | d)   | 400 kHz         |     |               |  |
| 12) | Wh                                                    | nich one is the b  | i-directional ?               |      |                 |     |               |  |
|     | a)                                                    | Address bus        |                               | b)   | Data bus        |     |               |  |
|     | c)                                                    | Both a) and b)     |                               | d)   | None of the ab  | ove | •             |  |
| 13) | ) Which one is the not special purpose resister?      |                    |                               |      |                 |     |               |  |
|     | a)                                                    | Stack pointer      |                               | b)   | Program count   | er  |               |  |
|     | c)                                                    | Increment/Dec      | rement latch                  | d)   | Accumulator     |     |               |  |
| 14) | LH                                                    | LD address is a    |                               |      |                 |     |               |  |
|     | a)                                                    | Direct addressi    | ng                            | b)   | Indirect addres | sin | g             |  |
|     | c)                                                    | Resister addres    | ssing                         | d)   | None of the ab  | ove | addressing    |  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSOR AND ITS APPLICATIONS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

#### 2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw the timing diagram of memory read cycle.
- 2) Explain following instructions:
  - a) Accumulator
  - b) ALE
  - c) ALU
  - d) General purpose resister.
- 3) Classify memory and explain one of them.
- 4) Write a program to multiply two 8 bit numbers. Also give the result.
- 5) List out the features of 8085 microprocessor.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Draw and explain internal architecture of 8085.
- 2) Write a program of arranging 10 numbers in descending order. Assume suitable data and addresses.
- 3) Explain the different types of memory in detail.



#### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is ICW2 of 8259 PIC?
- 2) List out the features of 8251.
- 3) Comparison between synchronous and asynchronous I/O.
- 4) Draw the block diagram of 8255.
- 5) Explain dual slope ADC.

5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What is DAC? Explain weighted register DAC.
- 2) Draw and explain detailed interfacing of 8254 with 8085. Assume suitable addresses.
- 3) Explain with block diagram, frequency measurement using 8085.

Set R



| Seat<br>No. |  | Set | S |
|-------------|--|-----|---|
|-------------|--|-----|---|

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSOR AND ITS APPLICATIONS

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

|                       |                      | o Type diagonome   |                  |    |
|-----------------------|----------------------|--------------------|------------------|----|
| Duration: 30 Minutes  |                      |                    | Marks : 14       | 4  |
| 1. Choose the correct | t alternative :      |                    | (14×1=14)        | 1) |
| 1) Which of below     | v is not a functiona | Il block of 8251 ? |                  |    |
| a) Read/write         | control logic        | b) Modem co        | ntrol            |    |
| c) Group A co         | ontrol               | d) Data bus b      | ouffer           |    |
| 2) Which of below     | v is not a functiona | Il block of 8259 ? |                  |    |
| a) In service r       | egister              | b) Modem co        | ntrol            |    |
| c) Priority res       | olver                | d) Data bus b      | ouffer           |    |
| 3) RIM instruction    | format bit D4 is     |                    |                  |    |
| a) SID                | b) IE                | c) 15.5            | d) M 7.5         |    |
| 4) SIM instruction    | format bit D4 is     |                    |                  |    |
| a) SID                | b) SOD               | c) R 7.5           | d) None of these |    |
| 5) 8259 is a          |                      |                    |                  |    |
| a) USART              |                      | b) PPI             |                  |    |
| c) PIT                |                      | d) PIC             |                  |    |

| 6)  | Minimum clock frequency of 8085 mi |                                      |     | processors is      |     |              |
|-----|------------------------------------|--------------------------------------|-----|--------------------|-----|--------------|
|     | a) 300 kHz                         |                                      | b)  | 100 kHz            |     |              |
|     | c) 500 kHz                         |                                      | d)  | 400 kHz            |     |              |
| 7)  | Which one is the b                 | i-directional ?                      |     |                    |     |              |
|     | a) Address bus                     |                                      | b)  | Data bus           |     |              |
|     | c) Both a) and b)                  |                                      | d)  | None of the abo    | ove | ;            |
| 8)  | Which one is the n                 | ot special purpose                   | res | sister?            |     |              |
|     | a) Stack pointer                   |                                      | b)  | Program count      | er  |              |
|     | c) Increment/Dec                   | rement latch                         | d)  | Accumulator        |     |              |
| 9)  | LHLD address is a                  |                                      |     |                    |     |              |
|     | a) Direct addressi                 | ng                                   | b)  | Indirect address   | sin | g            |
|     | c) Resister addres                 | ssing                                | d)  | None of the abo    | ove | addressing   |
| 10) | LDA address is a                   |                                      |     |                    |     |              |
|     | a) 1 byte instruction              | on                                   | b)  | 2 byte instruction | on  |              |
|     | c) 3 byte instruction              |                                      | ,   | 4 byte instruction | on  |              |
| 11) | Take odd man out                   | •                                    | RS  | T 7.5.             |     |              |
|     | a) TRAP                            | b) INTR                              | c)  | RST 7.5            | d)  | $S_0$        |
| 12) | Signal required for                | demultiplexing of a                  | add | ress and data b    | us  |              |
|     | a) ALE                             | b) S <sub>0</sub> and S <sub>1</sub> | c)  | IO/M               | d)  | All of these |
| 13) | Which of below is a                | a functional block o                 | f 8 | 255 ?              |     |              |
|     | a) Modem control                   |                                      | b)  | Receive buffer     |     |              |
|     | c) Group A contro                  | ol .                                 | d)  | Transmit buffer    |     |              |
| 14) | Control word neces                 | ssary only in casca                  | de  | mode of 8259 P     | IC  |              |
|     | a) ICW1                            | b) ICW2                              | c)  | ICW3               | d)  | ICW4         |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSOR AND ITS APPLICATIONS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

#### 2. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Draw the timing diagram of memory read cycle.
- 2) Explain following instructions:
  - a) Accumulator
  - b) ALE
  - c) ALU
  - d) General purpose resister.
- 3) Classify memory and explain one of them.
- 4) Write a program to multiply two 8 bit numbers. Also give the result.
- 5) List out the features of 8085 microprocessor.

## 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Draw and explain internal architecture of 8085.
- 2) Write a program of arranging 10 numbers in descending order. Assume suitable data and addresses.
- 3) Explain the different types of memory in detail.

# 

#### SECTION - II

4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) What is ICW2 of 8259 PIC?
- 2) List out the features of 8251.
- 3) Comparison between synchronous and asynchronous I/O.
- 4) Draw the block diagram of 8255.
- 5) Explain dual slope ADC.

5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What is DAC? Explain weighted register DAC.
- 2) Draw and explain detailed interfacing of 8254 with 8085. Assume suitable addresses.
- 3) Explain with block diagram, frequency measurement using 8085.

Set S

**SLR-TC - 493** 

| Seat |  |
|------|--|
| No.  |  |

## T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 **ELEMENTS OF POWER SYSTEM**

Max. Marks: 70 Day and Date: Monday, 7-5-2018

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) Assume the suitable data whenever necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# MCO/Objective Type Ougetiens

|                                                                          | tive Type Questions                           |
|--------------------------------------------------------------------------|-----------------------------------------------|
| Duration: 30 Minutes                                                     | Marks : 14                                    |
| 1. Choose the correct answer:                                            | 14                                            |
| 1) In a cable immediately above r                                        | netallic sheath is provided.                  |
| <ul> <li>a) Earthing connection</li> </ul>                               | b) Bedding                                    |
| c) Armoring                                                              | d) None of these                              |
| <ol><li>In order to improve the power<br/>the power system.</li></ol>    | factor which device should be connected to    |
| a) Series capacitor                                                      | b) Shunt capacitor                            |
| c) Series inductor                                                       | d) Shunt inductor                             |
| 3) Varnished cambric is also know                                        | n as                                          |
| a) Empire tape b) Rubb                                                   | er tape c) Paper tape d) PVC tape             |
| <ol> <li>Corona usually occurs when to<br/>conductor succeeds</li> </ol> | ne electrostatic stress in the air around the |
| a) 30 kV (maximum value)/cm                                              | b) 22 kV (maximum value)/cm                   |
| c) 11 kV (rms value)/cm                                                  | d) 6.6 kV (rms value)/cm                      |
| 5) The effect of ice deposition on                                       | conductor is                                  |
| <ul> <li>a) Increased skin effect</li> </ul>                             | b) Reduced corona losses                      |
| c) Increased weight                                                      | d) Reduced sag                                |



| 6)  | Which of the following statements is incorrect?                             |                     |                   |                       |  |
|-----|-----------------------------------------------------------------------------|---------------------|-------------------|-----------------------|--|
|     | a) As the temperature raises the tension in the transmission line decreases |                     |                   |                       |  |
|     | b) As temperature rises the sag in transmission lines reduces               |                     |                   |                       |  |
|     | c) Tension and sag in transmission lines are complementary to each other    |                     |                   |                       |  |
|     | d) None of the above                                                        |                     |                   |                       |  |
| 7)  | In transmission syster                                                      | n a feeder feeds    | power to          |                       |  |
|     | a) Service mains                                                            |                     | b) Generating     | stations              |  |
|     | c) Distributors                                                             |                     | d) All of the ab  | oove                  |  |
| 8)  | The characteristic imp                                                      | edance of a trans   | smission line de  | pends upon            |  |
|     | a) Shape of the condu                                                       | uctor               |                   |                       |  |
|     | b) Surface treatment                                                        | of the conductors   |                   |                       |  |
|     | c) Conductivity of the                                                      | material            |                   |                       |  |
|     | d) Geometrical config                                                       | uration of the cor  | nductors          |                       |  |
| 9)  | In any transmission lir                                                     | ne, AD – BC =       |                   |                       |  |
|     | a) 1                                                                        | b) 2                | c) 4              | d) 5                  |  |
| 10) | The disadvantage with                                                       | n paper as insulat  | ting material is  |                       |  |
|     | a) It is hygroscopic                                                        |                     | b) It has high of | capacitance           |  |
|     | c) It is an organic mat                                                     | terial              | d) None of the    | above                 |  |
| 11) | The bundling of condu                                                       | uctors is done prir | marily to         |                       |  |
|     | a) Reduce reactance                                                         |                     | b) Increase rea   | actance               |  |
|     | c) Increase ratio inter                                                     | ference             | d) Reduce rad     | io interference       |  |
| 12) | The thickness of the la upon                                                | yer of insulation o | on the conductor  | r, in cables, depends |  |
|     | a) Reactive power                                                           |                     | b) Power factor   | or                    |  |
|     | c) Voltage                                                                  |                     | d) Current car    | rying capacity        |  |
| 13) | SAG depends on wha                                                          | t factors in transr | nission lines     |                       |  |
|     | a) Span length                                                              |                     |                   |                       |  |
|     | b) Tension in the cond                                                      | ductors             |                   |                       |  |
|     | c) Weight of the cond                                                       | uctor per unit len  | gth               |                       |  |
|     | d) All the above                                                            |                     |                   |                       |  |
| 14) | In transmission systemake the shape of                                      | ท between two รเ    | upports, due to   | SAG the conductors    |  |
|     | a) Catenary                                                                 | b) Semi-circule     | c) Parabola       | d) Hyperbola          |  |
|     |                                                                             |                     |                   |                       |  |



| Seat |  |
|------|--|
| No.  |  |

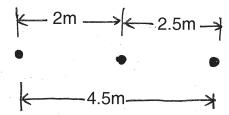
# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELEMENTS OF POWER SYSTEM

Day and Date: Monday, 7-5-2018

Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.


2) Figure to the **right** indicates **maximum** marks.
3) **Assume** the suitable data **whenever** necessary.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the concept of self GMD.
- 2) Criteria for choosing conductor material. Describe ACSR conductors.
- 3) Write short note on skin effect.
- 4) Draw and describe suspension type insulators along with its advantages.
- 5) Explain inductance of single phase two wire line.
- 6) A 3 phase, 50 Hz, 66 KV overhead line conductors are placed in horizontal plane as shown in figure. The conductor diameter is 1.25 cm. If the line length is 100 km, calculate:
  - i) Capacitance per phase
  - ii) Charging current per phase.



### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Derive expression of voltage distribution in 3 insulators in a string.
- 2) A 3-phase transmission line is being supported by three disc insulators. The potential across top unit (i.e. near to tower) and middle unit are 8 KV and 11 KV respectively. Calculate:
  - i) The ratio of capacitance between pin and earth to the self-capacitance of each unit.
  - ii) The line voltage.
  - iii) String efficiency.
- 3) Derive the expression for inductance of 3-phase overhead line for un-symmetrical spacing.



#### SECTION - II

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Derive an expression for voltage regulation and efficiency of Medium transmission line consider nominal-∏ method along with the equivalent circuit and phasor diagram.
- 2) Draw and describe both types of pressure cables.
- 3) A single core cable of conductor diameter 2 cm and lead sheath of diameter 5.3 cm is to be used on a 66 KV 3-phase system. Two intersheath of diameter 3.1 cm and 4.2 cm are introduced between the core and lead sheath. If maximum stress in the layers is same; find the voltages on the intersheath.
- 4) Draw and explain the dielectric strength in a single core underground cable with the ratio of maximum and minimum value of potential gradient.
- 5) Derive the generalized circuit constants for medium line using nominal T-method.
- 6) Explain economics of power factor improvement.

### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the capacitance of 3-core belted type cables.
- 2) A 100 km long 3-phase, 50 Hz transmission line has following constants : Resistance/phase/km =  $0.1\Omega$

Reactance/phase/km =  $0.5\Omega$ 

Susceptance/phase/km =  $10 \times 10^{-6}$  S

If line supplies load of 20 MW at 0.9 p.f. lagging at 66 KV at the receiving end, calculate by nominal- $\Pi$  method.

- i) Sending end power factor
- ii) Regulation
- iii) Transmission efficiency.
- 3) Derive an expression for sending end and receiving end voltage and current for Long Transmission line. (Rigorous method).

# Seat No.

c) Voltage

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018

| ELEMENTS OF P                                                                                                                                          | OWER SYSTEM                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day and Date : Monday, 7-5-2018<br>Time : 10.00 a.m. to 1.00 p.m.                                                                                      | Max. Marks: 70                                                                                                                                                                                        |
| 3) <b>Assume</b> the suitab<br>4) Q. No. <b>1</b> is <b>compu</b><br><b>30 minutes</b> in Ans<br>carries <b>one</b> mark.<br>5) <b>Answer MCQ/Obje</b> | indicates maximum marks. ille data whenever necessary. Isory. It should be solved in first wer Book Page No. 3. Each question ective type questions on Page No. 3 t to mention, Q.P. Set (P/Q/R/S) on |
| MCQ/Objective Touration: 30 Minutes                                                                                                                    | <b>Type Questions</b><br>Marks : 14                                                                                                                                                                   |
| 1. Choose the correct answer:                                                                                                                          | 14                                                                                                                                                                                                    |
| 1) The characteristic impedance of a tra                                                                                                               | ansmission line depends upon                                                                                                                                                                          |
| <ul> <li>a) Shape of the conductor</li> </ul>                                                                                                          |                                                                                                                                                                                                       |
| b) Surface treatment of the conductor                                                                                                                  | ors                                                                                                                                                                                                   |
| <ul><li>c) Conductivity of the material</li></ul>                                                                                                      |                                                                                                                                                                                                       |
| d) Geometrical configuration of the c                                                                                                                  |                                                                                                                                                                                                       |
| 2) In any transmission line, AD – BC =                                                                                                                 |                                                                                                                                                                                                       |
| a) 1 b) 2                                                                                                                                              | ,                                                                                                                                                                                                     |
| <ul><li>3) The disadvantage with paper as insu</li><li>a) It is hygroscopic</li></ul>                                                                  | b) It has high capacitance                                                                                                                                                                            |
| c) It is an organic material                                                                                                                           | d) None of the above                                                                                                                                                                                  |
| 4) The bundling of conductors is done p                                                                                                                | •                                                                                                                                                                                                     |
| a) Reduce reactance                                                                                                                                    | b) Increase reactance                                                                                                                                                                                 |
| <ul> <li>c) Increase ratio interference</li> </ul>                                                                                                     | d) Reduce radio interference                                                                                                                                                                          |
| <ol><li>The thickness of the layer of insulatio<br/>upon</li></ol>                                                                                     | n on the conductor, in cables, depends                                                                                                                                                                |
| a) Reactive power                                                                                                                                      | b) Power factor                                                                                                                                                                                       |

d) Current carrying capacity



| 6)  | 6) SAG depends on what factors in transmission lines                                             |                                       |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
|     | a) Span length                                                                                   |                                       |  |  |  |
|     | b) Tension in the conductors                                                                     |                                       |  |  |  |
|     | c) Weight of the conductor per unit len                                                          | gth                                   |  |  |  |
|     | d) All the above                                                                                 |                                       |  |  |  |
| 7)  | In transmission system between two su                                                            | upports, due to SAG the conductors    |  |  |  |
|     | take the shape of                                                                                | a) Davidada — al\ I birrarila da      |  |  |  |
| 0/  | a) Catenary b) Semi-circule                                                                      |                                       |  |  |  |
| 8)  | In a cable immediately above metallic s                                                          | ·                                     |  |  |  |
|     | a) Earthing connection                                                                           | b) Bedding                            |  |  |  |
| - ` | c) Armoring                                                                                      | d) None of these                      |  |  |  |
| 9)  | In order to improve the power factor w the power system.                                         | hich device should be connected to    |  |  |  |
|     | a) Series capacitor                                                                              | b) Shunt capacitor                    |  |  |  |
|     | c) Series inductor                                                                               | d) Shunt inductor                     |  |  |  |
| 10) | Varnished cambric is also known as                                                               |                                       |  |  |  |
|     | a) Empire tape b) Rubber tape                                                                    | c) Paper tape d) PVC tape             |  |  |  |
| 11) | 11) Corona usually occurs when the electrostatic stress in the air around the conductor succeeds |                                       |  |  |  |
|     | a) 30 kV (maximum value)/cm                                                                      | b) 22 kV (maximum value)/cm           |  |  |  |
|     | c) 11 kV (rms value)/cm                                                                          | d) 6.6 kV (rms value)/cm              |  |  |  |
| 12) | The effect of ice deposition on conduct                                                          | or is                                 |  |  |  |
|     | a) Increased skin effect                                                                         | b) Reduced corona losses              |  |  |  |
|     | c) Increased weight                                                                              | d) Reduced sag                        |  |  |  |
| 13) | Which of the following statements is inc                                                         | correct?                              |  |  |  |
|     | a) As the temperature raises the tension                                                         | on in the transmission line decreases |  |  |  |
|     | b) As temperature rises the sag in tran                                                          | smission lines reduces                |  |  |  |
|     | c) Tension and sag in transmission line                                                          | es are complementary to each other    |  |  |  |
|     | d) None of the above                                                                             |                                       |  |  |  |
| 14) | In transmission system a feeder feeds                                                            | power to                              |  |  |  |
| ,   | a) Service mains                                                                                 | b) Generating stations                |  |  |  |
|     | c) Distributors                                                                                  | d) All of the above                   |  |  |  |
|     | 5,554.5.5                                                                                        |                                       |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

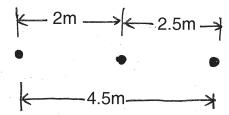
# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELEMENTS OF POWER SYSTEM

Day and Date: Monday, 7-5-2018

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) All questions are compulsory.

2) Figure to the **right** indicates **maximum** marks. 3) **Assume** the suitable data **whenever** necessary.


#### SECTION - I

2. Solve any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Explain the concept of self GMD.
- 2) Criteria for choosing conductor material. Describe ACSR conductors.
- 3) Write short note on skin effect.
- 4) Draw and describe suspension type insulators along with its advantages.
- 5) Explain inductance of single phase two wire line.
- 6) A 3 phase, 50 Hz, 66 KV overhead line conductors are placed in horizontal plane as shown in figure. The conductor diameter is 1.25 cm. If the line length is 100 km, calculate:
  - i) Capacitance per phase
  - ii) Charging current per phase.



### 3. Solve any two:

- 1) Derive expression of voltage distribution in 3 insulators in a string.
- 2) A 3-phase transmission line is being supported by three disc insulators. The potential across top unit (i.e. near to tower) and middle unit are 8 KV and 11 KV respectively. Calculate:
  - i) The ratio of capacitance between pin and earth to the self-capacitance of each unit.
  - ii) The line voltage.
  - iii) String efficiency.
- 3) Derive the expression for inductance of 3-phase overhead line for un-symmetrical spacing.



#### SECTION - II

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Derive an expression for voltage regulation and efficiency of Medium transmission line consider nominal-∏ method along with the equivalent circuit and phasor diagram.
- 2) Draw and describe both types of pressure cables.
- 3) A single core cable of conductor diameter 2 cm and lead sheath of diameter 5.3 cm is to be used on a 66 KV 3-phase system. Two intersheath of diameter 3.1 cm and 4.2 cm are introduced between the core and lead sheath. If maximum stress in the layers is same; find the voltages on the intersheath.
- 4) Draw and explain the dielectric strength in a single core underground cable with the ratio of maximum and minimum value of potential gradient.
- 5) Derive the generalized circuit constants for medium line using nominal T-method.
- 6) Explain economics of power factor improvement.

#### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the capacitance of 3-core belted type cables.
- 2) A 100 km long 3-phase, 50 Hz transmission line has following constants :

Resistance/phase/km =  $0.1\Omega$ Reactance/phase/km =  $0.5\Omega$ 

Susceptance/phase/km =  $10 \times 10^{-6}$  S

If line supplies load of 20 MW at 0.9 p.f. lagging at 66 KV at the receiving end, calculate by nominal- $\Pi$  method.

- i) Sending end power factor
- ii) Regulation
- iii) Transmission efficiency.
- 3) Derive an expression for sending end and receiving end voltage and current for Long Transmission line. (Rigorous method).

| <br> | <br> |  |
|------|------|--|

Set

# Seat No.

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELEMENTS OF POWER SYSTEM

Day and Date: Monday, 7-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) **Assume** the suitable data **whenever** necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

14

- 1) The effect of ice deposition on conductor is
- a) Increased skin effect

b) Reduced corona losses

c) Increased weight

- d) Reduced sag
- 2) Which of the following statements is incorrect?
  - a) As the temperature raises the tension in the transmission line decreases
  - b) As temperature rises the sag in transmission lines reduces
  - c) Tension and sag in transmission lines are complementary to each other
  - d) None of the above
- 3) In transmission system a feeder feeds power to
  - a) Service mains

b) Generating stations

c) Distributors

- d) All of the above
- 4) The characteristic impedance of a transmission line depends upon
  - a) Shape of the conductor
  - b) Surface treatment of the conductors
  - c) Conductivity of the material
  - d) Geometrical configuration of the conductors



| 5)  | In any transmission line, $AD - BC = $ _               |                                          |
|-----|--------------------------------------------------------|------------------------------------------|
|     | a) 1 b) 2                                              | c) 4 d) 5                                |
| 6)  | The disadvantage with paper as insu                    | lating material is                       |
|     | a) It is hygroscopic                                   | b) It has high capacitance               |
|     | c) It is an organic material                           | d) None of the above                     |
| 7)  | The bundling of conductors is done p                   | orimarily to                             |
|     | a) Reduce reactance                                    | b) Increase reactance                    |
|     | c) Increase ratio interference                         | d) Reduce radio interference             |
| 8)  | The thickness of the layer of insulation upon          | n on the conductor, in cables, depends   |
|     | a) Reactive power                                      | b) Power factor                          |
|     | c) Voltage                                             | d) Current carrying capacity             |
| 9)  | SAG depends on what factors in tran                    | smission lines                           |
|     | a) Span length                                         |                                          |
|     | b) Tension in the conductors                           |                                          |
|     | c) Weight of the conductor per unit le                 | ength                                    |
|     | d) All the above                                       |                                          |
| 10) | In transmission system between two take the shape of   | supports, due to SAG the conductors      |
|     | a) Catenary b) Semi-circule                            | e c) Parabola d) Hyperbola               |
| 11) | In a cable immediately above metallic                  | -                                        |
|     | a) Earthing connection                                 | b) Bedding                               |
|     | c) Armoring                                            | d) None of these                         |
| 12) | In order to improve the power factor the power system. | which device should be connected to      |
|     | a) Series capacitor                                    | b) Shunt capacitor                       |
|     | c) Series inductor                                     | d) Shunt inductor                        |
| 13) | Varnished cambric is also known as                     | N = N = N = N = N = N = N = N = N = N =  |
|     | , , , , , , , , , , , , , , , , , , , ,                | e c) Paper tape d) PVC tape              |
| 14) | Corona usually occurs when the ele conductor succeeds  | ectrostatic stress in the air around the |
|     | a) 30 kV (maximum value)/cm                            | b) 22 kV (maximum value)/cm              |
|     | c) 11 kV (rms value)/cm                                | d) 6.6 kV (rms value)/cm                 |
|     |                                                        |                                          |



| Seat |  |
|------|--|
| No.  |  |

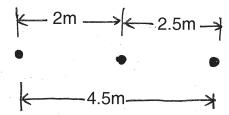
# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELEMENTS OF POWER SYSTEM

Day and Date: Monday, 7-5-2018

Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.


2) Figure to the **right** indicates **maximum** marks. 3) **Assume** the suitable data **whenever** necessary.

SECTION - I

2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the concept of self GMD.
- 2) Criteria for choosing conductor material. Describe ACSR conductors.
- 3) Write short note on skin effect.
- 4) Draw and describe suspension type insulators along with its advantages.
- 5) Explain inductance of single phase two wire line.
- 6) A 3 phase, 50 Hz, 66 KV overhead line conductors are placed in horizontal plane as shown in figure. The conductor diameter is 1.25 cm. If the line length is 100 km, calculate:
  - i) Capacitance per phase
  - ii) Charging current per phase.



### 3. Solve any two:

- 1) Derive expression of voltage distribution in 3 insulators in a string.
- 2) A 3-phase transmission line is being supported by three disc insulators. The potential across top unit (i.e. near to tower) and middle unit are 8 KV and 11 KV respectively. Calculate:
  - i) The ratio of capacitance between pin and earth to the self-capacitance of each unit.
  - ii) The line voltage.
  - iii) String efficiency.
- 3) Derive the expression for inductance of 3-phase overhead line for un-symmetrical spacing.



#### SECTION - II

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Derive an expression for voltage regulation and efficiency of Medium transmission line consider nominal-∏ method along with the equivalent circuit and phasor diagram.
- 2) Draw and describe both types of pressure cables.
- 3) A single core cable of conductor diameter 2 cm and lead sheath of diameter 5.3 cm is to be used on a 66 KV 3-phase system. Two intersheath of diameter 3.1 cm and 4.2 cm are introduced between the core and lead sheath. If maximum stress in the layers is same; find the voltages on the intersheath.
- 4) Draw and explain the dielectric strength in a single core underground cable with the ratio of maximum and minimum value of potential gradient.
- 5) Derive the generalized circuit constants for medium line using nominal T-method.
- 6) Explain economics of power factor improvement.

### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the capacitance of 3-core belted type cables.
- 2) A 100 km long 3-phase, 50 Hz transmission line has following constants :

Resistance/phase/km =  $0.1\Omega$ Reactance/phase/km =  $0.5\Omega$ 

Susceptance/phase/km =  $10 \times 10^{-6}$  S

If line supplies load of 20 MW at 0.9 p.f. lagging at 66 KV at the receiving end, calculate by nominal- $\Pi$  method.

- i) Sending end power factor
- ii) Regulation
- iii) Transmission efficiency.
- 3) Derive an expression for sending end and receiving end voltage and current for Long Transmission line. (Rigorous method).



Set

# Seat No.

# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELEMENTS OF POWER SYSTEM

Day and Date: Monday, 7-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) **Assume** the suitable data **whenever** necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

14

- 1) The disadvantage with paper as insulating material is
  - a) It is hygroscopic

- b) It has high capacitance
- c) It is an organic material
- d) None of the above
- 2) The bundling of conductors is done primarily to
  - a) Reduce reactance

- b) Increase reactance
- c) Increase ratio interference
- d) Reduce radio interference
- 3) The thickness of the layer of insulation on the conductor, in cables, depends upon
  - a) Reactive power

b) Power factor

c) Voltage

- d) Current carrying capacity
- 4) SAG depends on what factors in transmission lines
  - a) Span length
  - b) Tension in the conductors
  - c) Weight of the conductor per unit length
  - d) All the above



| 5)  | In transmission syste take the shape of                                                                                                                             | m between two si   | upports, due to   | SAG the conductors    |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-----------------------|--|
|     | a) Catenary                                                                                                                                                         | b) Semi-circule    | c) Parabola       | d) Hyperbola          |  |
| 6)  | In a cable immediate                                                                                                                                                | ly above metallic  | sheath            | _ is provided.        |  |
|     | a) Earthing connection                                                                                                                                              | on                 | b) Bedding        |                       |  |
|     | c) Armoring                                                                                                                                                         |                    | d) None of the    | ese                   |  |
| 7)  | In order to improve the power system.                                                                                                                               | ne power factor w  | hich device sho   | ould be connected to  |  |
|     | a) Series capacitor                                                                                                                                                 |                    | b) Shunt capa     | citor                 |  |
|     | c) Series inductor                                                                                                                                                  |                    | d) Shunt indu     | ctor                  |  |
| 8)  | Varnished cambric is                                                                                                                                                | also known as      |                   |                       |  |
|     | a) Empire tape                                                                                                                                                      |                    |                   |                       |  |
| 9)  | Corona usually occu conductor succeeds                                                                                                                              | rs when the elect  | rostatic stress i | in the air around the |  |
|     | a) 30 kV (maximum v                                                                                                                                                 | value)/cm          | b) 22 kV (max     | kimum value)/cm       |  |
|     | c) 11 kV (rms value)/                                                                                                                                               | 'cm                | d) 6.6 kV (rms    | s value)/cm           |  |
| 10) | The effect of ice depo                                                                                                                                              |                    | or is             |                       |  |
|     | a) Increased skin effe                                                                                                                                              | ect                | b) Reduced co     | orona losses          |  |
|     | c) Increased weight                                                                                                                                                 |                    | d) Reduced sa     | ag                    |  |
| 11) | 11) Which of the following statements is incorrect?                                                                                                                 |                    |                   |                       |  |
|     | <ul><li>a) As the temperature raises the tension in the transmission line decreases</li><li>b) As temperature rises the sag in transmission lines reduces</li></ul> |                    |                   |                       |  |
|     | c) Tension and sag in transmission lines are complementary to each other                                                                                            |                    |                   |                       |  |
|     | d) None of the above                                                                                                                                                |                    | •                 | ,                     |  |
| 12) | In transmission syste                                                                                                                                               |                    | power to          |                       |  |
| ,   | a) Service mains                                                                                                                                                    |                    | b) Generating     | stations              |  |
|     | c) Distributors                                                                                                                                                     |                    | d) All of the al  | oove                  |  |
| 13) | The characteristic imp                                                                                                                                              | pedance of a trans | smission line de  | epends upon           |  |
|     | a) Shape of the cond                                                                                                                                                | luctor             |                   |                       |  |
|     | b) Surface treatment                                                                                                                                                | of the conductors  | <b>;</b>          |                       |  |
|     | c) Conductivity of the                                                                                                                                              | e material         |                   |                       |  |
|     | d) Geometrical config                                                                                                                                               |                    | nductors          |                       |  |
| 14) | In any transmission li                                                                                                                                              | ne, AD – BC =      |                   |                       |  |
|     | a) 1                                                                                                                                                                | b) 2               | c) 4              | d) 5                  |  |



| Seat |  |
|------|--|
| No.  |  |

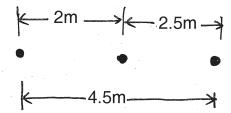
# T.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELEMENTS OF POWER SYSTEM

Day and Date: Monday, 7-5-2018

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) All questions are compulsory.

2) Figure to the **right** indicates **maximum** marks. 3) **Assume** the suitable data **whenever** necessary.


SECTION - I

2. Solve any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Explain the concept of self GMD.
- 2) Criteria for choosing conductor material. Describe ACSR conductors.
- 3) Write short note on skin effect.
- 4) Draw and describe suspension type insulators along with its advantages.
- 5) Explain inductance of single phase two wire line.
- 6) A 3 phase, 50 Hz, 66 KV overhead line conductors are placed in horizontal plane as shown in figure. The conductor diameter is 1.25 cm. If the line length is 100 km, calculate:
  - i) Capacitance per phase
  - ii) Charging current per phase.



3. Solve any two:

- 1) Derive expression of voltage distribution in 3 insulators in a string.
- 2) A 3-phase transmission line is being supported by three disc insulators. The potential across top unit (i.e. near to tower) and middle unit are 8 KV and 11 KV respectively. Calculate:
  - i) The ratio of capacitance between pin and earth to the self-capacitance of each unit.
  - ii) The line voltage.
  - iii) String efficiency.
- 3) Derive the expression for inductance of 3-phase overhead line for un-symmetrical spacing.



#### SECTION - II

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Derive an expression for voltage regulation and efficiency of Medium transmission line consider nominal-∏ method along with the equivalent circuit and phasor diagram.
- 2) Draw and describe both types of pressure cables.
- 3) A single core cable of conductor diameter 2 cm and lead sheath of diameter 5.3 cm is to be used on a 66 KV 3-phase system. Two intersheath of diameter 3.1 cm and 4.2 cm are introduced between the core and lead sheath. If maximum stress in the layers is same; find the voltages on the intersheath.
- 4) Draw and explain the dielectric strength in a single core underground cable with the ratio of maximum and minimum value of potential gradient.
- 5) Derive the generalized circuit constants for medium line using nominal T-method.
- 6) Explain economics of power factor improvement.

### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the capacitance of 3-core belted type cables.
- 2) A 100 km long 3-phase, 50 Hz transmission line has following constants :

Resistance/phase/km =  $0.1\Omega$ Reactance/phase/km =  $0.5\Omega$ 

Susceptance/phase/km =  $10 \times 10^{-6}$  S

If line supplies load of 20 MW at 0.9 p.f. lagging at 66 KV at the receiving end, calculate by nominal- $\Pi$  method.

- i) Sending end power factor
- ii) Regulation
- iii) Transmission efficiency.
- 3) Derive an expression for sending end and receiving end voltage and current for Long Transmission line. (Rigorous method).

|  | Ш |  |
|--|---|--|
|--|---|--|

### **SLR-TC - 494**

| Seat |  |
|------|--|
| No.  |  |

### T.E. (E&E) (Part – I) (CGPA) Examination, 2018 **CONTROL SYSTEMS - I**

Day and Date: Tuesday, 8-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) All questions are compulsory.
  - 4) Figures to the right indicate full marks.
  - 5) Assume suitable data wherever necessary.

|                             |                                                   | N                                | ICQ/Objective T               | ype Questions          |                           |                      |  |
|-----------------------------|---------------------------------------------------|----------------------------------|-------------------------------|------------------------|---------------------------|----------------------|--|
| Dur                         | atio                                              | n : 30 Minutes                   |                               |                        |                           | Marks: 14            |  |
| 1.                          | Ch                                                | noose the correct an             | swer:                         |                        |                           | (14×1=14)            |  |
|                             | 1)                                                | Two blocks G <sub>1</sub> (s) an | $d G_2(s)$ can be cas         | scaded to get resul    | tant transfer t           | function as          |  |
|                             |                                                   | a) $G_1(s) + G_2(s)$             | b) $G_1(s)/G_2(s)$            | c) $G_{1}(s) G_{2}(s)$ | d) $1 + G_1(s)$           | ) G <sub>2</sub> (s) |  |
|                             | 2)                                                | As a root moves fur              | ther away from ir             | naginary axis the      | ginary axis the stability |                      |  |
|                             |                                                   | a) increase                      | b) decreases                  | c) not affected        | d) none of                | these                |  |
|                             | 3) The initial response when the output response. |                                  |                               | ut is not equal to     | the input is              | termed               |  |
|                             |                                                   | a) dynamic                       | b) transient                  | c) error               | d) none of                | these                |  |
|                             | 4)                                                | has the t                        | endency to oscill             | ate.                   |                           |                      |  |
| a) Open loop control system |                                                   | ol system                        | b) Closed loop control system |                        | m                         |                      |  |
|                             |                                                   | c) Both (a) and (b)              |                               | d) Neither (a) no      | or (b)                    |                      |  |
|                             | 5) When damping factor decreases the              |                                  | or decreases the              | per unit overshoo      | ot ?                      |                      |  |
|                             |                                                   | a) increases                     |                               | b) decreases           |                           |                      |  |
|                             |                                                   | c) remains unaffec               | ted                           | d) none of the a       | bove                      |                      |  |



| 6)  | For a type one syste                                               | em, the steady $-$      | state ei            | rror due to              | step input is equal to     |
|-----|--------------------------------------------------------------------|-------------------------|---------------------|--------------------------|----------------------------|
|     | a) infinite                                                        | b) zero                 | c) 0.2              | 5                        | d) 0.5                     |
| 7)  | For a system if the i                                              | nitial conditions a     | re zero             | , it means               | that the system is         |
|     | a) Working with zer                                                | o reference input       |                     |                          |                            |
|     | b) Working but does                                                | s not store energy      | y                   |                          |                            |
|     | c) At rest but store                                               | energy                  |                     |                          |                            |
|     | d) At rest and has r                                               | o energy stored i       | n any p             | oart                     |                            |
| 8)  | The bode plot is app                                               | olicable to             | _ phase             | e network.               |                            |
|     | a) all                                                             | b) maximum              | c) mir              | nimum                    | d) none of these           |
| 9)  | Addition of zeros in                                               | transfer function       | causes              | co                       | ompensation.               |
|     | a) lag                                                             | b) lead                 | c) lag              | - lead                   | d) none of these           |
| 10) | The transfer function having                                       | on technique is c       | onside              | red inaded               | quate with systems         |
|     | a) stability problems                                              | 3                       | b) mu               | Itiple input             | disturbances               |
|     | c) complexities and                                                | non-linearity's         | d) all              | of the abov              | /e                         |
| 11) | Phase margin of a s                                                | system is used to       | specify             | which of t               | he following?              |
|     | a) Frequency response                                              | nse                     | b) Ab               | solute stab              | ility                      |
|     | c) Relative stability                                              |                         | d) Tin              | ne respons               | е                          |
| 12) | For an n <sup>th</sup> order syst                                  | em state equatio        | ns will             | be                       |                            |
|     | a) n                                                               | b) 1                    | c) $\frac{n}{2}$    |                          | d) $\frac{n+1}{2}$         |
| 13) | The transfer function of the following comphase lead compens       | ditions is necess       |                     |                          | ·                          |
|     | a) $\alpha_1 = \beta_1$                                            | b) $\alpha_1 > \beta_1$ | c) $\alpha_1$       | = 0                      | d) $\alpha_1 < \beta_1$    |
| 14) | The transfer function space representation the state, Y the output | n of $X = AX + BU$      | and Y =<br>ut vecto | CX + DU<br>or, will be g | where X represents iven by |
|     | a) C (sl – A) – 1B                                                 |                         | , ,                 | sl – A) – 1l             |                            |
|     | c) (sI – A) – 1B                                                   |                         | d) (sl              | – A) – 1B -              | + D                        |
|     |                                                                    |                         |                     |                          |                            |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (E&E) (Part – I) (CGPA) Examination, 2018 CONTROL SYSTEMS – I

Day and Date: Tuesday, 8-5-2018

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

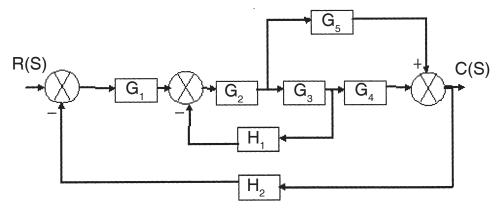
2) Figures to the **right** indicate **full** marks.

3) Assume suitable data wherever necessary.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 


Marks: 56

1) Explain the classification of control systems.

- 2) A second order system is given by  $C(s)/R(s) = \frac{25}{s^2 + 6s + 25}$ . Find its rise time, peak time, peak overshoot and settling time.
- 3) Explain terminologies used in signal flow graph.
- 4) What is root locus? Explain angle condition and magnitude condition.
- 5) What is the difference between steady state response and transient response of a control system?

### 3. Solve any two:

- 1) Explain step response of second order system.
- 2) Reduce the block diagram using reduction rules and obtain C(s)/R(s).





3) For a unity feedback system,  $G(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ . Sketch the complete root locus showing all details on it.

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

a) Derive transfer function from state model given as below.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- b) Explain PD controller.
- c) Explain phase lead compensator.
- d) Check the observability of system below

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -0.5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- e) Explain correlation between time and frequency domain.
- f) Define Gain margin and Phase margin.

### 5. Solve any two:

 $(2\times6=12)$ 

- a) Construct the bode plot for the system whose open loop transfer function is given below and determine
  - a) gain margin
  - b) phase margin

$$G(s) H(s) = \frac{50}{s(1+0.25s)(1+0.1s)}$$

- b) Sketch the polar plot for G(S) = 1/S(S + 1).
- c) Explain programmable logic controller in detail.

<del>-----</del>

|--|--|

| Seat |  |
|------|--|
| No.  |  |

# T.E. (E&E) (Part – I) (CGPA) Examination, 2018

|      |      |                                                                                   | CONTROL SY                                                               | STEMS – I                                                   |                                              |                    |
|------|------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|--------------------|
| •    |      | d Date : Tuesday, 8-5<br>10.00 a.m. to 1.00 p.n                                   |                                                                          |                                                             | Total                                        | Marks: 70          |
|      | ı    | carri<br>2) <b>Ans</b><br><b>only</b><br><b>Top</b><br>3) <b>All</b> (<br>4) Figu | ninutes in Answies one mark.  wer MCQ/Object  of Page.  questions are co | ver Book Page No<br>ctive type question<br>to mention, Q.P. | o. 3. Each que<br>ons on Pago<br>Set (P/Q/R/ | uestion<br>e No. 3 |
|      |      | MC                                                                                | CQ/Objective Ty                                                          | pe Questions                                                |                                              |                    |
| Dura | ıtio | n : 30 Minutes                                                                    |                                                                          |                                                             |                                              | Marks: 14          |
| 1.   | Ch   | oose the correct answ                                                             | ver:                                                                     |                                                             |                                              | (14×1=14)          |
|      | 1)   | The bode plot is appl                                                             | icable to                                                                | _ phase network.                                            |                                              |                    |
|      |      | a) all                                                                            | o) maximum                                                               | c) minimum                                                  | d) none of                                   | these              |
|      | 2)   | Addition of zeros in tr                                                           | ansfer function                                                          | causes c                                                    | ompensatio                                   | n.                 |
|      |      | a) lag                                                                            | o) lead                                                                  | c) lag – lead                                               | d) none of                                   | these              |
|      | 3)   | The transfer function having                                                      | n technique is c                                                         | considered inade                                            | quate with s                                 | systems            |
|      |      | a) stability problems                                                             |                                                                          | b) multiple input                                           | disturbance                                  | es                 |
|      |      | c) complexities and I                                                             | non-linearity's                                                          | d) all of the abou                                          | ve                                           |                    |
|      | 4)   | Phase margin of a sy                                                              | stem is used to                                                          | specify which of                                            | the following                                | <b>;</b> ?         |
|      |      | a) Frequency respon                                                               | ise                                                                      | b) Absolute stab                                            | oility                                       |                    |
|      |      | c) Relative stability                                                             |                                                                          | d) Time respons                                             | se                                           |                    |
|      | 5)   | For an n <sup>th</sup> order syste                                                | em state equatio                                                         | ns will be                                                  |                                              |                    |
|      |      | a) n                                                                              | o) 1                                                                     | c) $\frac{n}{2}$                                            | d) $\frac{n+1}{2}$                           | BTO                |



| 6)  | The transfer function of a passive network is given by $s + \alpha_1/s + \beta_1$ . Which of the following conditions is necessary such that the network acts as a phase lead compensator? |                         |                     |                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|--------------------------------------------------------|
|     | a) $\alpha_1 = \beta_1$                                                                                                                                                                    | b) $\alpha_1 > \beta_1$ | c) $\alpha_1 = 0$   | d) $\alpha_1 < \beta_1$                                |
| 7)  |                                                                                                                                                                                            | on of $X = AX + BU$     | and $Y = CX + DU$   | tem, with the state-<br>where X represents<br>given by |
|     | a) C (sI - A) - 1B                                                                                                                                                                         |                         | b) $C (sI - A) - 1$ | B + D                                                  |
|     | c) $(sI - A) - 1B$                                                                                                                                                                         |                         | d) $(sI - A) - 1B$  | + D                                                    |
| 8)  | Two blocks G <sub>1</sub> (s) an                                                                                                                                                           | $d G_2(s)$ can be cas   | caded to get resul  | tant transfer function as                              |
|     | a) $G_1(s) + G_2(s)$                                                                                                                                                                       | b) $G_1(s)/G_2(s)$      | c) $G_1(s) G_2(s)$  | d) $1 + G_1(s) G_2(s)$                                 |
| 9)  | As a root moves ful                                                                                                                                                                        | rther away from in      | naginary axis the   | stability                                              |
|     | a) increase                                                                                                                                                                                | b) decreases            | c) not affected     | d) none of these                                       |
| 10) | The initial response.                                                                                                                                                                      | e when the outpu        | it is not equal to  | the input is termed                                    |
|     | a) dynamic                                                                                                                                                                                 | b) transient            | c) error            | d) none of these                                       |
| 11) | has the t                                                                                                                                                                                  | tendency to oscilla     | ate.                |                                                        |
|     | a) Open loop contr                                                                                                                                                                         | ol system               | b) Closed loop of   | control system                                         |
|     | c) Both (a) and (b)                                                                                                                                                                        |                         | d) Neither (a) no   | or (b)                                                 |
| 12) | When damping fact                                                                                                                                                                          | tor decreases the       | per unit overshoo   | ot?                                                    |
|     | a) increases                                                                                                                                                                               |                         | b) decreases        |                                                        |
|     | c) remains unaffec                                                                                                                                                                         | ted                     | d) none of the a    | bove                                                   |
| 13) | For a type one syst                                                                                                                                                                        | em, the steady –        | state error due to  | step input is equal to                                 |
|     | a) infinite                                                                                                                                                                                | b) zero                 | c) 0.25             | d) 0.5                                                 |
| 14) | For a system if the                                                                                                                                                                        | initial conditions a    | are zero, it means  | that the system is                                     |
|     | a) Working with ze                                                                                                                                                                         | ro reference input      |                     |                                                        |
|     | b) Working but doe                                                                                                                                                                         | es not store energ      | у                   |                                                        |
|     | c) At rest but store                                                                                                                                                                       | 0,                      |                     |                                                        |
|     | d) At rest and has                                                                                                                                                                         | no energy stored        | in any part         |                                                        |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (E&E) (Part – I) (CGPA) Examination, 2018 CONTROL SYSTEMS – I

Day and Date: Tuesday, 8-5-2018

Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

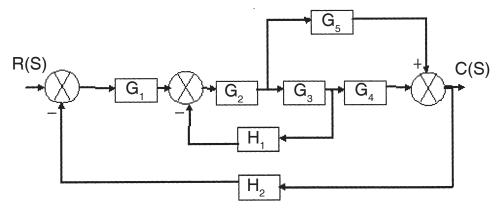
**Instructions**: 1) **All** questions are **compulsory**.

2) Figures to the **right** indicate **full** marks.

3) Assume suitable data wherever necessary.

#### SECTION - I

#### 2. Solve any four:


 $(4 \times 4 = 16)$ 

1) Explain the classification of control systems.

- 2) A second order system is given by  $C(s)/R(s) = \frac{25}{s^2 + 6s + 25}$ . Find its rise time, peak time, peak overshoot and settling time.
- 3) Explain terminologies used in signal flow graph.
- 4) What is root locus? Explain angle condition and magnitude condition.
- 5) What is the difference between steady state response and transient response of a control system ?

### 3. Solve any two:

- 1) Explain step response of second order system.
- 2) Reduce the block diagram using reduction rules and obtain C(s)/R(s).





3) For a unity feedback system,  $G(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ . Sketch the complete root locus showing all details on it.

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

a) Derive transfer function from state model given as below.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- b) Explain PD controller.
- c) Explain phase lead compensator.
- d) Check the observability of system below

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -0.5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- e) Explain correlation between time and frequency domain.
- f) Define Gain margin and Phase margin.

### 5. Solve any two:

 $(2\times6=12)$ 

- a) Construct the bode plot for the system whose open loop transfer function is given below and determine
  - a) gain margin
  - b) phase margin

$$G(s) H(s) = \frac{50}{s(1+0.25s)(1+0.1s)}$$

- b) Sketch the polar plot for G(S) = 1/S(S + 1).
- c) Explain programmable logic controller in detail.

\_\_\_\_ Set Q

| Seat |  |
|------|--|
| No.  |  |

et R

# T.E. (E&E) (Part – I) (CGPA) Examination, 2018 CONTROL SYSTEMS – I

Day and Date: Tuesday, 8-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) All questions are compulsory.
  - 4) Figures to the right indicate full marks.
  - 5) Assume suitable data wherever necessary.

|     |                        | MCQ/Objectiv     | e Type Question     | S               |             |
|-----|------------------------|------------------|---------------------|-----------------|-------------|
| Dur | ration : 30 Minutes    |                  |                     |                 | Marks: 14   |
| 1.  | Choose the correct ar  | nswer:           |                     |                 | (14×1=14)   |
|     | 1) When damping fac    | ctor decreases   | the per unit overs  | hoot?           |             |
|     | a) increases           |                  | b) decreases        | 3               |             |
|     | c) remains unaffe      | cted             | d) none of th       | e above         |             |
|     | 2) For a type one sys  | stem, the stead  | y – state error due | e to step input | is equal to |
|     | a) infinite            | b) zero          | c) 0.25             | d) 0.5          |             |
|     | 3) For a system if the | initial conditio | ns are zero, it me  | ans that the s  | ystem is    |
|     | a) Working with ze     | ero reference i  | nput                |                 |             |
|     | b) Working but do      | es not store er  | nergy               |                 |             |
|     | c) At rest but store   | e energy         |                     |                 |             |
|     | d) At rest and has     | no energy sto    | red in any part     |                 |             |
|     | 4) The bode plot is a  | oplicable to     | phase netwo         | ork.            |             |
|     | a) all                 |                  | b) maximum          |                 |             |
|     | c) minimum             |                  | d) none of th       | ese             |             |



| 5)  | Addition of zeros in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | transfer function       | cau  | ises co           | ompensation.             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|-------------------|--------------------------|
|     | a) lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) lead                 | c)   | lag – lead        | d) none of these         |
| 6)  | The transfer function having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on technique is c       | ons  | sidered inaded    | juate with systems       |
|     | a) stability problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S                       | b)   | multiple input    | disturbances             |
|     | c) complexities and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I non-linearity's       | d)   | all of the above  | re e                     |
| 7)  | Phase margin of a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | system is used to       | spe  | ecify which of t  | he following?            |
|     | a) Frequency response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onse                    | b)   | Absolute stab     | ility                    |
|     | c) Relative stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | d)   | Time respons      | е                        |
| 8)  | For an n <sup>th</sup> order sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tem state equatio       | ns v | will be           |                          |
|     | a) n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) 1                    | c)   | $\frac{n}{2}$     | d) $\frac{n+1}{2}$       |
| 9)  | The transfer function of the following compensate lead compens | nditions is necess      |      |                   |                          |
|     | a) $\alpha_1 = \beta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) $\alpha_1 > \beta_1$ | c)   | $\alpha_1 = 0$    | d) $\alpha_1 < \beta_1$  |
| 10) | The transfer function of a multi-input multi-output system, with the state-<br>space representation of $X = AX + BU$ and $Y = CX + DU$ where X represents<br>the state, Y the output and U the input vector, will be given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |      |                   |                          |
|     | a) C (sl – A) – 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | b)   | C(sI - A) - 1I    | B + D                    |
|     | c) (sI - A) - 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | d)   | (sI - A) - 1B -   | + D                      |
| 11) | Two blocks G <sub>1</sub> (s) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $d G_2(s)$ can be case  | cad  | led to get result | ant transfer function as |
|     | a) $G_1(s) + G_2(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) $G_1(s)/G_2(s)$      | c)   | $G_1(s) G_2(s)$   | d) $1 + G_1(s) G_2(s)$   |
| 12) | As a root moves fur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ther away from im       | nag  | inary axis the    | stability                |
|     | a) increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b) decreases            | c)   | not affected      | d) none of these         |
| 13) | The initial response response.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | when the outpu          | t is | not equal to      | the input is termed      |
|     | a) dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b) transient            | c)   | error             | d) none of these         |
| 14) | has the to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | endency to oscilla      | ite. |                   |                          |
|     | a) Open loop contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ol system               | b)   | Closed loop c     | ontrol system            |
|     | c) Both (a) and (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | d)   | Neither (a) no    | r (b)                    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                   |                          |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (E&E) (Part – I) (CGPA) Examination, 2018 CONTROL SYSTEMS – I

Day and Date: Tuesday, 8-5-2018

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) All questions are compulsory.

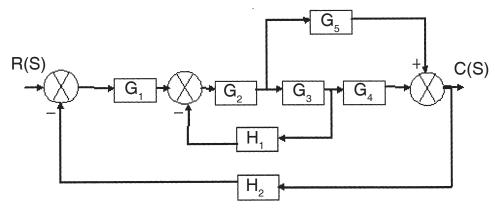
2) Figures to the **right** indicate **full** marks.

3) Assume suitable data wherever necessary.

SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 


Marks: 56

1) Explain the classification of control systems.

- 2) A second order system is given by  $C(s)/R(s) = \frac{25}{s^2 + 6s + 25}$ . Find its rise time, peak time, peak overshoot and settling time.
- 3) Explain terminologies used in signal flow graph.
- 4) What is root locus? Explain angle condition and magnitude condition.
- 5) What is the difference between steady state response and transient response of a control system?

### 3. Solve any two:

- 1) Explain step response of second order system.
- 2) Reduce the block diagram using reduction rules and obtain C(s)/R(s).





3) For a unity feedback system,  $G(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ . Sketch the complete root locus showing all details on it.

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

a) Derive transfer function from state model given as below.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- b) Explain PD controller.
- c) Explain phase lead compensator.
- d) Check the observability of system below

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -0.5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- e) Explain correlation between time and frequency domain.
- f) Define Gain margin and Phase margin.

### 5. Solve any two:

 $(2\times6=12)$ 

- a) Construct the bode plot for the system whose open loop transfer function is given below and determine
  - a) gain margin
  - b) phase margin

$$G(s) H(s) = \frac{50}{s(1+0.25s)(1+0.1s)}$$

- b) Sketch the polar plot for G(S) = 1/S(S + 1).
- c) Explain programmable logic controller in detail.

|--|--|

Seat No.

### T.E. (E&E) (Part – I) (CGPA) Examination, 2018 **CONTROL SYSTEMS - I**

Total Marks: 70 Day and Date: Tuesday, 8-5-2018

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|     |      | 4) Figure                           |                | <b>mpulsory</b> .<br>Indicate <b>full</b> mark<br>a <b>wherever</b> nece |                    |           |
|-----|------|-------------------------------------|----------------|--------------------------------------------------------------------------|--------------------|-----------|
|     |      | MCQ                                 | /Objective Ty  | pe Questions                                                             |                    |           |
| Dur | atic | n : 30 Minutes                      |                |                                                                          |                    | Marks: 14 |
| 1.  | Cł   | noose the correct answe             | r:             |                                                                          |                    | (14×1=14) |
|     | 1)   | The transfer function to having     | echnique is co | onsidered inaded                                                         | quate with s       | ystems    |
|     |      | a) stability problems               |                | b) multiple input                                                        | disturbance        | S         |
|     |      | c) complexities and no              | n-linearity's  | d) all of the above                                                      | ve                 |           |
|     | 2)   | Phase margin of a syste             | em is used to  | specify which of t                                                       | the following      | ?         |
|     |      | a) Frequency response               | 9              | b) Absolute stab                                                         | oility             |           |
|     |      | c) Relative stability               |                | d) Time respons                                                          | se                 |           |
|     | 3)   | For an n <sup>th</sup> order system | state equation | ns will be                                                               |                    |           |
|     |      | a) n b)                             | 1              | c) $\frac{n}{2}$                                                         | d) $\frac{n+1}{2}$ |           |
|     | 4)   | The transfer function of            | a passive net  | work is given by                                                         | s + α./s + β       | Which     |

- of the following conditions is necessary such that the network acts as a phase lead compensator?
  - a)  $\alpha_1 = \beta_1$
- b)  $\alpha_1 > \beta_1$  c)  $\alpha_1 = 0$  d)  $\alpha_1 < \beta_1$

| 5)                                                        |                                  | on of $X = AX + BU$     | and $Y = CX +$   | system, with the state-<br>DU where X represents<br>be given by |
|-----------------------------------------------------------|----------------------------------|-------------------------|------------------|-----------------------------------------------------------------|
|                                                           | a) C (sl – A) – 1B               |                         | b) C (sI - A)    | – 1B + D                                                        |
|                                                           | c) (sI - A) - 1B                 |                         | d) (sI - A) -    | 1B + D                                                          |
| 6)                                                        | Two blocks G <sub>1</sub> (s) an | $d G_{2}(s) can be cas$ | scaded to get re | esultant transfer function as                                   |
|                                                           | ·                                | _                       |                  | s) d) $1 + G_1(s) G_2(s)$                                       |
| 7)                                                        | As a root moves fu               | rther away from in      | maginary axis    | the stability                                                   |
|                                                           | a) increase                      | b) decreases            | c) not affect    | ed d) none of these                                             |
| 8)                                                        | The initial respons response.    | e when the outpo        | ut is not equal  | I to the input is termed                                        |
|                                                           | a) dynamic                       | b) transient            | c) error         | d) none of these                                                |
| 9)                                                        | has the                          | tendency to oscill      | ate.             |                                                                 |
|                                                           | a) Open loop conti               | rol system              | b) Closed lo     | op control system                                               |
|                                                           | c) Both (a) and (b)              |                         | d) Neither (a    | n) nor (b)                                                      |
| 10) When damping factor decreases the per unit overshoot? |                                  | shoot?                  |                  |                                                                 |
|                                                           | a) increases                     |                         | b) decreases     | S                                                               |
|                                                           | c) remains unaffect              | ted                     | d) none of th    | ne above                                                        |
| 11)                                                       | For a type one sys               | tem, the steady –       | state error due  | e to step input is equal to                                     |
|                                                           | a) infinite                      | b) zero                 | c) 0.25          | d) 0.5                                                          |
| 12)                                                       | For a system if the              | initial conditions      | are zero, it me  | ans that the system is                                          |
|                                                           | a) Working with ze               | ro reference inpu       | t                |                                                                 |
|                                                           | b) Working but doe               | es not store energ      | ЗУ               |                                                                 |
|                                                           | c) At rest but store             | energy                  |                  |                                                                 |
|                                                           | d) At rest and has               | no energy stored        | in any part      |                                                                 |
| 13)                                                       | The bode plot is ap              | plicable to             | _ phase netwo    | ork.                                                            |
|                                                           | a) all                           | b) maximum              | c) minimum       | d) none of these                                                |
| 14)                                                       | Addition of zeros in             | transfer function       | causes           | compensation.                                                   |
|                                                           | a) lag                           | h) lead                 | c) lag – lead    | d) none of these                                                |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (E&E) (Part – I) (CGPA) Examination, 2018 CONTROL SYSTEMS – I

Day and Date: Tuesday, 8-5-2018

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

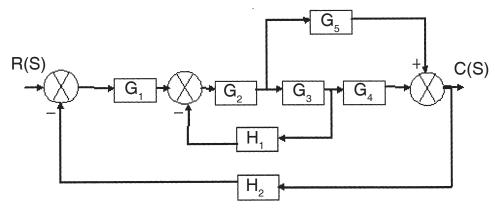
2) Figures to the **right** indicate **full** marks.

3) Assume suitable data wherever necessary.

SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 


Marks: 56

1) Explain the classification of control systems.

- 2) A second order system is given by  $C(s)/R(s) = \frac{25}{s^2 + 6s + 25}$ . Find its rise time, peak time, peak overshoot and settling time.
- 3) Explain terminologies used in signal flow graph.
- 4) What is root locus? Explain angle condition and magnitude condition.
- 5) What is the difference between steady state response and transient response of a control system ?

### 3. Solve any two:

- 1) Explain step response of second order system.
- 2) Reduce the block diagram using reduction rules and obtain C(s)/R(s).





3) For a unity feedback system,  $G(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ . Sketch the complete root locus showing all details on it.

#### 4. Solve any four:

 $(4 \times 4 = 16)$ 

a) Derive transfer function from state model given as below.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- b) Explain PD controller.
- c) Explain phase lead compensator.
- d) Check the observability of system below

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -0.5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$Y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- e) Explain correlation between time and frequency domain.
- f) Define Gain margin and Phase margin.

### 5. Solve any two:

 $(2\times6=12)$ 

- a) Construct the bode plot for the system whose open loop transfer function is given below and determine
  - a) gain margin
  - b) phase margin

$$G(s) H(s) = \frac{50}{s(1+0.25s)(1+0.1s)}$$

- b) Sketch the polar plot for G(S) = 1/S(S + 1).
- c) Explain programmable logic controller in detail.

| Seat |  |
|------|--|
| No.  |  |

Set

Р

# T.E. (Part – II) (Electrical and Electronics Engg.) (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018

Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) As the breakdown voltage reached, the DIAC exhibits
  - a) Negative resistance characteristics
  - b) Goes into avalanche condition
  - c) Voltage drop snaps back
  - d) All of these
- 2) The angle at which SCR turns off is called
  - a) On angle

b) Conduction angle

c) Firing angle

- d) Extinction angle
- 3) For power output higher than 15 kW, the suitable rectifier is
  - a) Single phase

b) 3-phase

c) Poly phase

d) Both b) and c)

- 4) IGBT possess
  - a) Low input impedance
- b) High input impedance
- c) High on state resistance
- d) Second break down problems
- 5) In phase controlled rectification Power Factor (PF)
  - a) Remains unaffected
  - b) Improves with increase of firing angle
  - c) Deteriorates with increase of  $\boldsymbol{\alpha}$
  - d) Is unrelated to  $\boldsymbol{\alpha}$



| 6)  | <ul><li>Which circuit gives inherent freewhee</li><li>a) Half wave converter</li><li>c) Full converter</li></ul>                                                                                                               | b)                 | g action ?<br>Semi converter<br>None                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------|
| 7)  | The cycloconverter require natural or a) Natural commutation in both step-b) Forced commutation in both step-c) Forced commutation in step-up cyd) Forced commutation in step-down                                             | -up<br>·up<br>yclo | and step down cycloconverter and step-down cycloconverter oconverter |
| 8)  | If the chopper switching frequency is cycle is a) 0.4                                                                                                                                                                          |                    | 0 Hz and Ton time is 2 ms, the duty                                  |
|     | c) 0.6                                                                                                                                                                                                                         | ,                  | None of these                                                        |
| 9)  | <ul> <li>A class D chopper</li> <li>a) Can operate in first quadrant only</li> <li>b) Can operate in second quadrant of</li> <li>c) Can operate in first or fourth quadrant</li> <li>d) Can operate in all quadrant</li> </ul> | only               |                                                                      |
| 10) | In pulse width modulation of chopper a) T is kept constant and $T_{ON}$ is varied b) $T_{ON}$ is kept constant and T is varied c) Both T and $T_{ON}$ is varied d) None of these                                               | ed                 |                                                                      |
| 11) | The commutation method, in an invea) Line commutation c) Both a) and b)                                                                                                                                                        | b)                 | ris Forced commutation None of the above                             |
| 12) | For a duty cycle of 40%, the output D is 200 V a) 80 V                                                                                                                                                                         |                    | or step down chopper is if input dc<br>800 V                         |
|     | c) 8 V                                                                                                                                                                                                                         | •                  | 0.8 V                                                                |
| 13) | Power electronics converters used to a) Control the speed c) Control the current                                                                                                                                               | b)                 | Control the power<br>None                                            |
| 14) | The rms value of output voltage in a a) $\mathrm{V/2}$                                                                                                                                                                         | 1-p<br>b)          |                                                                      |
|     | c) 2 V                                                                                                                                                                                                                         | d)                 | V/3                                                                  |
|     |                                                                                                                                                                                                                                |                    |                                                                      |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Electrical and Electronics Engg.) (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

#### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the two transistor analogy of SCR. Explain regenerative current process to conduct the SCR.
- b) Explain the working principle of Depletion p-channel MOSFET with V-I and transfer characteristics.
- c) What is meant by commutation? Explain Class-D commutation with proper wave form.
- d) Write the application of thyristor in SMPS.
- e) Write the comparison between SCR, DIAC and TRIAC.

### 3. Attempt any two questions:

 $(2 \times 6 = 12)$ 

- a) Draw and explain the dynamic turn on and turn off characteristics of SCR.
- b) Explain the two quadrant operation of 1-phase fully controlled bridge rectifier with RL load. Draw the output voltage and current wave form for  $\alpha=0$  degrees,  $\alpha=90$  degrees and  $\alpha=120$  degrees. Derive the  $V_{L}$  and  $I_{L}$ .
- c) The load commutation (class-A) circuitry is initially at relaxed. The thyristors T is turned on at t=0. Determine i) Conduction time of SCR. ii) Voltage across SCR and capacitor after SCR is turned off by taking L=5 mH,  $C=20\mu F$  and input voltage for circuit is 200 V.

#### SECTION - II

### 4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- a) Explain principle of operation of Morgan Chopper.
- b) Explain the voltage control and harmonics analysis of inverter.
- c) Explain principle of operation of single phase to single phase cycloconverter with R.



- d) A single phase half bridge inverter feeds a resistive load of R =  $7.5\Omega$ . The dc voltage of the inverter is given as 220 V. determine
  - i) RMS value of output voltage.
  - ii) Output power.
- e) Explain the principle of operation of class-D chopper.

#### 5. Attempt any two questions:

 $(2 \times 6 = 12)$ 

- a) Draw a neat sketch and explain the 180 degrees conduction mode of 3-phase inverter and derive the line-line voltage and phase voltage expressions.
- b) Explain the principle of operation of step up chopper and derive the expressions for output voltage, current and RMS output voltage.
- c) Explain principle of operation of 3 phase to 3 phase 6 pulse cycloconverter with wave forms.

Set



# T.E. (Part – II) (Electrical and Electronics Engg.) (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) If the chopper switching frequency is 200 Hz and Ton time is 2 ms, the duty cycle is
  - a) 0.4
- b) 0.8
- c) 0.6
- d) None of these

- 2) A class D chopper
  - a) Can operate in first quadrant only
  - b) Can operate in second quadrant only
  - c) Can operate in first or fourth quadrant
  - d) Can operate in all quadrant
- 3) In pulse width modulation of chopper
  - a) T is kept constant and  $\rm T_{\rm ON}$  is varied
  - b)  $T_{ON}$  is kept constant and T is varied
  - c) Both T and T<sub>ON</sub> is varied
  - d) None of these
- 4) The commutation method, in an inverter is
  - a) Line commutation

b) Forced commutation

c) Both a) and b)

- d) None of the above
- 5) For a duty cycle of 40%, the output DC for step down chopper is if input dc is 200 V
  - a) 80 V

b) 800 V

c) 8 V

d) 0.8 V



| 6)  | Power electronics converters used to a) Control the speed c) Control the current                                                                                                     | b) Control the power<br>d) None                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 7)  | The rms value of output voltage in a a) V/2 c) 2 V                                                                                                                                   | 1-phase half bridge inverter is<br>b) V<br>d) V/3                               |
| 8)  | As the breakdown voltage reached, to a) Negative resistance characteristic b) Goes into avalanche condition c) Voltage drop snaps back d) All of these                               |                                                                                 |
| 9)  | The angle at which SCR turns off is                                                                                                                                                  |                                                                                 |
|     | <ul><li>a) On angle</li><li>c) Firing angle</li></ul>                                                                                                                                | <ul><li>b) Conduction angle</li><li>d) Extinction angle</li></ul>               |
| 10) | For power output higher than 15 kW, a) Single phase c) Poly phase                                                                                                                    | the suitable rectifier is b) 3-phase d) Both b) and c)                          |
| 11) | IGBT possess a) Low input impedance c) High on state resistance                                                                                                                      | <ul><li>b) High input impedance</li><li>d) Second break down problems</li></ul> |
| 12) | In phase controlled rectification Power a) Remains unaffected b) Improves with increase of firing at c) Deteriorates with increase of $\alpha$ d) Is unrelated to $\alpha$           | ` ,                                                                             |
| 13) | Which circuit gives inherent freewhee<br>a) Half wave converter<br>c) Full converter                                                                                                 | eling action ?<br>b) Semi converter<br>d) None                                  |
| 14) | The cycloconverter require natural or a) Natural commutation in both steps b) Forced commutation in both steps c) Forced commutation in step-up cyd) Forced commutation in step-down | up and step down cycloconverter up and step-down cycloconverter vcloconverter   |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Electrical and Electronics Engg.) (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the two transistor analogy of SCR. Explain regenerative current process to conduct the SCR.
- b) Explain the working principle of Depletion p-channel MOSFET with V-I and transfer characteristics.
- c) What is meant by commutation? Explain Class-D commutation with proper wave form.
- d) Write the application of thyristor in SMPS.
- e) Write the comparison between SCR, DIAC and TRIAC.

### 3. Attempt any two questions:

 $(2 \times 6 = 12)$ 

- a) Draw and explain the dynamic turn on and turn off characteristics of SCR.
- b) Explain the two quadrant operation of 1-phase fully controlled bridge rectifier with RL load. Draw the output voltage and current wave form for  $\alpha=0$  degrees,  $\alpha=90$  degrees and  $\alpha=120$  degrees. Derive the  $V_{L}$  and  $I_{L}$ .
- c) The load commutation (class-A) circuitry is initially at relaxed. The thyristors T is turned on at t=0. Determine i) Conduction time of SCR. ii) Voltage across SCR and capacitor after SCR is turned off by taking L=5 mH,  $C=20\mu F$  and input voltage for circuit is 200 V.

SECTION - II

### 4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- a) Explain principle of operation of Morgan Chopper.
- b) Explain the voltage control and harmonics analysis of inverter.
- c) Explain principle of operation of single phase to single phase cycloconverter with R.



- d) A single phase half bridge inverter feeds a resistive load of R =  $7.5\Omega$ . The dc voltage of the inverter is given as 220 V. determine
  - i) RMS value of output voltage.
  - ii) Output power.
- e) Explain the principle of operation of class-D chopper.

#### 5. Attempt any two questions:

 $(2 \times 6 = 12)$ 

- a) Draw a neat sketch and explain the 180 degrees conduction mode of 3-phase inverter and derive the line-line voltage and phase voltage expressions.
- b) Explain the principle of operation of step up chopper and derive the expressions for output voltage, current and RMS output voltage.
- c) Explain principle of operation of 3 phase to 3 phase 6 pulse cycloconverter with wave forms.

|--|--|

| Seat |  |
|------|--|
| No.  |  |

Set

R

# T.E. (Part – II) (Electrical and Electronics Engg.) (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018

Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) In phase controlled rectification Power Factor (PF)
  - a) Remains unaffected
  - b) Improves with increase of firing angle
  - c) Deteriorates with increase of  $\alpha$
  - d) Is unrelated to  $\alpha$
- 2) Which circuit gives inherent freewheeling action?
  - a) Half wave converter

b) Semi converter

c) Full converter

- d) None
- 3) The cycloconverter require natural or forced commutation as under
  - a) Natural commutation in both step-up and step down cycloconverter
  - b) Forced commutation in both step-up and step-down cycloconverter
  - c) Forced commutation in step-up cycloconverter
  - d) Forced commutation in step-down cycloconverter
- 4) If the chopper switching frequency is 200 Hz and Ton time is 2 ms, the duty cycle is

a) 0.4

b) 0.8

c) 0.6

d) None of these

| 5)  | <ul><li>a) Can operate in</li><li>b) Can operate in</li><li>c) Can operate in</li><li>d) Can operate in</li></ul>                 | first quadrant only<br>second quadrant of<br>first or fourth quad | only |                                                  |      |                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|--------------------------------------------------|------|------------------|
| 6)  | In pulse width mod<br>a) T is kept consta<br>b) T <sub>ON</sub> is kept cons<br>c) Both T and T <sub>ON</sub><br>d) None of these | ant and T <sub>on</sub> is varie<br>stant and T is varie          | ed   |                                                  |      |                  |
| 7)  | The commutation (a) Line commutation (b) Both a) and b)                                                                           |                                                                   | b)   | r is<br>Forced commu<br>None of the ab           |      |                  |
| 8)  | For a duty cycle of is 200 V                                                                                                      | •                                                                 |      | ·                                                |      | ·                |
| 9)  | <ul><li>a) 80 V</li><li>Power electronics</li><li>a) Control the spe</li><li>c) Control the curr</li></ul>                        | ed                                                                | b)   | Control the pov                                  | ŕ    | 0.8 V            |
| 10) | The rms value of ca) V/2                                                                                                          | output voltage in a b) V                                          |      | hase half bridge<br>2 V                          |      | verter is<br>V/3 |
| 11) | As the breakdown  a) Negative resists  b) Goes into avala  c) Voltage drop sr  d) All of these                                    | ance characteristic<br>anche condition                            |      | DIAC exhibits                                    |      |                  |
| 12) | The angle at which a) On angle c) Firing angle                                                                                    | n SCR turns off is o                                              | b)   | ed<br>Conduction and<br>Extinction angle         | _    |                  |
| 13) | For power output ha) Single phase c) Poly phase                                                                                   | nigher than 15 kW,                                                | b)   | e suitable rectific<br>3-phase<br>Both b) and c) | er i | S                |
| 14) | IGBT possess a) Low input impe c) High on state re                                                                                |                                                                   | ,    | High input impe                                  |      |                  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) Electrical and Electronics Engg. (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the two transistor analogy of SCR. Explain regenerative current process to conduct the SCR.
- b) Explain the working principle of Depletion p-channel MOSFET with V-I and transfer characteristics.
- c) What is meant by commutation? Explain Class-D commutation with proper wave form.
- d) Write the application of thyristor in SMPS.
- e) Write the comparison between SCR, DIAC and TRIAC.

## 3. Attempt any two questions:

 $(2 \times 6 = 12)$ 

- a) Draw and explain the dynamic turn on and turn off characteristics of SCR.
- b) Explain the two quadrant operation of 1-phase fully controlled bridge rectifier with RL load. Draw the output voltage and current wave form for  $\alpha=0$  degrees,  $\alpha=90$  degrees and  $\alpha=120$  degrees. Derive the  $V_{L}$  and  $I_{L}$ .
- c) The load commutation (class-A) circuitry is initially at relaxed. The thyristors T is turned on at t=0. Determine i) Conduction time of SCR. ii) Voltage across SCR and capacitor after SCR is turned off by taking L=5 mH,  $C=20\mu F$  and input voltage for circuit is 200 V.

### SECTION - II

### 4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- a) Explain principle of operation of Morgan Chopper.
- b) Explain the voltage control and harmonics analysis of inverter.
- c) Explain principle of operation of single phase to single phase cycloconverter with R.



- d) A single phase half bridge inverter feeds a resistive load of R =  $7.5\Omega$ . The dc voltage of the inverter is given as 220 V. determine
  - i) RMS value of output voltage.
  - ii) Output power.
- e) Explain the principle of operation of class-D chopper.

### 5. Attempt any two questions:

 $(2 \times 6 = 12)$ 

- a) Draw a neat sketch and explain the 180 degrees conduction mode of 3-phase inverter and derive the line-line voltage and phase voltage expressions.
- b) Explain the principle of operation of step up chopper and derive the expressions for output voltage, current and RMS output voltage.
- c) Explain principle of operation of 3 phase to 3 phase 6 pulse cycloconverter with wave forms.

|--|--|

Set

| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Electrical and Electronics Engg.) (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) In pulse width modulation of chopper
  - a) T is kept constant and  $T_{\rm ON}$  is varied
  - b)  $T_{ON}$  is kept constant and T is varied
  - c) Both T and T<sub>ON</sub> is varied
  - d) None of these
- 2) The commutation method, in an inverter is
  - a) Line commutation
  - b) Forced commutation
  - c) Both a) and b)
  - d) None of the above
- 3) For a duty cycle of 40%, the output DC for step down chopper is if input dc is 200 V
  - a) 80 V

b) 800 V

c) 8 V

- d) 0.8 V
- 4) Power electronics converters used to
  - a) Control the speed

b) Control the power

c) Control the current

- d) None
- 5) The rms value of output voltage in a 1-phase half bridge inverter is
  - a) V/2

b) V

c) 2 V

d) V/3

| 6)    | As the breakdown voltage reached, a) Negative resistance characteristi b) Goes into avalanche condition c) Voltage drop snaps back d) All of these |                       |                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|
| 7)    | The angle at which SCR turns off is                                                                                                                | called                |                      |
|       | a) On angle                                                                                                                                        | b) Conduction an      | •                    |
|       | c) Firing angle                                                                                                                                    | d) Extinction ang     | le                   |
| 8)    | For power output higher than 15 kW                                                                                                                 | , the suitable rectif | ier is               |
|       | a) Single phase                                                                                                                                    | b) 3-phase            |                      |
|       | c) Poly phase                                                                                                                                      | d) Both b) and c)     |                      |
| 9)    | IGBT possess                                                                                                                                       |                       |                      |
|       | a) Low input impedance                                                                                                                             | b) High input imp     |                      |
|       | c) High on state resistance                                                                                                                        | d) Second break       | down problems        |
| 10)   | In phase controlled rectification Pow                                                                                                              | er Factor (PF)        |                      |
|       | a) Remains unaffected                                                                                                                              |                       |                      |
|       | b) Improves with increase of firing a                                                                                                              | ingle                 |                      |
|       | c) Deteriorates with increase of $\alpha$ d) Is unrelated to $\alpha$                                                                              |                       |                      |
| 44\   | ,                                                                                                                                                  | oling action 2        |                      |
| 11)   | Which circuit gives inherent freewhe a) Half wave converter                                                                                        | b) Semi converte      | r                    |
|       | c) Full converter                                                                                                                                  | d) None               | ı                    |
| 12)   | The cycloconverter require natural of                                                                                                              | ,                     | ion as under         |
| . — , | a) Natural commutation in both step                                                                                                                |                       |                      |
|       | b) Forced commutation in both step                                                                                                                 | •                     | •                    |
|       | c) Forced commutation in step-up of                                                                                                                |                       |                      |
|       | d) Forced commutation in step-dow                                                                                                                  | -                     |                      |
| 13)   | If the chopper switching frequency is                                                                                                              | 200 Hz and Ton tir    | me is 2 ms, the duty |
|       | cycle is a) 0.4 b) 0.8                                                                                                                             | c) 0.6                | d) None of these     |
| 4 4\  | ,                                                                                                                                                  | C) 0.0                | u) None of these     |
| 14)   | <ul><li>A class D chopper</li><li>a) Can operate in first quadrant only</li></ul>                                                                  | ı                     |                      |
|       | b) Can operate in second quadrant                                                                                                                  |                       |                      |
|       | c) Can operate in first or fourth quar                                                                                                             |                       |                      |
|       | d) Can operate in all quadrant                                                                                                                     |                       |                      |
|       |                                                                                                                                                    |                       |                      |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Electrical and Electronics Engg.) (CGPA) Examination, 2018 POWER ELECTRONICS

Day and Date: Monday, 14-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the two transistor analogy of SCR. Explain regenerative current process to conduct the SCR.
- b) Explain the working principle of Depletion p-channel MOSFET with V-I and transfer characteristics.
- c) What is meant by commutation? Explain Class-D commutation with proper wave form.
- d) Write the application of thyristor in SMPS.
- e) Write the comparison between SCR, DIAC and TRIAC.

## 3. Attempt any two questions:

 $(2\times6=12)$ 

- a) Draw and explain the dynamic turn on and turn off characteristics of SCR.
- b) Explain the two quadrant operation of 1-phase fully controlled bridge rectifier with RL load. Draw the output voltage and current wave form for  $\alpha=0$  degrees,  $\alpha=90$  degrees and  $\alpha=120$  degrees. Derive the  $V_{L}$  and  $I_{L}$ .
- c) The load commutation (class-A) circuitry is initially at relaxed. The thyristors T is turned on at t = 0. Determine i) Conduction time of SCR. ii) Voltage across SCR and capacitor after SCR is turned off by taking L = 5 mH, C =  $20\mu F$  and input voltage for circuit is 200 V.

### SECTION - II

## 4. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- a) Explain principle of operation of Morgan Chopper.
- b) Explain the voltage control and harmonics analysis of inverter.
- c) Explain principle of operation of single phase to single phase cycloconverter with R.



- d) A single phase half bridge inverter feeds a resistive load of R =  $7.5\Omega$ . The dc voltage of the inverter is given as 220 V. determine
  - i) RMS value of output voltage.
  - ii) Output power.
- e) Explain the principle of operation of class-D chopper.

### 5. Attempt any two questions:

 $(2 \times 6 = 12)$ 

- a) Draw a neat sketch and explain the 180 degrees conduction mode of 3-phase inverter and derive the line-line voltage and phase voltage expressions.
- b) Explain the principle of operation of step up chopper and derive the expressions for output voltage, current and RMS output voltage.
- c) Explain principle of operation of 3 phase to 3 phase 6 pulse cycloconverter with wave forms.

|--|

| Seat |  |
|------|--|
| No.  |  |

## T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 **ELECTRONIC COMMUNICATION ENGINEERING**

Day and Date: Wednesday, 16-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

|     |      | 3)                              | only. Don't forg<br>Top of Page.<br>Assume suitable | bjective type quest<br>get to mention, Q.P<br>e data if necessary.<br>indicate full marks. | _                |         |
|-----|------|---------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|---------|
|     |      |                                 | MCQ/Objective                                       | e Type Questions                                                                           |                  |         |
| Dur | atio | n : 30 Minutes                  |                                                     |                                                                                            | Mark             | ks : 14 |
| 1.  | Ch   | noose the correct               | answer:                                             |                                                                                            | (14×             | :1=14)  |
|     | 1)   | FM produced by a) FM            | PM is called<br>b) PM                               | c) Direct FM                                                                               | d) Indirect FM   |         |
|     | 2)   | b) infinite bandv<br>c) pure DC |                                                     |                                                                                            |                  |         |
|     | 3)   |                                 |                                                     | tage rise to maximue modulation index                                                      |                  |         |
|     |      | a) 3                            | b) 1/3                                              | c) $\frac{1}{4}$                                                                           | d) $\frac{1}{2}$ |         |
|     | 4)   | A DSB-SC signa                  | al can be demodu                                    | lated using                                                                                |                  |         |
|     |      | a) low pass filte               | r                                                   | b) a synchrono                                                                             | ous detector     |         |

- c) a phase shift discriminator
- d) an envelope detector

| 5)  | The modulating frequency in FM is increased from 10 KHz to 20 KHz. The bandwidth is |                                            |  |
|-----|-------------------------------------------------------------------------------------|--------------------------------------------|--|
|     | a) doubled                                                                          | b) halved                                  |  |
|     | c) increased by 20 KHz                                                              | d) increased tremendously                  |  |
| 6)  | The output $V_{\rm R}$ of the ratio detector w discriminator as follows             | ith the output of $V_F$ of Foster-Seeley   |  |
|     | a) $V_F = V_R$ b) $V_F < V_R$                                                       | c) $V_F = 0.51V_R$ d) $V_F = 2V_R$         |  |
| 7)  | Base band signal is                                                                 |                                            |  |
|     | a) Information signal                                                               | b) Carrier signal                          |  |
|     | c) High frequency signal                                                            | d) Band pass signal                        |  |
| 8)  | Companding is used in PCM to                                                        |                                            |  |
|     | a) reduce bandwidth                                                                 | b) reduce power                            |  |
|     | c) increase S/N ratio                                                               | d) get almost uniform S/N ratio            |  |
| 9)  | The standard data rate PCM voice ch                                                 | annel is                                   |  |
|     | a) 8kbps b) 8bps                                                                    | c) 16bps d) 64kbps                         |  |
| 10) | The coding efficiency is given by                                                   |                                            |  |
|     | a) 1 – Redundancy                                                                   | b) 1 + Redundancy                          |  |
|     | c) 1/ Redundancy                                                                    | d) None                                    |  |
| 11) | Which one is second generation of m                                                 | obile communication system ?               |  |
|     | a) AMPS b) IMT-2000                                                                 | c) GSM d) None                             |  |
| 12) | State True or False: "A code with he error detection".                              | amming distance 2 is not capable of        |  |
|     | a) True b) False                                                                    |                                            |  |
| 13) | The probability density function of a r                                             | andom variable X is $ae^{-bx} u(x)$ . Then |  |
|     | a) a and b can be arbitrary                                                         | b) $a = b/2$                               |  |
|     | c) a = b                                                                            | d) a = 2b                                  |  |
| 14) | The audio frequency range is                                                        |                                            |  |
|     | a) 10 Hz to 1 KHz                                                                   | b) 80 MHz to 108 MHz                       |  |
|     | c) 20 Hz to 20 KHz                                                                  | d) 1 KHz to 1 MHz                          |  |
|     |                                                                                     |                                            |  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 ELECTRONIC COMMUNICATION ENGINEERING

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume suitable data if **necessary**.
- 3) Figures to **right** indicate **full** marks.

### SECTION - I

## 2. Solve any four of the following:

 $(4 \times 4 = 16)$ 

- 1) Define the term Autocorrelation and explain significance of correlation coefficient.
- 2) Explain with block diagram phase shift method of SSB generation. State advantages and disadvantages.
- 3) Distinguish between wide band and narrow band FM.
- 4) Explain preemphasis and deemphasis in FM broadcasting.
- 5) Show that during maximum modulation only 33.33 % of total power is used in AM for information transmission.

## 3. Solve any two of the following:

 $(6 \times 2 = 12)$ 

- 1) A 75 MHz carrier signal having amplitude of 50 V is modulated by 3 KHz audio signal having amplitude 20 V.
  - a) Determine modulation index and percentage modulation.
  - b) What frequencies are expected in spectrum of modulated wave?
  - c) Write the equation of modulating, carrier and modulated signal in terms of LSB and USB.
- 2) Draw and explain slope detector in detail. Discuss its advantages and drawbacks.
- 3) What is heterodyne principle? With the block diagram explain super heterodyne receiver.

# 

### SECTION - II

4. Solve any four of the following:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) How correlation is exploited in delta modulation? Draw and explain delta modulation.
- 3) What are the types of random variables? Explain with examples.
- 4) What is linear block coding? How it is different from systematic linear block code?
- 5) Explain the Frequency reuse concept.
- 5. Solve any two of the following:

 $(2 \times 6 = 12)$ 

- 1) Explain FDMA, TDMA and CDMA in short.
- 2) What are the limitations of delta modulation? Draw and explain block diagram of Adaptive delta modulation.
- 3) What is M-ary communication? Explain in detail.

Set P

# Seat No.

# T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 ELECTRONIC COMMUNICATION ENGINEERING

| Day and Date: Wednesday, 1 | 16-5-2018 | Total Marks: 70 |
|----------------------------|-----------|-----------------|
|----------------------------|-----------|-----------------|

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Assume suitable data if necessary.

|     |      | ,                                                              | gures to <b>right</b> inc       |                              | •                             |           |
|-----|------|----------------------------------------------------------------|---------------------------------|------------------------------|-------------------------------|-----------|
|     |      | ı                                                              | MCQ/Objective                   | Гуре Question                | ıs                            |           |
| Dur | atio | n : 30 Minutes                                                 |                                 |                              |                               | Marks: 14 |
| 1.  |      | noose the correct ar<br>Companding is use                      |                                 |                              |                               | (14×1=14) |
|     |      | <ul><li>a) reduce bandwic</li><li>c) increase S/N ra</li></ul> |                                 | b) reduce po<br>d) get almos | ower<br>st uniform S/N r      | ratio     |
|     | 2)   | The standard data a) 8kbps                                     | rate PCM voice (b) 8bps         | channel is<br>c) 16bps       | d) 64kbps                     | 3         |
|     | 3)   | The coding efficient a) 1 – Redundancy c) 1/ Redundancy        | , ,                             | b) 1 + Redu<br>d) None       | ndancy                        |           |
|     | 4)   | Which one is seconda) AMPS                                     | nd generation of<br>b) IMT-2000 | mobile commu<br>c) GSM       | nication systen<br>d) None    | n ?       |
|     | 5)   | State True or False error detection".                          | e: "A code with                 | hamming dista                | nce 2 is not ca               | apable of |
|     |      | a) True                                                        | b) False                        |                              |                               |           |
|     | 6)   | The probability der  a) a and b can be                         |                                 | b) $a = b/2$                 | ole X is ae <sup>-bx</sup> u( | x). Then  |
|     |      | c) a = b                                                       |                                 | d) a = 2b                    |                               |           |

| 7)  | The audio frequency                                         | / range is         |      |                 |                         |                 |
|-----|-------------------------------------------------------------|--------------------|------|-----------------|-------------------------|-----------------|
|     | a) 10 Hz to 1 KHz                                           |                    | b)   | 80 MHz to 108   | 8 M                     | Hz              |
|     | c) 20 Hz to 20 KHz                                          |                    | d)   | 1 KHz to 1 MH   | Ηz                      |                 |
| 8)  | FM produced by PM                                           | l is called        |      |                 |                         |                 |
|     | a) FM                                                       | b) PM              | c)   | Direct FM       | d)                      | Indirect FM     |
| 9)  | An impulse function                                         | consists of        |      |                 |                         |                 |
|     | a) entire frequency                                         | range with same    | rela | ative phase     |                         |                 |
|     | b) infinite bandwidth                                       | n with linear phas | e v  | ariation        |                         |                 |
|     | c) pure DC                                                  |                    |      |                 |                         |                 |
|     | d) large DC along w                                         | rith weak harmon   | ics  |                 |                         |                 |
| 10) | A positive RF peak drop to a minimum vertical modulation is | _                  |      |                 |                         |                 |
|     | a) 3                                                        | b) 1/3             | c)   | 1/4             | d)                      | 1/2             |
| 11) | A DSB-SC signal ca                                          | n be demodulate    | d u  | sing            |                         |                 |
|     | a) low pass filter                                          |                    | b)   | a synchronous   | s de                    | etector         |
|     | c) a phase shift disc                                       | criminator         | d)   | an envelope o   | dete                    | ctor            |
| 12) | The modulating freq bandwidth is                            | uency in FM is in  | cre  | ased from 10 k  | 〈Ηz                     | to 20 KHz. The  |
|     | a) doubled                                                  |                    | b)   | halved          |                         |                 |
|     | c) increased by 20                                          | KHz                | d)   | increased trer  | nen                     | dously          |
| 13) | The output $V_R$ of the discriminator as follows:           |                    | ith  | the output of \ | <b>√</b> <sub>F</sub> 0 | f Foster-Seeley |
|     | a) $V_F = V_R$                                              | b) $V_F < V_R$     | c)   | $V_F = 0.51V_R$ | d)                      | $V_F = 2V_R$    |
| 14) | Base band signal is                                         |                    |      |                 |                         |                 |
|     | a) Information signa                                        | ıl                 | b)   | Carrier signal  |                         |                 |
|     | c) High frequency s                                         | ignal              | d)   | Band pass sig   | gnal                    |                 |
|     |                                                             |                    |      |                 |                         |                 |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 ELECTRONIC COMMUNICATION ENGINEERING

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume suitable data if **necessary**.
- 3) Figures to **right** indicate **full** marks.

### SECTION - I

## 2. Solve any four of the following:

 $(4 \times 4 = 16)$ 

- 1) Define the term Autocorrelation and explain significance of correlation coefficient.
- 2) Explain with block diagram phase shift method of SSB generation. State advantages and disadvantages.
- 3) Distinguish between wide band and narrow band FM.
- 4) Explain preemphasis and deemphasis in FM broadcasting.
- 5) Show that during maximum modulation only 33.33 % of total power is used in AM for information transmission.

## 3. Solve any two of the following:

 $(6 \times 2 = 12)$ 

- 1) A 75 MHz carrier signal having amplitude of 50 V is modulated by 3 KHz audio signal having amplitude 20 V.
  - a) Determine modulation index and percentage modulation.
  - b) What frequencies are expected in spectrum of modulated wave?
  - c) Write the equation of modulating, carrier and modulated signal in terms of LSB and USB.
- 2) Draw and explain slope detector in detail. Discuss its advantages and drawbacks.
- 3) What is heterodyne principle? With the block diagram explain super heterodyne receiver.

# 

### SECTION - II

4. Solve **any four** of the following:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) How correlation is exploited in delta modulation? Draw and explain delta modulation.
- 3) What are the types of random variables? Explain with examples.
- 4) What is linear block coding? How it is different from systematic linear block code?
- 5) Explain the Frequency reuse concept.
- 5. Solve any two of the following:

 $(2 \times 6 = 12)$ 

- 1) Explain FDMA, TDMA and CDMA in short.
- 2) What are the limitations of delta modulation? Draw and explain block diagram of Adaptive delta modulation.
- 3) What is M-ary communication? Explain in detail.

Set Q

Set R

# Seat No.

# T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 ELECTRONIC COMMUNICATION ENGINEERING

Day and Date: Wednesday, 16-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|     |      | 3) As                                                   | sume suitable da<br>gures to <b>right</b> indi |      | -               |                           |           |
|-----|------|---------------------------------------------------------|------------------------------------------------|------|-----------------|---------------------------|-----------|
|     |      | N                                                       | ICQ/Objective T                                | ype  | Questions       |                           |           |
| Dur | atio | n : 30 Minutes                                          |                                                |      |                 |                           | Marks: 14 |
| 1.  | Ch   | noose the correct an                                    | swer:                                          |      |                 |                           | (14×1=14) |
|     | 1)   | The modulating free bandwidth is                        | quency in FM is ir                             | cre  | ased from 10    | KHz to 20 Kł              | Hz. The   |
|     |      | a) doubled                                              |                                                | b)   | halved          |                           |           |
|     |      | c) increased by 20                                      | KHz                                            | d)   | increased tre   | mendously                 |           |
|     | 2)   | The output $V_{\rm R}$ of the discriminator as follows: |                                                | vith | the output of   | V <sub>F</sub> of Foster- | -Seeley   |
|     |      | a) $V_F = V_R$                                          | b) $V_F < V_R$                                 | c)   | $V_F = 0.51V_R$ | d) $V_F = 2V_F$           | }         |
|     | 3)   | Base band signal is                                     | 3                                              |      |                 |                           |           |
|     |      | a) Information sign                                     | al                                             | b)   | Carrier signal  |                           |           |
|     |      | c) High frequency                                       | signal                                         | d)   | Band pass sig   | gnal                      |           |
|     | 4)   | Companding is use                                       | d in PCM to                                    |      |                 |                           |           |
|     |      | a) reduce bandwid                                       | th                                             | b)   | reduce power    | r                         |           |
|     |      | c) increase S/N rat                                     | io                                             | d)   | get almost un   | niform S/N ra             | tio       |
|     | 5)   | The standard data                                       | rate PCM voice cl                              | han  | nel is          |                           |           |
|     |      | a) 8kbps                                                | b) 8bps                                        | c)   | 16bps           | d) 64kbps                 |           |



| 6)  | The coding efficience                                                                                                                  | y is given by                         |                                           |                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------|
|     | a) 1 - Redundancy                                                                                                                      |                                       | b) 1 + Redundar                           | ncy                               |
|     | c) 1/ Redundancy                                                                                                                       |                                       | d) None                                   |                                   |
| 7)  | Which one is second                                                                                                                    | d generation of m                     | obile communica                           | tion system ?                     |
|     | a) AMPS                                                                                                                                | b) IMT-2000                           | c) GSM                                    | d) None                           |
| 8)  | State True or False error detection".                                                                                                  | : "A code with ha                     | amming distance                           | 2 is not capable of               |
|     | a) True                                                                                                                                | b) False                              |                                           |                                   |
| 9)  | The probability dens                                                                                                                   | ity function of a r                   | andom variable X                          | ( is ae <sup>-bx</sup> u(x). Then |
|     | a) a and b can be a                                                                                                                    | rbitrary                              | b) $a = b/2$                              |                                   |
|     | c) a = b                                                                                                                               |                                       | d) $a = 2b$                               |                                   |
| 10) | The audio frequency                                                                                                                    | range is                              |                                           |                                   |
|     | a) 10 Hz to 1 KHz                                                                                                                      |                                       | b) 80 MHz to 10                           | 8 MHz                             |
|     | c) 20 Hz to 20 KHz                                                                                                                     |                                       | d) 1 KHz to 1 M                           | Hz                                |
| 11) | FM produced by PM                                                                                                                      | is called                             |                                           |                                   |
|     | a) FM                                                                                                                                  | b) PM                                 | c) Direct FM                              | d) Indirect FM                    |
| 12) | An impulse function <ul><li>a) entire frequency</li><li>b) infinite bandwidth</li><li>c) pure DC</li><li>d) large DC along w</li></ul> | range with same<br>n with linear phas | e variation                               |                                   |
| 13) | A positive RF peak drop to a minimum vector modulation is                                                                              | _                                     |                                           |                                   |
|     | a) 3                                                                                                                                   | b) 1/3                                | c) $\frac{1}{4}$                          | d) $\frac{1}{2}$                  |
| 14) | A DSB-SC signal ca a) low pass filter c) a phase shift disc                                                                            |                                       | ed using b) a synchronou d) an envelope o |                                   |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 ELECTRONIC COMMUNICATION ENGINEERING

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume suitable data if **necessary**.
- 3) Figures to right indicate full marks.

### SECTION - I

## 2. Solve any four of the following:

 $(4 \times 4 = 16)$ 

- 1) Define the term Autocorrelation and explain significance of correlation coefficient.
- 2) Explain with block diagram phase shift method of SSB generation. State advantages and disadvantages.
- 3) Distinguish between wide band and narrow band FM.
- 4) Explain preemphasis and deemphasis in FM broadcasting.
- 5) Show that during maximum modulation only 33.33 % of total power is used in AM for information transmission.

## 3. Solve any two of the following:

 $(6 \times 2 = 12)$ 

- 1) A 75 MHz carrier signal having amplitude of 50 V is modulated by 3 KHz audio signal having amplitude 20 V.
  - a) Determine modulation index and percentage modulation.
  - b) What frequencies are expected in spectrum of modulated wave?
  - c) Write the equation of modulating, carrier and modulated signal in terms of LSB and USB.
- 2) Draw and explain slope detector in detail. Discuss its advantages and drawbacks.
- 3) What is heterodyne principle? With the block diagram explain super heterodyne receiver.

# 

### SECTION - II

4. Solve **any four** of the following:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) How correlation is exploited in delta modulation? Draw and explain delta modulation.
- 3) What are the types of random variables? Explain with examples.
- 4) What is linear block coding? How it is different from systematic linear block code?
- 5) Explain the Frequency reuse concept.
- 5. Solve any two of the following:

 $(2 \times 6 = 12)$ 

- 1) Explain FDMA, TDMA and CDMA in short.
- 2) What are the limitations of delta modulation? Draw and explain block diagram of Adaptive delta modulation.
- 3) What is M-ary communication? Explain in detail.

Set R

| Set | 5 |
|-----|---|
|     |   |

# Seat No.

# T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 ELECTRONIC COMMUNICATION ENGINEERING

Day and Date: Wednesday, 16-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Assume suitable data if necessary

|     |      | ,                                     | gures to <b>right</b> ind |                |                                     |        |
|-----|------|---------------------------------------|---------------------------|----------------|-------------------------------------|--------|
|     |      | N                                     | /ICQ/Objective 1          | Type Questions | 6                                   |        |
| Dur | atic | on : 30 Minutes                       |                           |                | Marks                               | s : 14 |
| 1.  | Cł   | noose the correct an                  | swer:                     |                | (14×1                               | =14)   |
|     | 1)   | The coding efficien                   | cy is given by            |                |                                     |        |
|     |      | a) 1 – Redundancy                     | /                         | b) 1 + Redur   | dancy                               |        |
|     |      | c) 1/ Redundancy                      |                           | d) None        |                                     |        |
|     | 2)   | Which one is secon                    | nd generation of          | mobile commur  | ication system ?                    |        |
|     |      | a) AMPS                               | b) IMT-2000               | c) GSM         | d) None                             |        |
|     | 3)   | State True or False error detection". | e: "A code with           | hamming distar | nce 2 is not capable o              | f      |
|     |      | a) True                               | b) False                  |                |                                     |        |
|     | 4)   | The probability den                   | sity function of a        | random variab  | e X is ae <sup>-bx</sup> u(x). Then | l      |
|     |      | a) a and b can be                     | arbitrary                 | b) $a = b/2$   |                                     |        |
|     |      | c) a = b                              |                           | d) a = 2b      |                                     |        |
|     | 5)   | The audio frequenc                    | cy range is               |                |                                     |        |
|     |      | a) 10 Hz to 1 KHz                     |                           | b) 80 MHz to   | 108 MHz                             |        |
|     |      | c) 20 Hz to 20 KHz                    | Z                         | d) 1 KHz to 1  | MHz                                 |        |
|     |      |                                       |                           |                |                                     |        |

| 6)  | FM produced by PM                                       | is called          |      |                 |                                 |
|-----|---------------------------------------------------------|--------------------|------|-----------------|---------------------------------|
|     | a) FM                                                   | b) PM              | c)   | Direct FM       | d) Indirect FM                  |
| 7)  | An impulse function                                     | consists of        |      |                 |                                 |
|     | a) entire frequency                                     | range with same    | rela | ative phase     |                                 |
|     | b) infinite bandwidth                                   | n with linear phas | e va | ariation        |                                 |
|     | c) pure DC                                              |                    |      |                 |                                 |
|     | d) large DC along w                                     | rith weak harmon   | ics  |                 |                                 |
| 8)  | A positive RF peak of drop to a minimum vimodulation is | _                  |      |                 |                                 |
|     | a) 3                                                    | b) 1/3             | c)   | 1/4             | d) $\frac{1}{2}$                |
| 9)  | A DSB-SC signal ca                                      | n be demodulate    | d u  | sing            |                                 |
|     | a) low pass filter                                      |                    | b)   | a synchronou    | s detector                      |
|     | c) a phase shift disc                                   | criminator         | d)   | an envelope of  | detector                        |
| 10) | The modulating frequency bandwidth is                   | uency in FM is in  | cre  | ased from 10 k  | KHz to 20 KHz. The              |
|     | a) doubled                                              |                    | b)   | halved          |                                 |
|     | c) increased by 20 H                                    | KHz                | d)   | increased trer  | mendously                       |
| l1) | The output $V_{\rm R}$ of the discriminator as follows: |                    | ith  | the output of \ | V <sub>F</sub> of Foster-Seeley |
|     | a) $V_F = V_R$                                          | b) $V_F < V_R$     | c)   | $V_F = 0.51V_R$ | d) $V_F = 2V_R$                 |
| 12) | Base band signal is                                     |                    |      |                 |                                 |
|     | a) Information signa                                    | ıl                 | b)   | Carrier signal  |                                 |
|     | c) High frequency s                                     | ignal              | d)   | Band pass sig   | gnal                            |
| 13) | Companding is used                                      | I in PCM to        |      |                 |                                 |
|     | a) reduce bandwidth                                     | า                  | b)   | reduce power    |                                 |
|     | c) increase S/N ratio                                   | 0                  | d)   | get almost un   | iform S/N ratio                 |
| 14) | The standard data ra                                    | ate PCM voice ch   | anı  | nel is          |                                 |
|     | a) 8kbps                                                | b) 8bps            | c)   | 16bps           | d) 64kbps                       |
|     |                                                         |                    |      |                 |                                 |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical & Electronics Engg.) (Part – II) (CGPA) Examination, 2018 ELECTRONIC COMMUNICATION ENGINEERING

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume suitable data if **necessary**.
- 3) Figures to **right** indicate **full** marks.

### SECTION - I

## 2. Solve any four of the following:

 $(4 \times 4 = 16)$ 

- Define the term Autocorrelation and explain significance of correlation coefficient.
- 2) Explain with block diagram phase shift method of SSB generation. State advantages and disadvantages.
- 3) Distinguish between wide band and narrow band FM.
- 4) Explain preemphasis and deemphasis in FM broadcasting.
- 5) Show that during maximum modulation only 33.33 % of total power is used in AM for information transmission.

## 3. Solve any two of the following:

 $(6 \times 2 = 12)$ 

- 1) A 75 MHz carrier signal having amplitude of 50 V is modulated by 3 KHz audio signal having amplitude 20 V.
  - a) Determine modulation index and percentage modulation.
  - b) What frequencies are expected in spectrum of modulated wave?
  - c) Write the equation of modulating, carrier and modulated signal in terms of LSB and USB.
- 2) Draw and explain slope detector in detail. Discuss its advantages and drawbacks.
- 3) What is heterodyne principle? With the block diagram explain super heterodyne receiver.

# 

### SECTION - II

4. Solve any four of the following:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) How correlation is exploited in delta modulation? Draw and explain delta modulation.
- 3) What are the types of random variables? Explain with examples.
- 4) What is linear block coding? How it is different from systematic linear block code?
- 5) Explain the Frequency reuse concept.
- 5. Solve any two of the following:

 $(2 \times 6 = 12)$ 

- 1) Explain FDMA, TDMA and CDMA in short.
- 2) What are the limitations of delta modulation? Draw and explain block diagram of Adaptive delta modulation.
- 3) What is M-ary communication? Explain in detail.

Set S

| Seat |  |
|------|--|
| No.  |  |

a) Four

Set P

# T.E. (E & E) (Part – II) (CGPA) Examination, 2018 POWER SYSTEM ANALYSIS

| Day and Date : Frid<br>Time : 2.30 p.m. to                               | •                                                                                                       |                                                    | Max. Marks : 70                                                                         |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Instructions                                                             | carries <b>one</b> mark<br>2) <b>Answer MCQ/O</b> b                                                     | nswer Book Pago<br>D <b>jective type q</b> u       | d be solved in first e No. 3. Each question estions on Page No. 3 Q.P. Set (P/Q/R/S) on |  |  |
|                                                                          | MCQ/Objective                                                                                           | Type Question                                      | ns                                                                                      |  |  |
| Duration: 30 Minute                                                      | es                                                                                                      |                                                    | Marks: 14                                                                               |  |  |
| 1. Choose the cor                                                        | rect answer :                                                                                           |                                                    | 14                                                                                      |  |  |
| <ul><li>a) Angle bet</li><li>b) Angular d</li><li>c) Angular d</li></ul> | ween stator voltage ar<br>isplacement of the rote<br>isplacement of the stati<br>isplacement of an axis | nd current<br>or w.r.t. stator<br>tor mmf w.r.t. a | s generator is the synchronously rotating axis or w.r.t. a synchronously                |  |  |
|                                                                          | 2) In method of load flow, convergence is dependent on the                                              |                                                    |                                                                                         |  |  |
| ,                                                                        | b) N-R                                                                                                  | c) FD                                              | d) All                                                                                  |  |  |
| •                                                                        | mentum<br>nstant                                                                                        | d) Excitation base MVA, then                       | ating power<br>on of generator<br>the new p.u. impedance                                |  |  |

c) Two

d) Three

b) Half



- 5) The power delivered by a synchronous generator to an infinite bus is given
  - a)  $P = \frac{|V_t|E_f|}{R_a} \sin \delta$

b)  $P = \frac{|V_t||E_f||^2}{X_a} \sin \delta$ 

c)  $P = \frac{|V_t|E_f|}{X} \sin \delta$ 

d)  $P = \frac{|V_t|E_f|}{X_c}\cos\delta$ 

- 6) Normally Z<sub>bus</sub> matrix is a
  - a) Null matrix
- b) Sparse matrix
- c) Full matrix d) Unity matrix
- 7) Load flow study is carried out for
  - a) Load frequency control
- b) Stability studies

c) System planning

- d) Fault calculations
- 8) At slack bus, which one of the following combinations of variables is specified?
  - a) |V|,  $\delta$
- b) P, Q
- c) P,|V|
- d) Q, |V|
- 9) For a load flow solution, the quantities normally specified at a voltage controlled bus are
  - a) P and Q
- b) P and |V|
- c) Q and |V| d) P and  $\delta$
- 10) For stability reasons, the transmission line is operated with power angle in the range \_\_\_\_\_
  - a) 10 to 25 degree

b) 30 to 45 degree

c) 60 to 75 degree

- d) 65 to 90 degree
- 11) Which one of the following is correct?
  - a)  $X''_d = X'_d = X_d$

b)  $X''_d < X'_d < X_d$ 

c)  $X''_d = \frac{X_d}{2}$ 

- d)  $X'_d = \frac{X_d}{2}$
- 12) In case of balanced three phase system, negative and zero sequence currents are \_\_
  - a) Absent
- b) Equal
- c) Infinite
- d) Present

- 13) Fault level means
  - a) Voltage at the point of fault
- b) Fault power factor

c) Fault current

- d) Fault MVA
- 14) The usual value of  $\delta$  is about
  - a) 30

- b) 45
- c) 60
- d) 90



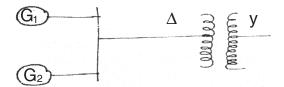
| Seat |  |
|------|--|
| No.  |  |

# T.E. (E & E) (Part – II) (CGPA) Examination, 2018 POWER SYSTEM ANALYSIS

Day and Date: Friday, 18-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I


2. Solve any four questions:

 $(4 \times 4 = 16)$ 

- a) State and derive the equal area criterion of stability.
- b) Three generators are rated as G1: 100 MVA, 33 KV, Xgl = 0.1 pu., G2: 150 MVA, 32 KV, Xg2 = 0.08 pu and G3: 110 MVA, 30 KV, Xg3 = 0.12 pu. Determine the reactance of generators in per unit corresponding to base values of 200 MVA and 35 KV.
- c) Assuming 25 MVA as base MVA, calculate the through impedance between the generator and output terminal of the transformer for the system shown below:

The specifications of the components are given below:

| Generator G <sub>1</sub> | Generator G <sub>2</sub> | Transformer    |
|--------------------------|--------------------------|----------------|
| 30 MVA                   | 25 MVA                   | 60 MVA         |
| 11 KV                    | 11 KV                    | 11 KV∆ / 66 KV |
| X" = 0.20 p.u.           | X" = 0.25 p.u.           | X = 0.10 p.u.  |

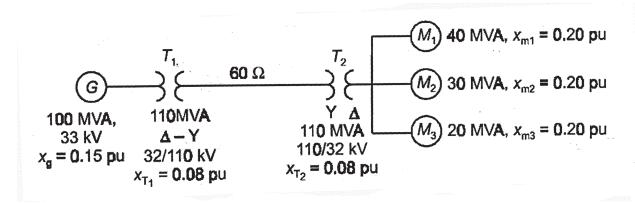


- d) Discuss various types of buses and explain their significance in detail.
- e) Define per unit system. What are the advantages of using per unit system?
- f) A 60 Hz, 4 pole turbo generator rated 100 MVA, 13.8 KV has a inertia constant of 10 MJ/MVA. Determine :
  - a) Stored energy in rotor
  - b) If the mechanical input is suddenly raised to 60 MW for a load of 50 MW, find rotor acceleration?



### 3. Solve following:

 $(2 \times 6 = 12)$ 


a) Data for the sample three bus system are given in following tables. Using Gauss Siedal method determine values of phase voltages at bus 2 and 3 after first iteration.

|                  |                        | Generation Load |      |       | k     |
|------------------|------------------------|-----------------|------|-------|-------|
| Bus Code<br>i    | Assumed<br>Bus Voltage | MW              | MVAr | MW    | MVAr  |
| 1<br>(slack bus) | 1.05 + j 0.0           | _               | _    | 0     | 0     |
| 2                | 1 + j 0.0              | 50              | 30   | 305.6 | 140.2 |
| 3                | 1 + j 0.0              | 0.0             | 0.0  | 138.6 | 45.2  |

Base MVA = 100

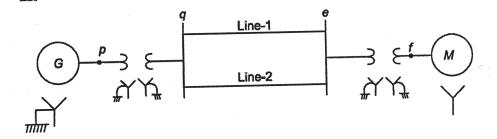
| Bus Code<br>i – k | Impedance<br>Z <sub>ik</sub> |
|-------------------|------------------------------|
| 1 – 2             | 0.02 + j 0.04                |
| 1 – 3             | 0.01 + j 0.03                |
| 2 – 3             | 0.0125 + j 0.025             |
| OR                |                              |

a) For the power system shown below, draw per unit reactance diagram. Assume generator rating as base values.



b) Explain the Newton-Raphson method for solution of non-linear algebraic equations.




### SECTION - II

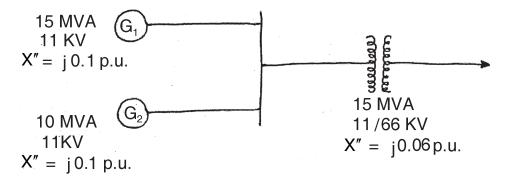
4. Solve any four questions:

 $(4 \times 4 = 16)$ 

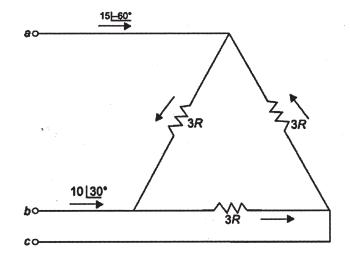
- a) Describe the transients occurring in a transmission line on occurrence of a short circuit.
- b) Explain different faults taking place in a power system.
- c) The zero and positive sequence components of red phase are  $E_{_{R0}}=0.5-j0.866~v;~E_{_{R1}}=2+j0~if~the~phase~voltage~E_{_{R}}=3+j0~find~the~$  negative phase sequence component of red phase and voltages  $E_{_{Y}}$  and  $E_{_{B}}$ .
- d) Derive an expression for symmetrical components in terms of phase components.
- e) For the power system shown below draw zero sequence network :

G:  $x_{g0} = 0.05 \text{ pu}$ M:  $x_{m0} = 0.03 \text{ pu}$   $T_1$ :  $x_{T1} = 0.12 \text{ pu}$   $T_2$ :  $x_{T2} = 0.10 \text{ pu}$ Line-1:  $x_{L10} = 0.70 \text{ pu}$ Line-2:  $x_{L20} = 0.70 \text{ pu}$ 




f) A 50 MVA generator with a reactance of 0.1 pu is connected to a busbar. A 25 MVA transformer with a reactance of 0.05 pu is also connected through a busbar reactor of 0.1 pu to a same busbar. Both these reactances are based on 25 MVA rating. If a feeder taken out from a busbar through a circuit breaker develops a line to ground fault what should be the rating of circuit breaker.




5. Solve any two questions:

 $(2 \times 6 = 12)$ 

a) Two generators G<sub>1</sub> and G<sub>2</sub> are connected in parallel having rating of 15 MVA, 11 KV and 10 MVA, 11 KV resp. The generators are connected to transformer as shown in fig. Calculate the subtransient current in each generator when a three phase fault occurs on the high voltage side of the transformer.



b) A delta connected resistive load is connected across a balanced 3 phase supply. Find the symmetrical components of line currents and delta currents.



- c) A 50 MVA, 11 KV, three phase alternator was subjected to different types of faults. The fault currents were :
  - i) 1870 Amp. for three phase fault
  - ii) 2590 Amp. for L L fault.
  - iii) 4130 Amp. for L G fault.

The alternator neutral is solidly grounded. Find the three sequence reactances of the alternator.



Seat No.

# **SLR-TC - 498**

# T.E. (E & E) (Part – II) (CGPA) Examination, 2018 POWER SYSTEM ANALYSIS

| Day and Date : Friday, 18-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                                                                                                                                | Max. Marks: 70                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| carries <b>one</b> mark.<br>2) <b>Answer MCQ/Objec</b>                                                                                                                                                           | ory. It should be solved in first er Book Page No. 3. Each question etive type questions on Page No. 3 to mention, Q.P. Set (P/Q/R/S) on |
| MCQ/Objective Ty                                                                                                                                                                                                 | -                                                                                                                                        |
| Duration: 30 Minutes                                                                                                                                                                                             | Marks : 14                                                                                                                               |
| <ol> <li>Choose the correct answer:         <ol> <li>At slack bus, which one of the following a)  V , δ</li> <li>P, Q</li> </ol> </li> <li>For a load flow solution, the quantities controlled bus are</li></ol> | <ul> <li>c) P, V </li> <li>d) Q,  V </li> <li>normally specified at a voltage</li> <li>c) Q and  V </li> <li>d) P and δ</li> </ul>       |
| 4) Which one of the following is correct?                                                                                                                                                                        | ,                                                                                                                                        |
| a) $X''_d = X'_d = X_d$<br>c) $X''_d = \frac{X_d}{2}$                                                                                                                                                            | b) $X''_d < X'_d < X_d$ d) $X'_d = \frac{X_d}{2}$                                                                                        |
| <ul> <li>5) In case of balanced three phase systems are</li> <li>a) Absent b) Equal</li> <li>6) Fault level means</li> <li>a) Voltage at the point of fault</li> </ul>                                           | c) Infinite d) Present b) Fault power factor                                                                                             |
| c) Fault current                                                                                                                                                                                                 | d) Fault MVA                                                                                                                             |

| 7)  | The usual value of $\delta$ is                                                 |                    |                       | _                                             | I) 00              |  |
|-----|--------------------------------------------------------------------------------|--------------------|-----------------------|-----------------------------------------------|--------------------|--|
|     | a) 30                                                                          | o) 45              | c) 60                 | 0                                             | d) 90              |  |
| 8)  | The angle $\delta$ in the swing equation of a synchronous generator is the     |                    |                       |                                               |                    |  |
|     | a) Angle between stator voltage and current                                    |                    |                       |                                               |                    |  |
|     | b) Angular displacement of the rotor w.r.t. stator                             |                    |                       |                                               |                    |  |
|     | c) Angular displacement of the stator mmf w.r.t. a synchronously rotating axis |                    |                       |                                               |                    |  |
|     | <ul><li>d) Angular displaceme<br/>rotating axis</li></ul>                      | nt of an axis fixe | d to t                | he rotor w.r.                                 | t. a synchronously |  |
| -   | In method of load flow, convergence is dependent on the                        |                    |                       |                                               |                    |  |
|     | choice of slack bus.                                                           |                    |                       |                                               |                    |  |
|     | a) G-S                                                                         | o) N-R             | c) F                  | D                                             | d) All             |  |
| 10) | $I d^2 \delta/dt^2 = $                                                         |                    |                       |                                               |                    |  |
|     | a) Rotor momentum                                                              |                    |                       | b) Accelerating power                         |                    |  |
|     | c) Inertia constant                                                            |                    | d) E                  | xcitation of                                  | generator          |  |
| 11) | If the new base MVA is twice the old base MVA, then the new p.u. impedance     |                    |                       |                                               |                    |  |
|     | will be ti                                                                     | mes old p.u. imp   | edan                  | ce.                                           |                    |  |
|     | a) Four                                                                        | o) Half            | c) T                  | WO                                            | d) Three           |  |
| 12) | The power delivered by a synchronous generator to an infinite bus is given     |                    |                       |                                               |                    |  |
|     | by                                                                             |                    |                       |                                               |                    |  |
|     | a) $P = \frac{ V_t E_f }{R_a} \sin \delta$                                     |                    | b) P                  | $=\frac{\mid V_{t}\mid E_{f}\mid^{2}}{X_{s}}$ | sinδ               |  |
|     | c) $P = \frac{ V_t E_f }{X_s} \sin \delta$                                     |                    | d) P                  | $=\frac{\mid V_t\mid E_f\mid}{X_s}c$          | osδ                |  |
| 13) | Normally Z <sub>bus</sub> matrix is                                            | а                  |                       |                                               |                    |  |
|     | a) Null matrix b)                                                              | Sparse matrix      | c) F                  | ull matrix                                    | d) Unity matrix    |  |
| 14) | Load flow study is carr                                                        | ied out for        |                       |                                               |                    |  |
| ŕ   | a) Load frequency control                                                      |                    | b) Stability studies  |                                               |                    |  |
|     | c) System planning                                                             |                    | d) Fault calculations |                                               |                    |  |



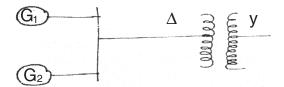
| Seat |  |
|------|--|
| No.  |  |

# T.E. (E & E) (Part – II) (CGPA) Examination, 2018 POWER SYSTEM ANALYSIS

Day and Date: Friday, 18-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

### SECTION - I


### 2. Solve any four questions:

 $(4 \times 4 = 16)$ 

- a) State and derive the equal area criterion of stability.
- b) Three generators are rated as G1: 100 MVA, 33 KV, Xgl = 0.1 pu., G2: 150 MVA, 32 KV, Xg2 = 0.08 pu and G3: 110 MVA, 30 KV, Xg3 = 0.12 pu. Determine the reactance of generators in per unit corresponding to base values of 200 MVA and 35 KV.
- c) Assuming 25 MVA as base MVA, calculate the through impedance between the generator and output terminal of the transformer for the system shown below:

The specifications of the components are given below:

| Generator G <sub>1</sub> | Generator G <sub>2</sub> | Transformer    |  |  |
|--------------------------|--------------------------|----------------|--|--|
| 30 MVA                   | 25 MVA                   | 60 MVA         |  |  |
| 11 KV                    | 11 KV                    | 11 KV∆ / 66 KV |  |  |
| X" = 0.20 p.u.           | X" = 0.25 p.u.           | X = 0.10 p.u.  |  |  |

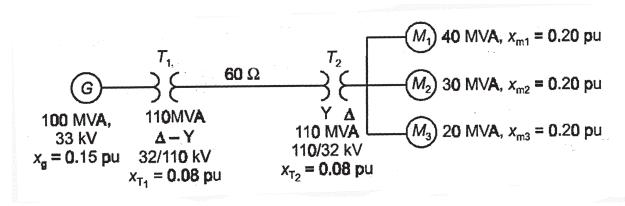


- d) Discuss various types of buses and explain their significance in detail.
- e) Define per unit system. What are the advantages of using per unit system?
- f) A 60 Hz, 4 pole turbo generator rated 100 MVA, 13.8 KV has a inertia constant of 10 MJ/MVA. Determine :
  - a) Stored energy in rotor
  - b) If the mechanical input is suddenly raised to 60 MW for a load of 50 MW, find rotor acceleration?



### 3. Solve following:

 $(2 \times 6 = 12)$ 


a) Data for the sample three bus system are given in following tables. Using Gauss Siedal method determine values of phase voltages at bus 2 and 3 after first iteration.

|                  |                        | Generation Load |      |       |       |
|------------------|------------------------|-----------------|------|-------|-------|
| Bus Code<br>i    | Assumed<br>Bus Voltage | MW              | MVAr | MW    | MVAr  |
| 1<br>(slack bus) | 1.05 + j 0.0           | _               | _    | 0     | 0     |
| 2                | 1 + j 0.0              | 50              | 30   | 305.6 | 140.2 |
| 3                | 1 + j 0.0              | 0.0             | 0.0  | 138.6 | 45.2  |

Base MVA = 100

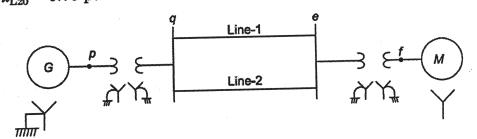
| Bus Code<br>i – k | Impedance<br>Z <sub>ik</sub> |  |  |
|-------------------|------------------------------|--|--|
| 1 – 2             | 0.02 + j 0.04                |  |  |
| 1 – 3             | 0.01 + j 0.03                |  |  |
| 2 – 3             | 0.0125 + j 0.025             |  |  |
| OR                |                              |  |  |

a) For the power system shown below, draw per unit reactance diagram. Assume generator rating as base values.



b) Explain the Newton-Raphson method for solution of non-linear algebraic equations.




#### SECTION - II

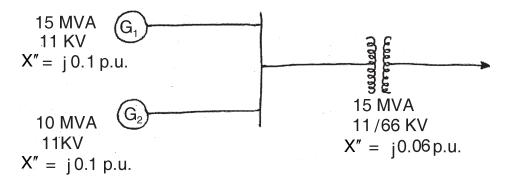
4. Solve any four questions:

 $(4 \times 4 = 16)$ 

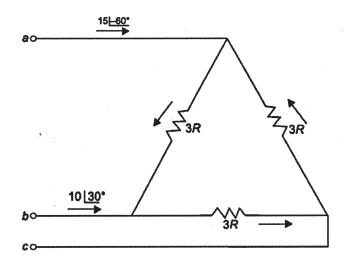
- a) Describe the transients occurring in a transmission line on occurrence of a short circuit.
- b) Explain different faults taking place in a power system.
- c) The zero and positive sequence components of red phase are  $E_{_{R0}} = 0.5 j0.866 \text{ v}; \ E_{_{R1}} = 2 + j0 \text{ if the phase voltage } E_{_{R}} = 3 + j0 \text{ find the negative phase sequence component of red phase and voltages } E_{_{Y}} \text{ and } E_{_{B}}.$
- d) Derive an expression for symmetrical components in terms of phase components.
- e) For the power system shown below draw zero sequence network :

G:  $x_{g0} = 0.05$  pu M:  $x_{m0} = 0.03$  pu  $T_1$ :  $x_{T1} = 0.12$  pu  $T_2$ :  $x_{T2} = 0.10$  pu Line-1:  $x_{L10} = 0.70$  pu Line-2:  $x_{L20} = 0.70$  pu




f) A 50 MVA generator with a reactance of 0.1 pu is connected to a busbar. A 25 MVA transformer with a reactance of 0.05 pu is also connected through a busbar reactor of 0.1 pu to a same busbar. Both these reactances are based on 25 MVA rating. If a feeder taken out from a busbar through a circuit breaker develops a line to ground fault what should be the rating of circuit breaker.




5. Solve any two questions:

 $(2 \times 6 = 12)$ 

a) Two generators G<sub>1</sub> and G<sub>2</sub> are connected in parallel having rating of 15 MVA, 11 KV and 10 MVA, 11 KV resp. The generators are connected to transformer as shown in fig. Calculate the subtransient current in each generator when a three phase fault occurs on the high voltage side of the transformer.



b) A delta connected resistive load is connected across a balanced 3 phase supply. Find the symmetrical components of line currents and delta currents.



- c) A 50 MVA, 11 KV, three phase alternator was subjected to different types of faults. The fault currents were :
  - i) 1870 Amp. for three phase fault
  - ii) 2590 Amp. for L L fault.
  - iii) 4130 Amp. for L G fault.

The alternator neutral is solidly grounded. Find the three sequence reactances of the alternator.

## Seat No.

### T.E. (E & E) (Part – II) (CGPA) Examination, 2018 **POWER SYSTEM ANALYSIS**

Max. Marks: 70 Day and Date: Friday, 18-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question

carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

14

1) The power delivered by a synchronous generator to an infinite bus is given

a) 
$$P = \frac{|V_t|E_f|}{R_a} \sin \delta$$

b) 
$$P = \frac{|V_t|E_f|^2}{X_s} \sin \delta$$

c) 
$$P = \frac{|V_t|E_f|}{X_s} \sin \delta$$

d) 
$$P = \frac{|V_t|E_f|}{X_s}\cos\delta$$

2) Normally  $Z_{\text{bus}}$  matrix is a

- a) Null matrix
- b) Sparse matrix
- c) Full matrix d) Unity matrix

3) Load flow study is carried out for

- a) Load frequency control
- b) Stability studies

c) System planning

d) Fault calculations

4) At slack bus, which one of the following combinations of variables is specified?

- a) |V|,  $\delta$
- b) P. Q
- c) P,|V|
- d) Q, |V|

5) For a load flow solution, the quantities normally specified at a voltage controlled bus are

- a) P and Q
- b) P and |V| c) Q and |V| d) P and  $\delta$

| 6)  | For stability reasons, the range                                               |                     | line is                    | operated v                                         | vith power angle in |  |
|-----|--------------------------------------------------------------------------------|---------------------|----------------------------|----------------------------------------------------|---------------------|--|
|     | a) 10 to 25 degree                                                             | _                   | b) 30                      | to 45 deg                                          | ree                 |  |
|     | c) 60 to 75 degree                                                             |                     | ,                          | to 90 deg                                          |                     |  |
| 7)  | Which one of the follo                                                         | owing is correct?   | ,                          | J                                                  |                     |  |
| • , | a) $X''_{d} = X'_{d} = X_{d}$                                                  | wing to correct .   | b) X                       | $_{d}^{\prime\prime}$ $<$ $X_{d}^{\prime}$ $<$ $X$ | d                   |  |
|     | c) $X''_d = \frac{X_d}{2}$                                                     |                     | d) x                       | $X_d' = \frac{X_d}{2}$                             |                     |  |
| 8)  | In case of balanced currents are                                               | three phase sys     | tem,                       | negative a                                         | nd zero sequence    |  |
|     | a) Absent                                                                      | b) Equal            | c) In                      | finite                                             | d) Present          |  |
| 9)  | Fault level means                                                              |                     |                            |                                                    |                     |  |
|     | <ul><li>a) Voltage at the poir</li><li>c) Fault current</li></ul>              | t of fault          |                            | ault power 1<br>ault MVA                           | actor               |  |
| 10) | The usual value of $\delta$ is                                                 | s about             |                            |                                                    |                     |  |
|     | a) 30                                                                          | b) 45               | c) 60                      | )                                                  | d) 90               |  |
| 11) | The angle $\delta$ in the swi                                                  | ing equation of a s | synch                      | ronous ger                                         | erator is the       |  |
|     | a) Angle between stator voltage and current                                    |                     |                            |                                                    |                     |  |
|     | b) Angular displacement of the rotor w.r.t. stator                             |                     |                            |                                                    |                     |  |
|     | c) Angular displacement of the stator mmf w.r.t. a synchronously rotating axis |                     |                            |                                                    |                     |  |
|     | <ul><li>d) Angular displacem<br/>rotating axis</li></ul>                       | ent of an axis fixe | d to th                    | ne rotor w.r                                       | .t. a synchronously |  |
| 12) | In me                                                                          | thod of load flow,  | conv                       | ergence is                                         | dependent on the    |  |
| ,   | choice of slack bus.                                                           |                     |                            |                                                    | •                   |  |
|     | a) G-S                                                                         | b) N-R              | c) FI                      | )                                                  | d) All              |  |
| 13) | $I d^2 \delta/dt^2 = $                                                         |                     |                            |                                                    |                     |  |
| ,   | a) Rotor momentum                                                              |                     | b) Ad                      | ccelerating                                        | power               |  |
|     | c) Inertia constant                                                            |                     | d) Excitation of generator |                                                    |                     |  |
| 14) | If the new base MVA is                                                         | twice the old base  | e MVA                      | , then the n                                       | ew p.u. impedance   |  |
| ,   | will be                                                                        |                     |                            |                                                    |                     |  |
|     | a) Four                                                                        | b) Half             | c) Tv                      |                                                    | d) Three            |  |
|     |                                                                                |                     |                            |                                                    |                     |  |



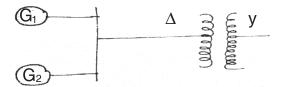
| Seat |  |
|------|--|
| No.  |  |

# T.E. (E & E) (Part – II) (CGPA) Examination, 2018 POWER SYSTEM ANALYSIS

Day and Date: Friday, 18-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I


### 2. Solve any four questions:

 $(4 \times 4 = 16)$ 

- a) State and derive the equal area criterion of stability.
- b) Three generators are rated as G1: 100 MVA, 33 KV, Xgl = 0.1 pu., G2: 150 MVA, 32 KV, Xg2 = 0.08 pu and G3: 110 MVA, 30 KV, Xg3 = 0.12 pu. Determine the reactance of generators in per unit corresponding to base values of 200 MVA and 35 KV.
- c) Assuming 25 MVA as base MVA, calculate the through impedance between the generator and output terminal of the transformer for the system shown below:

The specifications of the components are given below:

| Generator G <sub>1</sub> | Generator G <sub>2</sub> | Transformer    |
|--------------------------|--------------------------|----------------|
| 30 MVA                   | 25 MVA                   | 60 MVA         |
| 11 KV                    | 11 KV                    | 11 KV∆ / 66 KV |
| X" = 0.20 p.u.           | X" = 0.25 p.u.           | X = 0.10 p.u.  |

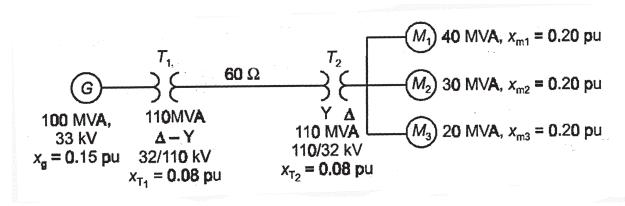


- d) Discuss various types of buses and explain their significance in detail.
- e) Define per unit system. What are the advantages of using per unit system?
- f) A 60 Hz, 4 pole turbo generator rated 100 MVA, 13.8 KV has a inertia constant of 10 MJ/MVA. Determine :
  - a) Stored energy in rotor
  - b) If the mechanical input is suddenly raised to 60 MW for a load of 50 MW, find rotor acceleration?



### 3. Solve following:

 $(2 \times 6 = 12)$ 


a) Data for the sample three bus system are given in following tables. Using Gauss Siedal method determine values of phase voltages at bus 2 and 3 after first iteration.

|                  |                        | Generation Load |      |       |       |
|------------------|------------------------|-----------------|------|-------|-------|
| Bus Code<br>i    | Assumed<br>Bus Voltage | MW              | MVAr | MW    | MVAr  |
| 1<br>(slack bus) | 1.05 + j 0.0           | _               | _    | 0     | 0     |
| 2                | 1 + j 0.0              | 50              | 30   | 305.6 | 140.2 |
| 3                | 1 + j 0.0              | 0.0             | 0.0  | 138.6 | 45.2  |

Base MVA = 100

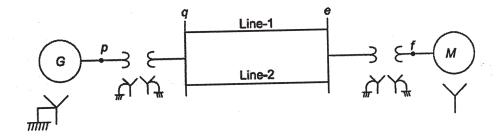
| Bus Code<br>i – k | Impedance<br>Z <sub>ik</sub> |
|-------------------|------------------------------|
| 1 – 2             | 0.02 + j 0.04                |
| 1 – 3             | 0.01 + j 0.03                |
| 2 – 3             | 0.0125 + j 0.025             |
| OR                |                              |

a) For the power system shown below, draw per unit reactance diagram. Assume generator rating as base values.



b) Explain the Newton-Raphson method for solution of non-linear algebraic equations.




#### SECTION - II

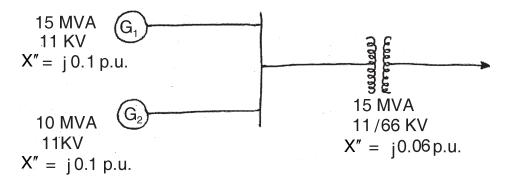
### 4. Solve any four questions:

 $(4 \times 4 = 16)$ 

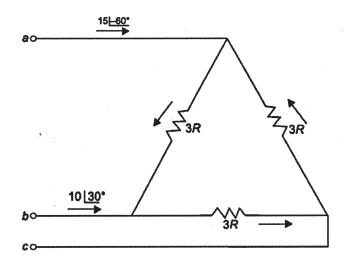
- a) Describe the transients occurring in a transmission line on occurrence of a short circuit.
- b) Explain different faults taking place in a power system.
- c) The zero and positive sequence components of red phase are  $E_{_{R0}} = 0.5 j0.866 \text{ v}; \ E_{_{R1}} = 2 + j0 \text{ if the phase voltage } E_{_{R}} = 3 + j0 \text{ find the negative phase sequence component of red phase and voltages } E_{_{Y}} \text{ and } E_{_{B}}.$
- d) Derive an expression for symmetrical components in terms of phase components.
- e) For the power system shown below draw zero sequence network :

G:  $x_{g0} = 0.05 \text{ pu}$ M:  $x_{m0} = 0.03 \text{ pu}$   $T_1$ :  $x_{T1} = 0.12 \text{ pu}$   $T_2$ :  $x_{T2} = 0.10 \text{ pu}$ Line-1:  $x_{L10} = 0.70 \text{ pu}$ Line-2:  $x_{L20} = 0.70 \text{ pu}$ 




f) A 50 MVA generator with a reactance of 0.1 pu is connected to a busbar. A 25 MVA transformer with a reactance of 0.05 pu is also connected through a busbar reactor of 0.1 pu to a same busbar. Both these reactances are based on 25 MVA rating. If a feeder taken out from a busbar through a circuit breaker develops a line to ground fault what should be the rating of circuit breaker.




5. Solve any two questions:

 $(2 \times 6 = 12)$ 

a) Two generators G<sub>1</sub> and G<sub>2</sub> are connected in parallel having rating of 15 MVA, 11 KV and 10 MVA, 11 KV resp. The generators are connected to transformer as shown in fig. Calculate the subtransient current in each generator when a three phase fault occurs on the high voltage side of the transformer.



b) A delta connected resistive load is connected across a balanced 3 phase supply. Find the symmetrical components of line currents and delta currents.



- c) A 50 MVA, 11 KV, three phase alternator was subjected to different types of faults. The fault currents were :
  - i) 1870 Amp. for three phase fault
  - ii) 2590 Amp. for L L fault.
  - iii) 4130 Amp. for L G fault.

The alternator neutral is solidly grounded. Find the three sequence reactances of the alternator.



## Seat No.

### T.E. (E & E) (Part – II) (CGPA) Examination, 2018 **POWER SYSTEM ANALYSIS**

Max. Marks: 70 Day and Date: Friday, 18-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- **Instructions**: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14 1. Choose the correct answer: 1) For stability reasons, the transmission line is operated with power angle in the range a) 10 to 25 degree b) 30 to 45 degree d) 65 to 90 degree c) 60 to 75 degree 2) Which one of the following is correct? a)  $X''_{d} = X'_{d} = X_{d}$ b)  $X''_d < X'_d < X_d$ c)  $X''_d = \frac{X_d}{2}$ d)  $X'_d = \frac{X_d}{2}$ 

- 3) In case of balanced three phase system, negative and zero sequence currents are
  - a) Absent
- b) Equal
- c) Infinite
- d) Present

- 4) Fault level means
  - a) Voltage at the point of fault
- b) Fault power factor

c) Fault current

- d) Fault MVA
- 5) The usual value of  $\delta$  is about
  - a) 30

- b) 45
- c) 60
- d) 90

14

| 0)  | The angle of in the sw                                                                                                   |                      | -     | _                              | nerator is the             |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|----------------------|-------|--------------------------------|----------------------------|--|
|     | <ul><li>a) Angle between stator voltage and current</li><li>b) Angular displacement of the rotor w.r.t. stator</li></ul> |                      |       |                                |                            |  |
|     | , .                                                                                                                      |                      |       |                                | huanan allu vatatina assia |  |
|     |                                                                                                                          |                      |       | -                              | hronously rotating axis    |  |
|     | d) Angular displacem                                                                                                     | ient of an axis fixe | ed to | o the rotor w.                 | r.t. a synchronously       |  |
|     | rotating axis                                                                                                            |                      |       |                                |                            |  |
| 7)  | In me                                                                                                                    | ethod of load flow   | , CC  | onvergence is                  | s dependent on the         |  |
|     | choice of slack bus.                                                                                                     |                      |       |                                |                            |  |
|     | a) G-S                                                                                                                   | b) N-R               | c)    | FD                             | d) All                     |  |
| 8)  | $I d^2 \delta/dt^2 = $                                                                                                   |                      |       |                                |                            |  |
|     | a) Rotor momentum                                                                                                        |                      | b)    | Accelerating                   | power                      |  |
|     | c) Inertia constant                                                                                                      |                      | d)    | Excitation of                  | generator                  |  |
| 9)  | If the new base MVA is                                                                                                   | s twice the old base | e M   | IVA, then the i                | new p.u. impedance         |  |
|     | will be                                                                                                                  | times old p.u. imp   | eda   | ance.                          |                            |  |
|     | a) Four                                                                                                                  | b) Half              | c)    | Two                            | d) Three                   |  |
| 10) | The power delivered                                                                                                      | by a synchronous     | ge    | nerator to an                  | infinite bus is given      |  |
|     | by                                                                                                                       | _                    |       |                                |                            |  |
|     | a) $P = \frac{ V_t E_f }{R_a} \sin \delta$                                                                               |                      | b)    | $P = \frac{ V_t  E_f ^2}{X_s}$ | e<br>- <b>sin</b> δ        |  |
|     | c) $P = \frac{ V_t E_f }{X_s} \sin \delta$                                                                               |                      | d)    | $P = \frac{ V_t E_f }{X_s}$    | $\cos\delta$               |  |
| 11) | Normally Z <sub>bus</sub> matrix i                                                                                       | is a                 |       |                                |                            |  |
| ,   | a) Null matrix b                                                                                                         |                      | c)    | Full matrix                    | d) Unity matrix            |  |
| 12) | Load flow study is ca                                                                                                    | rried out for        |       |                                |                            |  |
|     | a) Load frequency co                                                                                                     | ontrol               | b)    | Stability stud                 | dies                       |  |
|     | c) System planning                                                                                                       |                      | d)    | Fault calcula                  | ations                     |  |
| 13) | At slack bus, which or                                                                                                   | ne of the following  | cor   | mbinations of                  | variables is specified?    |  |
|     | a)  V , δ                                                                                                                | b) P, Q              | c)    | P, V                           | d) Q,  V                   |  |
| 14) | For a load flow solution                                                                                                 | on, the quantities i | nor   | mally specifie                 | ed at a voltage            |  |
| Í   | controlled bus are                                                                                                       | ·                    |       | - •                            | -                          |  |
|     | a) P and Q                                                                                                               | b) P and  V          | c)    | Q and  V                       | d) P and $\delta$          |  |
|     |                                                                                                                          |                      |       |                                |                            |  |



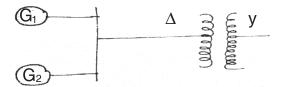
| Seat |  |
|------|--|
| No.  |  |

# T.E. (E & E) (Part – II) (CGPA) Examination, 2018 POWER SYSTEM ANALYSIS

Day and Date: Friday, 18-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.s

SECTION - I


2. Solve any four questions:

 $(4 \times 4 = 16)$ 

- a) State and derive the equal area criterion of stability.
- b) Three generators are rated as G1: 100 MVA, 33 KV, Xgl = 0.1 pu., G2: 150 MVA, 32 KV, Xg2 = 0.08 pu and G3: 110 MVA, 30 KV, Xg3 = 0.12 pu. Determine the reactance of generators in per unit corresponding to base values of 200 MVA and 35 KV.
- c) Assuming 25 MVA as base MVA, calculate the through impedance between the generator and output terminal of the transformer for the system shown below:

The specifications of the components are given below:

| Generator G <sub>1</sub> | Generator G <sub>2</sub> | Transformer    |
|--------------------------|--------------------------|----------------|
| 30 MVA                   | 25 MVA                   | 60 MVA         |
| 11 KV                    | 11 KV                    | 11 KV∆ / 66 KV |
| X" = 0.20 p.u.           | X" = 0.25 p.u.           | X = 0.10 p.u.  |

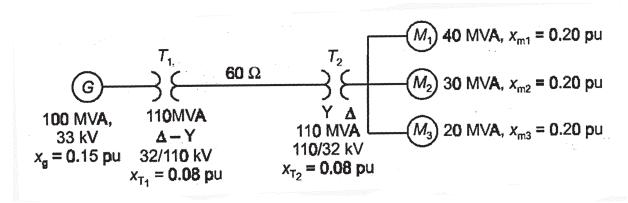


- d) Discuss various types of buses and explain their significance in detail.
- e) Define per unit system. What are the advantages of using per unit system?
- f) A 60 Hz, 4 pole turbo generator rated 100 MVA, 13.8 KV has a inertia constant of 10 MJ/MVA. Determine :
  - a) Stored energy in rotor
  - b) If the mechanical input is suddenly raised to 60 MW for a load of 50 MW, find rotor acceleration?



### 3. Solve following:

 $(2 \times 6 = 12)$ 


a) Data for the sample three bus system are given in following tables. Using Gauss Siedal method determine values of phase voltages at bus 2 and 3 after first iteration.

|                  |                        | Generation Load |      |       |       |
|------------------|------------------------|-----------------|------|-------|-------|
| Bus Code<br>i    | Assumed<br>Bus Voltage | MW              | MVAr | MW    | MVAr  |
| 1<br>(slack bus) | 1.05 + j 0.0           | _               | _    | 0     | 0     |
| 2                | 1 + j 0.0              | 50              | 30   | 305.6 | 140.2 |
| 3                | 1 + j 0.0              | 0.0             | 0.0  | 138.6 | 45.2  |

Base MVA = 100

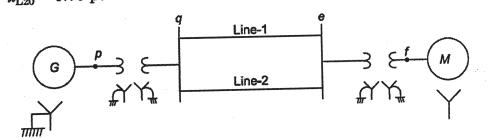
| Bus Code<br>i – k | Impedance<br>Z <sub>ik</sub> |
|-------------------|------------------------------|
| 1 – 2             | 0.02 + j 0.04                |
| 1 – 3             | 0.01 + j 0.03                |
| 2 – 3             | 0.0125 + j 0.025             |
| OR                |                              |

a) For the power system shown below, draw per unit reactance diagram. Assume generator rating as base values.



b) Explain the Newton-Raphson method for solution of non-linear algebraic equations.




#### SECTION - II

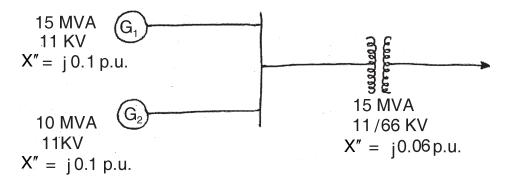
4. Solve any four questions:

 $(4 \times 4 = 16)$ 

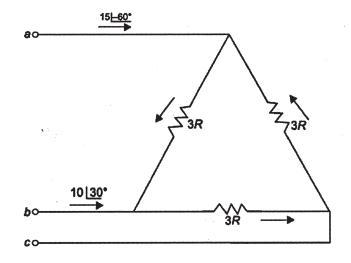
- a) Describe the transients occurring in a transmission line on occurrence of a short circuit.
- b) Explain different faults taking place in a power system.
- c) The zero and positive sequence components of red phase are  $E_{_{R0}} = 0.5 j0.866 \text{ v}; \ E_{_{R1}} = 2 + j0 \text{ if the phase voltage } E_{_{R}} = 3 + j0 \text{ find the negative phase sequence component of red phase and voltages } E_{_{Y}} \text{ and } E_{_{B}}.$
- d) Derive an expression for symmetrical components in terms of phase components.
- e) For the power system shown below draw zero sequence network :

G:  $x_{g0} = 0.05 \text{ pu}$ M:  $x_{m0} = 0.03 \text{ pu}$   $T_1$ :  $x_{T1} = 0.12 \text{ pu}$   $T_2$ :  $x_{T2} = 0.10 \text{ pu}$ Line-1:  $x_{L10} = 0.70 \text{ pu}$ Line-2:  $x_{L20} = 0.70 \text{ pu}$ 




f) A 50 MVA generator with a reactance of 0.1 pu is connected to a busbar. A 25 MVA transformer with a reactance of 0.05 pu is also connected through a busbar reactor of 0.1 pu to a same busbar. Both these reactances are based on 25 MVA rating. If a feeder taken out from a busbar through a circuit breaker develops a line to ground fault what should be the rating of circuit breaker.




5. Solve any two questions:

 $(2 \times 6 = 12)$ 

a) Two generators G<sub>1</sub> and G<sub>2</sub> are connected in parallel having rating of 15 MVA, 11 KV and 10 MVA, 11 KV resp. The generators are connected to transformer as shown in fig. Calculate the subtransient current in each generator when a three phase fault occurs on the high voltage side of the transformer.



b) A delta connected resistive load is connected across a balanced 3 phase supply. Find the symmetrical components of line currents and delta currents.



- c) A 50 MVA, 11 KV, three phase alternator was subjected to different types of faults. The fault currents were :
  - i) 1870 Amp. for three phase fault
  - ii) 2590 Amp. for L L fault.
  - iii) 4130 Amp. for L G fault.

The alternator neutral is solidly grounded. Find the three sequence reactances of the alternator.

|--|--|

| Seat | ]   |   |
|------|-----|---|
| No.  | Set | Р |
|      |     | _ |

# T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018

| CONT                                                                                                       | ROL SYSTEMS – II                                                                                                                              | -,                          |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Day and Date : Monday, 21-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                          |                                                                                                                                               | Max. Marks: 70              |
| <b>30 minute</b><br>carries <b>on</b> e<br>2) <b>Answer M</b>                                              | is compulsory. It should be a<br>es in Answer Book Page No. 3.<br>e mark.<br>ICQ/Objective type questions<br>'t forget to mention, Q.P. Set ( | Each question on Page No. 3 |
| MCQ/Obj<br>Duration : 30 Minutes                                                                           | jective Type Questions                                                                                                                        | Marks : 14                  |
| of P <sup>-1</sup> AP where P is a linea<br>a) 1, -1/2, 1/4<br>c) 1, 4, 16                                 | b) Control matrix d) Diagonal matrix atrix A are 1, -2 and 4. What are tar transformation b) -1, 2, -4 d) 1, -2, 4                            | (14×1=14)<br>he eigenvalues |
| <ul><li>3) The eigenvalues of the mat</li><li>a) Open loop poles</li><li>c) Regulator pole</li></ul>       | b) Open loop zeros d) None of these                                                                                                           |                             |
| <ul><li>4) The TIF having 'P' and/or 'Z phase TIFs.</li><li>a) Minimum</li><li>c) All pass</li></ul>       | Z' in the RHS of s-plane are call b) Non minimum d) None of these                                                                             | ed                          |
| <ul><li>5) The eigenvalues of linear sy</li><li>a) Poles of the system</li><li>c) Both a) and b)</li></ul> | ystem are the location of<br>b) Zero of the system<br>d) Finite pole and zer                                                                  |                             |
| <ul><li>6) A state variable approach c</li><li>a) Continuous time</li><li>c) Periodic time</li></ul>       | an be applied to system b) Discrete time                                                                                                      | stems.                      |





- 7) For the system  $X = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x \div \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$  and  $y = \begin{bmatrix} 1 & 1 \end{bmatrix} X$  then the
  - a) System is controllable but unstable
  - b) System is uncontrollable but unstable
  - c) System is controllable and stable
  - d) System is uncontrollable but stable
- 8) The process of designing a closed loop control system is by
  - a) Regulator

b) Lag compensation

c) Pole placement

- d) None of these
- 9) The transfer function of a compensating network is of form  $(1 + \alpha Ts)/(1 + Ts)$ . If this is a phase – Lag network, the value of  $\alpha$  should be
  - a) Greater than 1

b) Between 0 and 1

c) Exactly equal to 1

- d) Exactly equal to 0
- 10) The transfer function 1 + 0.5s/1 + s represent a
  - a) lag network

b) lead network

c) lag-lead network

- d) proportional controller
- 11) The transfer function of a multi-input multi-output system, with the statespace representation of X = AX + BU and Y = CX + DU where X represents the state, Y the output and U the input vector, will be given by
  - a)  $C(sI A)^{-1} B$

b)  $C(sI - A)^{-1}B + D$ 

c)  $(sI - A)^{-1} B$ 

- d)  $(sI A)^{-1} B + D$
- 12) The information contained in a signal is preserved in the sampled version
  - a) wm = ws

b) ws = 0.1 wm

c) ws = 0.5 wm

- d) ws = 2 wm
- 13) In Jury's table \_\_\_\_\_ number of rows are formed, where n is order of system.
  - a) (3n 2)

b) (2n - 3)

c) (3n + 2)

- d) (2n + 3)
- 14) When the eigenvalues are distinct, real and negative then the singular point is called a
  - a) Stable node

b) Unstable node

c) Stable focus

d) Unstable focus

Marks: 56



| Seat |  |
|------|--|
| No.  |  |

# T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018 CONTROL SYSTEMS – II

Day and Date: Monday, 21-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Solve any four: (4×4=16)

- 1) Give steps to design lead-lag compensator using root locus method.
- 2) Derive the realization of lag compensator network.
- 3) Obtain state transition matrix whose system matrix is given by

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

4) Obtain state model for the system described in phase variable form.

$$d^3y/dt^3 + 11 d^2y/dt^2 + 4 \frac{dy}{dx} + 8y = 9 u(t).$$

5) For the following system test the controllability.

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} U(t).$$

3. Solve **any two** :

 $(2\times6=12)$ 

1) Consider the system defined by X = AX + BU where  $A = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ 

and  $C = [1 \ 0]$  by using state feedback control U = -KX; It is desired to have closed loop poles at s = -3 and s = -4. Determine the state feedback gain matrix 'k' by any one method.

2) Find out the time response for unit step input of a system given by

$$x(t) = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t) \text{ and } X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$$



3) The open loop transfer function of certain unity feedback control system is given by  $G(s) = \frac{K}{s(s+4)(s+80)}$ . It is desired to have the phase margin to

be atleast  $33^{\circ}$  and the velocity error constant Kv = 30/sec. Design a phase lag series compensator.

#### SECTION - II

4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Explain in short mapping between s-plane and z-plane.
- b) Derive transfer function of zero order hold.
- c) Derive pulse transfer function of closed loop system.
- d) Determine the kind of singularity for the following differential equation,  $\ddot{y}+3\dot{y}-10=0\,\cdot$
- e) Explain common physical nonlinearities.
- f) Derive the pulse transfer function of digital controller.
- 5. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Explain the basic digital control system with suitable diagram.
- b) Examine the stability of the system given, by using Jury's stability test  $Z^3 0.2 Z^2 0.25Z + 0.05 = 0$ .
- c) Explain construction of phase trajectory by Delta method.



| Seat |  |
|------|--|
| No.  |  |

Set

Max. Marks: 70



# T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018 CONTROL SYSTEMS – II

Day and Date: Monday, 21-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

**MCQ/Objective Type Questions** 

Duration : 30 Minutes Marks : 14

1. Choose the correct alternative:

 $(14 \times 1 = 14)$ 

- 1) The process of designing a closed loop control system is by
  - a) Regulator

b) Lag compensation

c) Pole placement

- d) None of these
- 2) The transfer function of a compensating network is of form  $(1 + \alpha Ts)/(1 + Ts)$ . If this is a phase Lag network, the value of  $\alpha$  should be
  - a) Greater than 1

b) Between 0 and 1

c) Exactly equal to 1

- d) Exactly equal to 0
- 3) The transfer function 1 + 0.5s/1 + s represent a
  - a) lag network

b) lead network

c) lag-lead network

- d) proportional controller
- 4) The transfer function of a multi-input multi-output system, with the statespace representation of X = AX + BU and Y = CX + DU where X represents the state, Y the output and U the input vector, will be given by
  - a)  $C(sI A)^{-1} B$

b)  $C(sI - A)^{-1} B + D$ 

c)  $(sI - A)^{-1} B$ 

- d)  $(sI A)^{-1} B + D$
- 5) The information contained in a signal is preserved in the sampled version
  - a) wm = ws

b) ws = 0.1 wm

c) ws = 0.5 wm

d) ws = 2 wm

| 6)  | In Jury's table number of rosystem.                                                                               | ws are formed, where n is order of                   |
|-----|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|     | a) (3n – 2)                                                                                                       | b) $(2n-3)$                                          |
|     | c) (3n + 2)                                                                                                       | d) (2n + 3)                                          |
| 7)  | When the eigenvalues are distinct, realist called a                                                               | al and negative then the singular point              |
|     | a) Stable node                                                                                                    | b) Unstable node                                     |
|     | c) Stable focus                                                                                                   | d) Unstable focus                                    |
| 8)  | •                                                                                                                 | b) Control matrix                                    |
|     | c) Linear matrix                                                                                                  | d) Diagonal matrix                                   |
| 9)  | of $P^{-1}$ AP where P is a linear transfor                                                                       |                                                      |
|     | a) 1, –1/2, 1/4                                                                                                   | b) -1, 2, -4                                         |
|     | c) 1, 4, 16                                                                                                       | d) 1, –2, 4                                          |
| 10) | The eigenvalues of the matrix $(A - B)$                                                                           | •                                                    |
|     | a) Open loop poles                                                                                                | b) Open loop zeros                                   |
|     | c) Regulator pole                                                                                                 | d) None of these                                     |
| 11) | The TIF having 'P' and/or 'Z' in the F phase TIFs.                                                                | RHS of s-plane are called                            |
|     | a) Minimum                                                                                                        | b) Non minimum                                       |
|     | c) All pass                                                                                                       | d) None of these                                     |
| 12) | The eigenvalues of linear system are                                                                              | the location of                                      |
|     | a) Poles of the system                                                                                            | b) Zero of the system                                |
|     | c) Both a) and b)                                                                                                 | d) Finite pole and zero                              |
| 13) | <ul><li>A state variable approach can be applea</li><li>a) Continuous time</li><li>c) Periodic time</li></ul>     | olied to systems. b) Discrete time d) Both a) and b) |
| 14) | For the system $X = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x \div \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ |                                                      |

- a) System is controllable but unstable
  - b) System is uncontrollable but unstable
  - c) System is controllable and stable
  - d) System is uncontrollable but stable

Marks: 56



| Seat |  |
|------|--|
| No.  |  |

# T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018 CONTROL SYSTEMS – II

Day and Date: Monday, 21-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Solve any four: (4×4=16)

- 1) Give steps to design lead-lag compensator using root locus method.
- 2) Derive the realization of lag compensator network.
- 3) Obtain state transition matrix whose system matrix is given by

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

4) Obtain state model for the system described in phase variable form.

$$d^3y/dt^3 + 11 d^2y/dt^2 + 4 \frac{dy}{dx} + 8y = 9 u(t).$$

5) For the following system test the controllability.

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} U(t).$$

3. Solve any two : (2×6=12)

1) Consider the system defined by X = AX + BU where  $A = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ 

and  $C = [1 \ 0]$  by using state feedback control U = -KX; It is desired to have closed loop poles at s = -3 and s = -4. Determine the state feedback gain matrix 'k' by any one method.

2) Find out the time response for unit step input of a system given by

$$x(t) = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t) \text{ and } X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$$



3) The open loop transfer function of certain unity feedback control system is given by  $G(s) = \frac{K}{s(s+4)(s+80)}$ . It is desired to have the phase margin to

be atleast  $33^{\circ}$  and the velocity error constant Kv = 30/sec. Design a phase lag series compensator.

#### SECTION - II

4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Explain in short mapping between s-plane and z-plane.
- b) Derive transfer function of zero order hold.
- c) Derive pulse transfer function of closed loop system.
- d) Determine the kind of singularity for the following differential equation,  $\ddot{y}+3\dot{y}-10=0\,\cdot$
- e) Explain common physical nonlinearities.
- f) Derive the pulse transfer function of digital controller.
- 5. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Explain the basic digital control system with suitable diagram.
- b) Examine the stability of the system given, by using Jury's stability test  $Z^3 0.2 Z^2 0.25Z + 0.05 = 0$ .
- c) Explain construction of phase trajectory by Delta method.

|--|--|

| Seat |  |
|------|--|
| No.  |  |

Set



Marks: 14

### T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018 CONTROL SYSTEMS - II

| Day an | d Date : I | Monda | y, 21-5-2018 | Max. Marks: 70 |
|--------|------------|-------|--------------|----------------|
| —.     |            |       | _            |                |

Time: 2.30 p.m. to 5.30 p.m.

**Duration: 30 Minutes** 

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

| 1. | Choose the correct alternative :   |                                           | (14×1=14) |
|----|------------------------------------|-------------------------------------------|-----------|
|    | 1) The eigenvalues of linear syste | m are the location of                     |           |
|    | a) Poles of the system             | b) Zero of the system                     |           |
|    | c) Both a) and b)                  | <ul><li>d) Finite pole and zero</li></ul> |           |
|    |                                    |                                           |           |

- 2) A state variable approach can be applied to \_\_\_\_\_ systems.
  - a) Continuous time

b) Discrete time

c) Periodic time

d) Both a) and b)

3) For the system 
$$X = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x \div \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 and  $y = \begin{bmatrix} 1 & 1 \end{bmatrix} X$  then the

- a) System is controllable but unstable
- b) System is uncontrollable but unstable
- c) System is controllable and stable
- d) System is uncontrollable but stable
- 4) The process of designing a closed loop control system is by
  - a) Regulator

b) Lag compensation

c) Pole placement

- d) None of these
- 5) The transfer function of a compensating network is of form  $(1 + \alpha Ts)/(1 + Ts)$ . If this is a phase – Lag network, the value of  $\alpha$  should be
  - a) Greater than 1

b) Between 0 and 1

c) Exactly equal to 1

d) Exactly equal to 0

| 6)  | The transfer function $1 + 0.5s/1 + s$ r                                                            | epresent a                                                                                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | a) lag network                                                                                      | b) lead network                                                                                                                                                        |
|     | c) lag-lead network                                                                                 | d) proportional controller                                                                                                                                             |
| 7)  |                                                                                                     | t multi-output system, with the state-<br>and $Y = CX + DU$ where X represents<br>ut vector, will be given by<br>b) $C(sI - A)^{-1} B + D$<br>d) $(sI - A)^{-1} B + D$ |
| 8)  | The information contained in a signa                                                                | I is preserved in the sampled version                                                                                                                                  |
|     | a) wm = ws                                                                                          | b) ws = 0.1 wm                                                                                                                                                         |
|     | c) ws = 0.5 wm                                                                                      | d) ws = 2 wm                                                                                                                                                           |
| 9)  | In Jury's table number of rosystem.                                                                 | ows are formed, where n is order of                                                                                                                                    |
|     | a) (3n – 2)                                                                                         | b) (2n – 3)                                                                                                                                                            |
|     | c) (3n + 2)                                                                                         | d) (2n + 3)                                                                                                                                                            |
| 10) | When the eigenvalues are distinct, re is called a                                                   | al and negative then the singular point                                                                                                                                |
|     | a) Stable node                                                                                      | b) Unstable node                                                                                                                                                       |
|     | c) Stable focus                                                                                     | d) Unstable focus                                                                                                                                                      |
| 11) | In state space equation $X = AX + BU$                                                               | J, B matrix is called                                                                                                                                                  |
|     | a) State matrix                                                                                     | b) Control matrix                                                                                                                                                      |
|     | c) Linear matrix                                                                                    | d) Diagonal matrix                                                                                                                                                     |
| 12) | If the eigenvalues of $3 \times 3$ matrix A are of P <sup>-1</sup> AP where P is a linear transform | e 1, –2 and 4. What are the eigenvalues mation                                                                                                                         |
|     | a) 1, -1/2, 1/4                                                                                     | b) -1, 2, -4                                                                                                                                                           |
|     | c) 1, 4, 16                                                                                         | d) 1, –2, 4                                                                                                                                                            |
| 13) | The eigenvalues of the matrix $(A - B)$                                                             | K) are called                                                                                                                                                          |
|     | a) Open loop poles                                                                                  | b) Open loop zeros                                                                                                                                                     |
|     | c) Regulator pole                                                                                   | d) None of these                                                                                                                                                       |
| 14) | The TIF having 'P' and/or 'Z' in the F phase TIFs.                                                  | RHS of s-plane are called                                                                                                                                              |
|     | a) Minimum                                                                                          | b) Non minimum                                                                                                                                                         |
|     | c) All pass                                                                                         | d) None of these                                                                                                                                                       |
|     |                                                                                                     |                                                                                                                                                                        |

Marks: 56



Seat No.

# T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018 CONTROL SYSTEMS – II

Day and Date: Monday, 21-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Solve any four: (4×4=16)

- 1) Give steps to design lead-lag compensator using root locus method.
- 2) Derive the realization of lag compensator network.
- 3) Obtain state transition matrix whose system matrix is given by

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

4) Obtain state model for the system described in phase variable form.

$$d^3y/dt^3 + 11 d^2y/dt^2 + 4 \frac{dy}{dx} + 8y = 9 u(t).$$

5) For the following system test the controllability.

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} U(t).$$

3. Solve **any two**:

1) Consider the system defined by X = AX + BU where  $A = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ 

and  $C = [1 \ 0]$  by using state feedback control U = -KX; It is desired to have closed loop poles at s = -3 and s = -4. Determine the state feedback gain matrix 'k' by any one method.

2) Find out the time response for unit step input of a system given by

$$x(t) = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t) \text{ and } X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$$

 $(2 \times 6 = 12)$ 



3) The open loop transfer function of certain unity feedback control system is given by  $G(s) = \frac{K}{s(s+4)(s+80)}$ . It is desired to have the phase margin to

be atleast  $33^{\circ}$  and the velocity error constant Kv = 30/sec. Design a phase lag series compensator.

### SECTION - II

4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Explain in short mapping between s-plane and z-plane.
- b) Derive transfer function of zero order hold.
- c) Derive pulse transfer function of closed loop system.
- d) Determine the kind of singularity for the following differential equation,  $\ddot{y}+3\dot{y}-10=0\,\cdot$
- e) Explain common physical nonlinearities.
- f) Derive the pulse transfer function of digital controller.
- 5. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Explain the basic digital control system with suitable diagram.
- b) Examine the stability of the system given, by using Jury's stability test  $Z^3 0.2 Z^2 0.25Z + 0.05 = 0$ .
- c) Explain construction of phase trajectory by Delta method.



| Seat |  |
|------|--|
| No.  |  |

Set

S

# T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018 CONTROL SYSTEMS – II

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

Duration : 30 Minutes

1. Choose the correct alternative : (14×1=14)

- 1) The transfer function 1 + 0.5s/1 + s represent a
  - a) lag network

b) lead network

c) lag-lead network

- d) proportional controller
- 2) The transfer function of a multi-input multi-output system, with the statespace representation of X = AX + BU and Y = CX + DU where X represents the state, Y the output and U the input vector, will be given by

a) 
$$C(sI - A)^{-1} B$$

b) 
$$C(sI - A)^{-1} B + D$$

c) 
$$(sI - A)^{-1} B$$

d) 
$$(sI - A)^{-1}B + D$$

- 3) The information contained in a signal is preserved in the sampled version
  - a) wm = ws

b) ws = 0.1 wm

c) ws = 0.5 wm

- d) ws = 2 wm
- 4) In Jury's table \_\_\_\_\_ number of rows are formed, where n is order of system.
  - a) (3n 2)

b) (2n - 3)

c) (3n + 2)

- d) (2n + 3)
- 5) When the eigenvalues are distinct, real and negative then the singular point is called a
  - a) Stable node

b) Unstable node

c) Stable focus

d) Unstable focus



| 6)  | In state space equation $X = AX + BU$ , B matrix is called                                                                                                                                    |                                                                                                                         |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | a) State matrix                                                                                                                                                                               | b) Control matrix                                                                                                       |  |  |  |
|     | c) Linear matrix                                                                                                                                                                              | d) Diagonal matrix                                                                                                      |  |  |  |
| 7)  | If the eigenvalues of $3 \times 3$ matrix A are 1, $-2$ and 4. What are the eigenvalues of $P^{-1}$ AP where P is a linear transformation                                                     |                                                                                                                         |  |  |  |
|     | a) 1, -1/2, 1/4                                                                                                                                                                               | b) -1, 2, -4                                                                                                            |  |  |  |
|     | c) 1, 4, 16                                                                                                                                                                                   | d) 1, –2, 4                                                                                                             |  |  |  |
| 8)  | The eigenvalues of the matrix (A – B                                                                                                                                                          | -                                                                                                                       |  |  |  |
|     | a) Open loop poles                                                                                                                                                                            | b) Open loop zeros                                                                                                      |  |  |  |
|     | c) Regulator pole                                                                                                                                                                             | d) None of these                                                                                                        |  |  |  |
| 9)  | The TIF having 'P' and/or 'Z' in the F phase TIFs.                                                                                                                                            | RHS of s-plane are called                                                                                               |  |  |  |
|     | a) Minimum                                                                                                                                                                                    | b) Non minimum                                                                                                          |  |  |  |
|     | c) All pass                                                                                                                                                                                   | d) None of these                                                                                                        |  |  |  |
| 10) | The eigenvalues of linear system are                                                                                                                                                          | e the location of                                                                                                       |  |  |  |
|     | a) Poles of the system                                                                                                                                                                        | b) Zero of the system                                                                                                   |  |  |  |
|     | c) Both a) and b)                                                                                                                                                                             | d) Finite pole and zero                                                                                                 |  |  |  |
| 11) | A state variable approach can be ap a) Continuous time                                                                                                                                        | b) Discrete time                                                                                                        |  |  |  |
|     | c) Periodic time                                                                                                                                                                              | d) Both a) and b)                                                                                                       |  |  |  |
| 12) | For the system $X = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x \div \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$                                                                             | u and y = [1 1] X then the                                                                                              |  |  |  |
|     | <ul><li>a) System is controllable but unstab</li><li>b) System is uncontrollable but unst</li><li>c) System is controllable and stable</li><li>d) System is uncontrollable but stab</li></ul> | able                                                                                                                    |  |  |  |
| 13) | The process of designing a closed lo                                                                                                                                                          | oop control system is by                                                                                                |  |  |  |
| •   | a) Regulator                                                                                                                                                                                  | b) Lag compensation                                                                                                     |  |  |  |
|     | c) Pole placement                                                                                                                                                                             | d) None of these                                                                                                        |  |  |  |
| 14) | The transfer function of a compensatir If this is a phase – Lag network, the a) Greater than 1 c) Exactly equal to 1                                                                          | ng network is of form $(1 + \alpha Ts)/(1 + Ts)$ . value of $\alpha$ should be b) Between 0 and 1 d) Exactly equal to 0 |  |  |  |
|     |                                                                                                                                                                                               |                                                                                                                         |  |  |  |

Marks: 56



Seat No.

# T.E. (E & E Engg.) (Part – II) (CGPA) Examination, 2018 CONTROL SYSTEMS – II

Day and Date: Monday, 21-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Solve any four: (4×4=16)

- 1) Give steps to design lead-lag compensator using root locus method.
- 2) Derive the realization of lag compensator network.
- 3) Obtain state transition matrix whose system matrix is given by

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

4) Obtain state model for the system described in phase variable form.

$$d^3y/dt^3 + 11 d^2y/dt^2 + 4 \frac{dy}{dx} + 8y = 9 u(t).$$

5) For the following system test the controllability.

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} U(t).$$

3. Solve any two : (2×6=12)

1) Consider the system defined by X = AX + BU where  $A = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ 

and  $C = [1 \ 0]$  by using state feedback control U = -KX; It is desired to have closed loop poles at s = -3 and s = -4. Determine the state feedback gain matrix 'k' by any one method.

2) Find out the time response for unit step input of a system given by  $\begin{bmatrix} 0 & 1 \end{bmatrix}$ 

$$x(t) = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t) \text{ and } X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$$



3) The open loop transfer function of certain unity feedback control system is given by  $G(s) = \frac{K}{s(s+4)(s+80)}$ . It is desired to have the phase margin to

be atleast  $33^{\circ}$  and the velocity error constant Kv = 30/sec. Design a phase lag series compensator.

SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) Explain in short mapping between s-plane and z-plane.
- b) Derive transfer function of zero order hold.
- c) Derive pulse transfer function of closed loop system.
- d) Determine the kind of singularity for the following differential equation,  $\ddot{y}+3\dot{y}-10=0\,\cdot$
- e) Explain common physical nonlinearities.
- f) Derive the pulse transfer function of digital controller.

### 5. Solve any two:

 $(2 \times 6 = 12)$ 

- a) Explain the basic digital control system with suitable diagram.
- b) Examine the stability of the system given, by using Jury's stability test  $Z^3 0.2 Z^2 0.25Z + 0.05 = 0$ .
- c) Explain construction of phase trajectory by Delta method.

Set S

| SL | R- | T | C | _ | 5 | 0 | 0 |
|----|----|---|---|---|---|---|---|
|    |    |   |   |   |   |   |   |



| Seat |  |
|------|--|
| No.  |  |

Set P

# T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

Day and Date: Wednesday, 23-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to **right** indicate **full** marks.
  - 4) Assume suitable data if necessary.
  - 5) Use of non programmable calculator is allowed.

### **MCQ/Objective Type Questions**

| Dur | ation: 30 Minutes                                                                                                           |                | Marks : 14 |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------|----------------|------------|--|
| 1.  | Choose the correct answer:                                                                                                  |                | (14×1=14)  |  |
|     | <ol> <li>PSEN (program store enable) signa<br/>microcontroller and must be conn<br/>containing the program code.</li> </ol> |                |            |  |
|     | A) Output, RAM                                                                                                              | B) Input, ROI  | M          |  |
|     | C) Output, ROM                                                                                                              | D) Input, RAN  | Л          |  |
|     | 2) RS = 0 for LCD module selects                                                                                            | Register       | •          |  |
|     | A) Command B) Data                                                                                                          | C) DPTR        | D) SAR     |  |
|     | 3) Bit addressable area for 8051 microcontroller is                                                                         |                |            |  |
|     | A) 16 byte                                                                                                                  | B) 128 bits    |            |  |
|     | C) Both A and B                                                                                                             | D) 32 byte     |            |  |
|     | 4) 8051 timer mode 1 is                                                                                                     |                |            |  |
|     | A) 16 bit timer                                                                                                             | B) 13 bit time | er         |  |
|     | C) Auto reload mode                                                                                                         | D) 8 bit timer |            |  |

| 5)                 | MOVX instruction is normally used for data transfer of |                     |              |                  |                        |
|--------------------|--------------------------------------------------------|---------------------|--------------|------------------|------------------------|
| A) Internal RAM B) |                                                        |                     | External ROM |                  |                        |
|                    | C) External RAM                                        |                     | D)           | Internal ROM     | 1                      |
| 6)                 | MUL AB instruction s                                   | stores lower byte   | of           | result in the re | egister.               |
|                    | A) B                                                   | B) A                | C)           | R0               | D) R1                  |
| 7)                 | As we push data ont                                    | to the stack, the S | SP           | is k             | by one.                |
|                    | A) incremented                                         |                     | B)           | decremented      | l                      |
|                    | C) subtracted                                          |                     | D)           | initialized      |                        |
| 8)                 | Interfacing LCD with signals                           |                     |              | data lines are   | e used along with the  |
|                    | A) 6, RS, RW                                           |                     | B)           | 5, RW, EN        |                        |
|                    | C) 8, RS, EN, RW                                       |                     | D)           | 9, RS, EN, R     | W                      |
| 9)                 | Timer count                                            | clock pulses v      | whil         | e counter cou    | nt clock pules.        |
|                    | A) External, Internal                                  |                     | B)           | Internal, Exte   | ernal                  |
|                    | C) TH0, TL0                                            |                     | D)           | None             |                        |
| 10)                | With XTAL = 11.059 rate 4800                           | 2 MHz, find the     | TH           | 1 value neede    | ed to have the baud    |
|                    | A) FD                                                  | B) FA               | C)           | F4               | D) E8                  |
| 11)                | The only registers that mode                           | at can be used for  | poi          | nters in registe | er indirect addressing |
|                    | A) A and B                                             |                     | B)           | PC and DPT       | R                      |
|                    | C) A and R0                                            |                     | D)           | R0 and R1        |                        |
| 12)                | If data can be transmission.                           | nitted and receiv   | ed           | simultaneousl    | y, it is a             |
|                    | A) Simplex                                             | B) Half duplex      | C)           | Full duplex      | D) Multiplex           |
| 13)                | When the 8051 is rest to the first program in          |                     | e is         | LOW, the pro     | gram counter points    |
|                    | A) Internal code mer                                   | mory                | B)           | External code    | e memory               |
|                    | C) Internal data men                                   | nory                | D)           | External data    | a memory               |
| 14)                | Which of the following                                 | g instruction perf  | orm          | as of indirect   | RAM to accumulator?    |
|                    | A) MOV A, Rn                                           |                     | B)           | MOV @Ri, A       |                        |
|                    | C) MOV A, @Ri                                          |                     | D)           | MOV Rn, A        |                        |
|                    |                                                        |                     |              |                  |                        |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

Day and Date: Wednesday, 23-5-2018

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to **right** indicate **full** marks.

- 2) All questions are compulsory.
- 3) Assume suitable data if necessary.
- 4) Use of non programmable calculator is allowed.

#### SECTION - I

### 2. Solve any three questions:

 $(4 \times 3 = 12)$ 

Marks: 56

- 1) How interrupts are handled by 8051 microcontroller? Write interrupt vector addresses of all interrupts for 8051.
- 2) Explain data memory organization of 8051 microcontroller.
- 3) Write a program to copy a block of 10 bytes of data from 35H to 60H.
- 4) Give the operation of each bit in the SFR SCON.
- 5) Draw and explain the operation of Port1, pin internal logic circuit.

### 3. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Write a program for the 8051 to receive bytes of data serially and put them in P1, set the baud rate at 4800, 8-bit data and 1 stop bit.
- 2) Explain the operation of following instructions with one example

| Α | SWAP A       |
|---|--------------|
| В | MUL AB       |
| С | MOV DPTR,#nn |
| D | DJNZ Rn,radd |
| Е | AJMP sadd    |

3) Draw and explain RESET and clock circuit for 8051 microcontroller.



#### SECTION - II

### 4. Solve any three questions:

 $(4 \times 3 = 12)$ 

- 1) Explain I2c protocol for serial communication.
- 2) How common anode seven segment display can be interfaced with 8051? What should be done to display digit 5 on it?
- 3) How DS1307 RTC can be interfaced with microcontroller? List different registers present in DS 1307.
- 4) Draw and explain serial EEPROM interfacing.
- 5) Interface 8255 with microcontroller and give the address of PA, PB, PC and CWR.

### 5. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Explain mode 1 of UART communication of 8051. How mode 1 baud rate can be changed?
- 2) Discuss microcontroller based proportional temperature control system in detail.
- 3) How 8255 can be interfaced with microcontroller? Program PC4 of the 8255 to generate a pulse of 50 ms with 50% duty cycle.

| Seat |  |
|------|--|
| No.  |  |

Set Q

# T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

Day and Date: Wednesday, 23-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to right indicate full marks.
  - 4) Assume suitable data if necessary.
  - 5) Use of non programmable calculator is allowed.

### MCQ/Objective Type Questions

| Dur | ration: 30 Minutes                                                                      | Marks: 14                                      |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|
| 1.  | Choose the correct answer                                                               | (14×1=14)                                      |  |  |  |  |
|     | 1) Interfacing LCD with 89C signals.                                                    | 51 data lines are used along with the          |  |  |  |  |
|     | A) 6, RS, RW                                                                            | B) 5, RW, EN                                   |  |  |  |  |
|     | C) 8, RS, EN, RW                                                                        | D) 9, RS, EN, RW                               |  |  |  |  |
|     | 2) Timer count c                                                                        | ock pulses while counter count clock pules.    |  |  |  |  |
|     | <ul><li>A) External, Internal</li></ul>                                                 | B) Internal, External                          |  |  |  |  |
|     | C) TH0, TL0                                                                             | D) None                                        |  |  |  |  |
|     | 3) With XTAL = 11.0592 M rate 4800                                                      | Hz, find the TH1 value needed to have the baud |  |  |  |  |
|     | A) FD B) F                                                                              | A C) F4 D) E8                                  |  |  |  |  |
|     | 4) The only registers that can be used for pointers in register indirect addressin mode |                                                |  |  |  |  |
|     | A) A and B                                                                              | B) PC and DPTR                                 |  |  |  |  |
|     | C) A and R0                                                                             | D) R0 and R1                                   |  |  |  |  |

| 5)  | i) If data can be transmitted and received simultaneously, it is a transmission. |                     |       | sly, it is a    |                                    |
|-----|----------------------------------------------------------------------------------|---------------------|-------|-----------------|------------------------------------|
|     | A) Simplex                                                                       | B) Half duplex      | C)    | Full duplex     | D) Multiplex                       |
| 6)  | When the 8051 is reto the first program                                          |                     |       | LOW, the pro    | ogram counter points               |
|     | A) Internal code me                                                              | emory               | B)    | External cod    | le memory                          |
|     | C) Internal data me                                                              | mory                | D)    | External data   | a memory                           |
| 7)  | Which of the following                                                           | ng instruction perf | form  | as of indirec   | t RAM to accumulator?              |
|     | A) MOV A, Rn                                                                     |                     | B)    | MOV @Ri, A      | A                                  |
|     | C) MOV A, @Ri                                                                    |                     | D)    | MOV Rn, A       |                                    |
| 8)  |                                                                                  | must be connec      |       |                 | signal for the 8031/51<br>pin of a |
|     | A) Output, RAM                                                                   |                     | B)    | Input, ROM      |                                    |
|     | C) Output, ROM                                                                   |                     | D)    | Input, RAM      |                                    |
| 9)  | RS = 0 for LCD mo                                                                | dule selects        |       | _ Register.     |                                    |
|     | A) Command                                                                       | B) Data             | C)    | DPTR            | D) SAR                             |
| 10) | Bit addressable are                                                              | a for 8051 micro    | cont  | roller is       |                                    |
|     | A) 16 byte                                                                       |                     | B)    | 128 bits        |                                    |
|     | C) Both A and B                                                                  |                     | D)    | 32 byte         |                                    |
| 11) | 8051 timer mode 1                                                                | is                  |       |                 |                                    |
|     | A) 16 bit timer                                                                  |                     | B)    | 13 bit timer    |                                    |
|     | C) Auto reload mod                                                               | le                  | D)    | 8 bit timer     |                                    |
| 12) | MOVX instruction is                                                              | s normally used fo  | or da | ata transfer o  | f                                  |
|     | A) Internal RAM                                                                  |                     | B)    | External RO     | M                                  |
|     | C) External RAM                                                                  |                     | D)    | Internal RON    | Л                                  |
| 13) | MUL AB instruction                                                               | stores lower byte   | e of  | result in the r | register.                          |
|     | A) B                                                                             | B) A                | C)    | R0              | D) R1                              |
| 14) | As we push data or                                                               | nto the stack, the  | SP    | is              | by one.                            |
|     | A) incremented                                                                   |                     | B)    | decremented     | d                                  |
|     | C) subtracted                                                                    |                     | D)    | initialized     |                                    |
|     |                                                                                  |                     |       |                 |                                    |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

Day and Date: Wednesday, 23-5-2018

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to **right** indicate **full** marks.

- 2) All questions are compulsory.
- 3) Assume suitable data if necessary.
- 4) Use of non programmable calculator is allowed.

#### SECTION - I

### 2. Solve any three questions:

 $(4 \times 3 = 12)$ 

Marks: 56

- 1) How interrupts are handled by 8051 microcontroller? Write interrupt vector addresses of all interrupts for 8051.
- 2) Explain data memory organization of 8051 microcontroller.
- 3) Write a program to copy a block of 10 bytes of data from 35H to 60H.
- 4) Give the operation of each bit in the SFR SCON.
- 5) Draw and explain the operation of Port1, pin internal logic circuit.

### 3. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Write a program for the 8051 to receive bytes of data serially and put them in P1, set the baud rate at 4800, 8-bit data and 1 stop bit.
- 2) Explain the operation of following instructions with one example

| Α | SWAP A       |
|---|--------------|
| В | MUL AB       |
| С | MOV DPTR,#nn |
| D | DJNZ Rn,radd |
| E | AJMP sadd    |

3) Draw and explain RESET and clock circuit for 8051 microcontroller.



#### SECTION - II

### 4. Solve any three questions:

 $(4 \times 3 = 12)$ 

- 1) Explain I2c protocol for serial communication.
- 2) How common anode seven segment display can be interfaced with 8051? What should be done to display digit 5 on it?
- 3) How DS1307 RTC can be interfaced with microcontroller? List different registers present in DS 1307.
- 4) Draw and explain serial EEPROM interfacing.
- 5) Interface 8255 with microcontroller and give the address of PA, PB, PC and CWR.

### 5. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Explain mode 1 of UART communication of 8051. How mode 1 baud rate can be changed?
- 2) Discuss microcontroller based proportional temperature control system in detail.
- 3) How 8255 can be interfaced with microcontroller? Program PC4 of the 8255 to generate a pulse of 50 ms with 50% duty cycle.

\_\_\_\_\_

| <b>SLR-TC - 50</b> |
|--------------------|
|--------------------|



| Seat |  |
|------|--|
| No.  |  |

Set R

## T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

| Day and Date: Wednesday, 20 5 2010 | ay and Date: Wednesday, 23-5-2018 | Total Marks: 70 |
|------------------------------------|-----------------------------------|-----------------|
|------------------------------------|-----------------------------------|-----------------|

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to right indicate full marks.
  - 4) Assume suitable data if necessary.
  - 5) Use of non programmable calculator is **allowed**.

### MCQ/Objective Type Questions

| Dura | ation : 30 Minute                                         | 98                           |                      |                  | Marks: 14  |
|------|-----------------------------------------------------------|------------------------------|----------------------|------------------|------------|
| 1.   | Choose the cor                                            | rect answer:                 |                      |                  | (14×1=14)  |
|      | 1) MOVX instruction is normally used for data transfer of |                              |                      |                  |            |
|      | A) Internal F                                             | RAM                          | B) Externa           | al ROM           |            |
|      | C) External                                               | RAM                          | D) Interna           | IROM             |            |
|      | 2) MUL AB ins                                             | truction stores lowe         | er byte of result in | the register.    |            |
|      | A) B                                                      | В) А                         | C) R0                | D) R1            |            |
|      | 3) As we push                                             | data onto the stacl          | x, the SP is         | by one.          |            |
|      | A) incremer                                               | nted                         | B) decrem            | nented           |            |
|      | C) subtracte                                              | ed                           | D) initializa        | ed               |            |
|      | ,                                                         | .CD with 89C51<br>_ signals. | data lin             | es are used alon | g with the |
|      | A) 6, RS, R                                               | W                            | B) 5, RW,            | EN               |            |
|      | C) 8. RS. E                                               | N. RW                        | D) 9. RS.            | EN. RW           |            |

| 5)  | Timer count                                                   | clock pulses v     | whil | e counter cou    | ınt clock pules.       |
|-----|---------------------------------------------------------------|--------------------|------|------------------|------------------------|
|     | A) External, Internal                                         |                    | B)   | Internal, Exte   | ernal                  |
|     | C) TH0, TL0                                                   |                    | D)   | None             |                        |
| 6)  | With XTAL = 11.059 rate 4800                                  | 2 MHz, find the    | TH   | 1 value need     | ed to have the baud    |
|     | A) FD                                                         | B) FA              | C)   | F4               | D) E8                  |
| 7)  | The only registers that mode                                  | it can be used for | poi  | nters in registe | er indirect addressing |
|     | A) A and B                                                    |                    | B)   | PC and DPT       | R                      |
|     | C) A and R0                                                   |                    | D)   | R0 and R1        |                        |
| 8)  | If data can be transmission.                                  | nitted and receiv  | ed   | simultaneous     | ly, it is a            |
|     | A) Simplex                                                    | B) Half duplex     | C)   | Full duplex      | D) Multiplex           |
| 9)  | When the 8051 is rest to the first program in                 | nstruction in the  |      | •                |                        |
|     | A) Internal code mer                                          |                    |      |                  |                        |
|     | C) Internal data men                                          | nory               | D)   | External data    | a memory               |
| 10) | Which of the followin                                         | g instruction perf | orm  | as of indirect   | RAM to accumulator?    |
|     | A) MOV A, Rn                                                  |                    | B)   | MOV @Ri, A       |                        |
|     | C) MOV A, @Ri                                                 |                    | D)   | MOV Rn, A        |                        |
| 11) | PSEN (program store microcontroller and containing the progra | must be connec     |      |                  |                        |
|     | A) Output, RAM                                                |                    | B)   | Input, ROM       |                        |
|     | C) Output, ROM                                                |                    | D)   | Input, RAM       |                        |
| 12) | RS = 0 for LCD mod                                            | ule selects        |      | _ Register.      |                        |
|     | A) Command                                                    | B) Data            | C)   | DPTR             | D) SAR                 |
| 13) | Bit addressable area                                          | for 8051 microc    | cont | roller is        |                        |
|     | A) 16 byte                                                    |                    | B)   | 128 bits         |                        |
|     | C) Both A and B                                               |                    | D)   | 32 byte          |                        |
| 14) | 8051 timer mode 1 is                                          | 3                  |      |                  |                        |
|     | A) 16 bit timer                                               |                    | B)   | 13 bit timer     |                        |
|     | C) Auto reload mode                                           | e                  | D)   | 8 bit timer      |                        |
|     |                                                               |                    |      |                  |                        |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

Day and Date: Wednesday, 23-5-2018

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to **right** indicate **full** marks.

- 2) All questions are compulsory.
- 3) Assume suitable data if necessary.
- 4) Use of non programmable calculator is allowed.

#### SECTION - I

#### 2. Solve any three questions:

 $(4 \times 3 = 12)$ 

Marks: 56

- 1) How interrupts are handled by 8051 microcontroller? Write interrupt vector addresses of all interrupts for 8051.
- 2) Explain data memory organization of 8051 microcontroller.
- 3) Write a program to copy a block of 10 bytes of data from 35H to 60H.
- 4) Give the operation of each bit in the SFR SCON.
- 5) Draw and explain the operation of Port1, pin internal logic circuit.

### 3. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Write a program for the 8051 to receive bytes of data serially and put them in P1, set the baud rate at 4800, 8-bit data and 1 stop bit.
- 2) Explain the operation of following instructions with one example

| Α | SWAP A       |
|---|--------------|
| В | MUL AB       |
| С | MOV DPTR,#nn |
| D | DJNZ Rn,radd |
| E | AJMP sadd    |

3) Draw and explain RESET and clock circuit for 8051 microcontroller.



#### SECTION - II

#### 4. Solve any three questions:

 $(4 \times 3 = 12)$ 

- 1) Explain I2c protocol for serial communication.
- 2) How common anode seven segment display can be interfaced with 8051? What should be done to display digit 5 on it?
- 3) How DS1307 RTC can be interfaced with microcontroller? List different registers present in DS 1307.
- 4) Draw and explain serial EEPROM interfacing.
- 5) Interface 8255 with microcontroller and give the address of PA, PB, PC and CWR.

#### 5. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Explain mode 1 of UART communication of 8051. How mode 1 baud rate can be changed?
- 2) Discuss microcontroller based proportional temperature control system in detail.
- 3) How 8255 can be interfaced with microcontroller? Program PC4 of the 8255 to generate a pulse of 50 ms with 50% duty cycle.

Set S

## T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

| Day and Date: Wednesday, 23-5-2018 | Total Marks: 70 |
|------------------------------------|-----------------|
| T: 0 00 t- F 00                    |                 |

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to right indicate full marks.
  - 4) Assume suitable data if necessary.
  - 5) Use of non programmable calculator is allowed.

#### MCQ/Objective Type Questions

| Dur | atic                                                                      | on: 30 Minutes                                                                                                       |                    |                      | N                 | /larks : 14 |  |
|-----|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------|-------------|--|
| 1.  | Cł                                                                        | noose the correct ar                                                                                                 | nswer:             |                      | (                 | 14×1=14)    |  |
|     | 1) With XTAL = 11.0592 MHz, find the rate 4800                            |                                                                                                                      |                    | TH1 value need       | ed to have the    | baud        |  |
|     |                                                                           | A) FD                                                                                                                | B) FA              | C) F4                | D) E8             |             |  |
|     | 2)                                                                        | The only registers t mode                                                                                            | hat can be used fo | r pointers in regist | er indirect addre | essing      |  |
|     |                                                                           | A) A and B                                                                                                           |                    | B) PC and DPT        | R                 |             |  |
|     |                                                                           | C) A and R0                                                                                                          |                    | D) R0 and R1         |                   |             |  |
|     | <ol> <li>If data can be transmitted and rece<br/>transmission.</li> </ol> |                                                                                                                      |                    | ved simultaneous     | sly, it is a      |             |  |
|     |                                                                           | A) Simplex                                                                                                           | B) Half duplex     | C) Full duplex       | D) Multiplex      |             |  |
|     | 4)                                                                        | 4) When the 8051 is reset and the EA line is LOW, the program counter points to the first program instruction in the |                    |                      |                   |             |  |
|     |                                                                           | A) Internal code m                                                                                                   | emory              | B) External cod      | le memory         |             |  |
|     |                                                                           | C) Internal data m                                                                                                   | emory              | D) External dat      | a memory          |             |  |

| 5)  | Which of the following instruction perf                          | form as of indirect RAM to accumulator? |
|-----|------------------------------------------------------------------|-----------------------------------------|
|     | A) MOV A, Rn                                                     | B) MOV @Ri, A                           |
|     | C) MOV A, @Ri                                                    | D) MOV Rn, A                            |
| 6)  | PSEN (program store enable) signal is                            | s an signal for the 8031/51             |
|     | microcontroller and must be connect containing the program code. | ected to the OE pin of a                |
|     | A) Output, RAM                                                   | B) Input, ROM                           |
|     | C) Output, ROM                                                   | D) Input, RAM                           |
| 7)  | RS = 0 for LCD module selects                                    | Register.                               |
|     | A) Command B) Data                                               | C) DPTR D) SAR                          |
| 8)  | Bit addressable area for 8051 microo                             | controller is                           |
|     | A) 16 byte                                                       | B) 128 bits                             |
|     | C) Both A and B                                                  | D) 32 byte                              |
| 9)  | 8051 timer mode 1 is                                             |                                         |
|     | A) 16 bit timer                                                  | B) 13 bit timer                         |
|     | C) Auto reload mode                                              | D) 8 bit timer                          |
| 10) | MOVX instruction is normally used for                            | for data transfer of                    |
|     | A) Internal RAM                                                  | B) External ROM                         |
|     | C) External RAM                                                  | D) Internal ROM                         |
| 11) | MUL AB instruction stores lower byte                             | te of result in the register.           |
|     | A) B B) A                                                        | C) R0 D) R1                             |
| 12) | As we push data onto the stack, the                              | SP is by one.                           |
|     | A) incremented                                                   | B) decremented                          |
|     | C) subtracted                                                    | D) initialized                          |
| 13) | Interfacing LCD with 89C51 signals.                              | data lines are used along with the      |
|     | A) 6, RS, RW                                                     | B) 5, RW, EN                            |
|     | C) 8, RS, EN, RW                                                 | D) 9, RS, EN, RW                        |
| 14) | Timer count clock pulses v                                       | while counter count clock pules.        |
|     | A) External, Internal                                            | B) Internal, External                   |
|     | C) TH0, TL0                                                      | D) None                                 |
|     |                                                                  |                                         |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Electrical and Electronics Engineering) (Part – II) (CGPA) Examination, 2018 MICROCONTROLLER AND ITS APPLICATIONS

Day and Date: Wednesday, 23-5-2018

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to **right** indicate **full** marks.

- 2) All questions are compulsory.
- 3) Assume suitable data if necessary.
- 4) Use of non programmable calculator is allowed.

#### SECTION - I

#### 2. Solve any three questions:

 $(4 \times 3 = 12)$ 

Marks: 56

- 1) How interrupts are handled by 8051 microcontroller? Write interrupt vector addresses of all interrupts for 8051.
- 2) Explain data memory organization of 8051 microcontroller.
- 3) Write a program to copy a block of 10 bytes of data from 35H to 60H.
- 4) Give the operation of each bit in the SFR SCON.
- 5) Draw and explain the operation of Port1, pin internal logic circuit.

### 3. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Write a program for the 8051 to receive bytes of data serially and put them in P1, set the baud rate at 4800, 8-bit data and 1 stop bit.
- 2) Explain the operation of following instructions with one example

| А | SWAP A       |
|---|--------------|
| В | MUL AB       |
| С | MOV DPTR,#nn |
| D | DJNZ Rn,radd |
| Е | AJMP sadd    |

3) Draw and explain RESET and clock circuit for 8051 microcontroller.



#### SECTION - II

#### 4. Solve any three questions:

 $(4 \times 3 = 12)$ 

- 1) Explain I2c protocol for serial communication.
- 2) How common anode seven segment display can be interfaced with 8051? What should be done to display digit 5 on it?
- 3) How DS1307 RTC can be interfaced with microcontroller? List different registers present in DS 1307.
- 4) Draw and explain serial EEPROM interfacing.
- 5) Interface 8255 with microcontroller and give the address of PA, PB, PC and CWR.

#### 5. Solve any two questions:

 $(8 \times 2 = 16)$ 

- 1) Explain mode 1 of UART communication of 8051. How mode 1 baud rate can be changed?
- 2) Discuss microcontroller based proportional temperature control system in detail.
- 3) How 8255 can be interfaced with microcontroller? Program PC4 of the 8255 to generate a pulse of 50 ms with 50% duty cycle.



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 **Self Learning (Technical)** INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Total Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

*Instructions*: 1) *All* the questions are *compulsory*.

- 2) Figures to the **right** indicate **full** marks.
- 3) Q. No. 1 is compulsory. It should be solved in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Marks: 10

1. Choose the correct answer:

10

- 1) Strategic management is primarily carried out by
  - a) Top management

- b) Middle management
- c) Knowledge management
- d) Operational management
- 2) The objective of plant layout are
  - a) Optimum utilization of resources b) Better inventory control
- - c) Economics of material handling d) All of above
- 3) F. W. Taylor introduced a system of management known as
  - a) Line organization
  - b) Functional management
  - c) Line and staff organization
  - d) Line, staff and functional organization

| 4)  | The product layout                          |       |                                         |  |  |
|-----|---------------------------------------------|-------|-----------------------------------------|--|--|
|     | a) Lower the overall manufacturing time     |       |                                         |  |  |
|     | b) Requires less space for placing machines |       |                                         |  |  |
|     | c) Utilize machine and labour better        |       |                                         |  |  |
|     | d) All of these                             |       |                                         |  |  |
| 5)  | Job evolution is a method of determine      | ning  | g the                                   |  |  |
|     | a) Relative value of job                    | b)    | Job enrichment                          |  |  |
|     | c) Worth of machine                         | d)    | Value of overall production             |  |  |
| 6)  | In value engineering, important consi       | ider  | ation is given to                       |  |  |
|     | a) Customer satisfaction                    | b)    | Function concept                        |  |  |
|     | c) Profit maximization                      | d)    | Cost reduction                          |  |  |
| 7)  | Functional management is                    |       |                                         |  |  |
|     | a) Less differentiated and more diffu       | sec   |                                         |  |  |
|     | b) More differentiated and longer term      | m     |                                         |  |  |
|     | c) More differentiated and focused          |       |                                         |  |  |
|     | d) Goal oriented                            |       |                                         |  |  |
| 8)  | Manufacturing a number of identical         |       | •                                       |  |  |
|     | order or to meet continuous demand          |       |                                         |  |  |
|     | a) Job production                           | b)    | Batch production                        |  |  |
|     | c) Continuous production                    | d)    | Flow production                         |  |  |
| 9)  | The appellate authority for any industrial  | trial | dispute is                              |  |  |
|     | a) Management                               | b)    | Labour court                            |  |  |
|     | c) High court                               | d)    | Board of directors                      |  |  |
| 10) | The time elapsed between the placin         | g o   | f an order and its arrival is called as |  |  |
|     | a) Cycle time                               | b)    | Load time                               |  |  |
|     | c) Work station process time                | d)    | None of the above                       |  |  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 Self Learning (Technical) INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Marks: 40 Time: 2.30 p.m. to 4.30 p.m. *Instructions*: 1) *All* the questions are *compulsory*. 2) Figures to the **right** indicate **full** marks. Solve any four from Q. No. 2 to Q. No. 6: 40 2. a) What is cost control? Brief the cost control area in production 5 organization. b) Explain role of public relation officer in industry. 5 3. a) Explain recruitment and selection procedure in engineering industry. 5 b) What are the different types of production system? 5 4. a) What credit facilities are given to a small scale industry by banks? 5 b) Explain importance of "Staffing" in an organization. 5 5. a) Explain core concept of marketing. 5 b) Brief evolution of scientific management. 5 6. Write short notes on any two:  $(2 \times 5 = 10)$ a) What type of compensation is given to a employee injured in the organization during working? b) Explain safety majors during fire in a workshop. c) Brief inventory management.



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 **Self Learning (Technical)** INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Total Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

*Instructions*: 1) *All* the questions are *compulsory*.

- 2) Figures to the **right** indicate **full** marks.
- 3) Q. No. 1 is compulsory. It should be solved in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Marks: 10

1. Choose the correct answer:

10

- 1) The appellate authority for any industrial dispute is
  - a) Management

b) Labour court

c) High court

- d) Board of directors
- 2) The time elapsed between the placing of an order and its arrival is called as
  - a) Cycle time

- b) Load time
- c) Work station process time
- d) None of the above
- 3) Functional management is
  - a) Less differentiated and more diffused
  - b) More differentiated and longer term
  - c) More differentiated and focused
  - d) Goal oriented

| 4)  | Manufacturing a number of identical a order or to meet continuous demand |       | ·                           |
|-----|--------------------------------------------------------------------------|-------|-----------------------------|
|     | a) Job production                                                        | b)    | Batch production            |
|     | c) Continuous production                                                 | d)    | Flow production             |
| 5)  | Strategic management is primarily ca                                     | ırrie | d out by                    |
|     | a) Top management                                                        | b)    | Middle management           |
|     | c) Knowledge management                                                  | d)    | Operational management      |
| 6)  | The objective of plant layout are                                        |       |                             |
|     | a) Optimum utilization of resources                                      | b)    | Better inventory control    |
|     | c) Economics of material handling                                        | d)    | All of above                |
| 7)  | F. W. Taylor introduced a system of r                                    | man   | agement known as            |
|     | a) Line organization                                                     |       |                             |
|     | b) Functional management                                                 |       |                             |
|     | c) Line and staff organization                                           |       |                             |
|     | d) Line, staff and functional organiza                                   | tion  |                             |
| 8)  | The product layout                                                       |       |                             |
|     | a) Lower the overall manufacturing ti                                    | ime   |                             |
|     | b) Requires less space for placing m                                     | ach   | ines                        |
|     | c) Utilize machine and labour better                                     |       |                             |
|     | d) All of these                                                          |       |                             |
| 9)  | Job evolution is a method of determine                                   | ning  | the                         |
|     | a) Relative value of job                                                 | b)    | Job enrichment              |
|     | c) Worth of machine                                                      | d)    | Value of overall production |
| 10) | In value engineering, important consi                                    | dera  | ation is given to           |
|     | a) Customer satisfaction                                                 | b)    | Function concept            |
|     | c) Profit maximization                                                   | d)    | Cost reduction              |
|     |                                                                          |       |                             |
|     |                                                                          |       |                             |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 Self Learning (Technical) INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Marks: 40 Time: 2.30 p.m. to 4.30 p.m. *Instructions*: 1) *All* the questions are *compulsory*. 2) Figures to the **right** indicate **full** marks. Solve any four from Q. No. 2 to Q. No. 6: 40 2. a) What is cost control? Brief the cost control area in production 5 organization. b) Explain role of public relation officer in industry. 5 3. a) Explain recruitment and selection procedure in engineering industry. 5 b) What are the different types of production system? 5 4. a) What credit facilities are given to a small scale industry by banks? 5 b) Explain importance of "Staffing" in an organization. 5 5. a) Explain core concept of marketing. 5 b) Brief evolution of scientific management. 5 6. Write short notes on any two:  $(2 \times 5 = 10)$ a) What type of compensation is given to a employee injured in the organization during working? b) Explain safety majors during fire in a workshop. c) Brief inventory management.



| Seat |  |
|------|--|
| No.  |  |

Set |

## T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 Self Learning (Technical) INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Total Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

*Instructions*: 1) All the questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Q. No. 1 is **compulsory**. It should be solved in Answer Book Page No. 3. **Each** question carries **one** mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Marks: 10

1. Choose the correct answer:

10

- 1) Job evolution is a method of determining the
  - a) Relative value of job
- b) Job enrichment

c) Worth of machine

- d) Value of overall production
- 2) In value engineering, important consideration is given to
  - a) Customer satisfaction
- b) Function concept

c) Profit maximization

- d) Cost reduction
- 3) The appellate authority for any industrial dispute is
  - a) Management

b) Labour court

c) High court

- d) Board of directors
- 4) The time elapsed between the placing of an order and its arrival is called as
  - a) Cycle time

- b) Load time
- c) Work station process time
- d) None of the above

| R-T | C <b>– 501</b> -2-                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5)  | F. W. Taylor introduced a system of        | management known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | a) Line organization                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | b) Functional management                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | c) Line and staff organization             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | d) Line, staff and functional organization | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6)  | The product layout                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | a) Lower the overall manufacturing         | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | b) Requires less space for placing r       | nachines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | c) Utilize machine and labour better       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | d) All of these                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7)  | Strategic management is primarily c        | arried out by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | a) Top management                          | b) Middle management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | c) Knowledge management                    | d) Operational management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8)  | The objective of plant layout are          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | a) Optimum utilization of resources        | b) Better inventory control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | c) Economics of material handling          | d) All of above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9)  | Functional management is                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | a) Less differentiated and more diffu      | used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | b) More differentiated and longer te       | rm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | c) More differentiated and focused         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | d) Goal oriented                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ١٠) | AA C                                       | and the same of th |

a) Job production

b) Batch production

c) Continuous production

d) Flow production



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 Self Learning (Technical) INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Marks: 40 Time: 2.30 p.m. to 4.30 p.m. *Instructions*: 1) *All* the questions are *compulsory*. 2) Figures to the **right** indicate **full** marks. Solve any four from Q. No. 2 to Q. No. 6: 40 2. a) What is cost control? Brief the cost control area in production 5 organization. b) Explain role of public relation officer in industry. 5 3. a) Explain recruitment and selection procedure in engineering industry. 5 b) What are the different types of production system? 5 4. a) What credit facilities are given to a small scale industry by banks? 5 b) Explain importance of "Staffing" in an organization. 5 5. a) Explain core concept of marketing. 5 b) Brief evolution of scientific management. 5 6. Write short notes on any two:  $(2 \times 5 = 10)$ a) What type of compensation is given to a employee injured in the organization during working? b) Explain safety majors during fire in a workshop. c) Brief inventory management.



Seat No.

## T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 **Self Learning (Technical)** INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Total Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

*Instructions*: 1) *All* the questions are *compulsory*.

- 2) Figures to the **right** indicate **full** marks.
- 3) Q. No. 1 is compulsory. It should be solved in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Marks: 10

1. Choose the correct answer:

10

- 1) F. W. Taylor introduced a system of management known as
  - a) Line organization
  - b) Functional management
  - c) Line and staff organization
  - d) Line, staff and functional organization
- 2) The product layout
  - a) Lower the overall manufacturing time
  - b) Requires less space for placing machines
  - c) Utilize machine and labour better
  - d) All of these



| 3)  | ) Job evolution is a method of determining the |                                                                          |      |                                         |
|-----|------------------------------------------------|--------------------------------------------------------------------------|------|-----------------------------------------|
|     | a)                                             | Relative value of job                                                    | b)   | Job enrichment                          |
|     | c)                                             | Worth of machine                                                         | d)   | Value of overall production             |
| 4)  | In                                             | value engineering, important consi                                       | der  | ation is given to                       |
|     | a)                                             | Customer satisfaction                                                    | b)   | Function concept                        |
|     | c)                                             | Profit maximization                                                      | d)   | Cost reduction                          |
| 5)  | Fu                                             | nctional management is                                                   |      |                                         |
|     | a)                                             | Less differentiated and more diffus                                      | sed  |                                         |
|     | b)                                             | More differentiated and longer term                                      | n    |                                         |
|     | c)                                             | More differentiated and focused                                          |      |                                         |
|     | d)                                             | Goal oriented                                                            |      |                                         |
| 6)  |                                                | anufacturing a number of identical a<br>der or to meet continuous demand |      | ·                                       |
|     | a)                                             | Job production                                                           | b)   | Batch production                        |
|     | c)                                             | Continuous production                                                    | d)   | Flow production                         |
| 7)  | Th                                             | e appellate authority for any indust                                     | rial | dispute is                              |
|     | a)                                             | Management                                                               | b)   | Labour court                            |
|     | c)                                             | High court                                                               | d)   | Board of directors                      |
| 8)  | Th                                             | e time elapsed between the placing                                       | g o  | f an order and its arrival is called as |
|     | a)                                             | Cycle time                                                               | b)   | Load time                               |
|     | c)                                             | Work station process time                                                | d)   | None of the above                       |
| 9)  | Stı                                            | rategic management is primarily ca                                       | rrie | ed out by                               |
|     | a)                                             | Top management                                                           | b)   | Middle management                       |
|     | c)                                             | Knowledge management                                                     | d)   | Operational management                  |
| 10) | Th                                             | e objective of plant layout are                                          |      |                                         |
|     | a)                                             | Optimum utilization of resources                                         | b)   | Better inventory control                |
|     | c)                                             | Economics of material handling                                           | d)   | All of above                            |
|     |                                                |                                                                          |      |                                         |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part –II) (Electrical and Electronic Engg.) (CGPA) Examination, 2018 Self Learning (Technical) INDUSTRIAL MANAGEMENT

Day and Date: Friday, 25-5-2018 Marks: 40 Time: 2.30 p.m. to 4.30 p.m. *Instructions*: 1) *All* the questions are *compulsory*. 2) Figures to the **right** indicate **full** marks. Solve any four from Q. No. 2 to Q. No. 6: 40 2. a) What is cost control? Brief the cost control area in production 5 organization. b) Explain role of public relation officer in industry. 5 3. a) Explain recruitment and selection procedure in engineering industry. 5 b) What are the different types of production system? 5 4. a) What credit facilities are given to a small scale industry by banks? 5 b) Explain importance of "Staffing" in an organization. 5 5. a) Explain core concept of marketing. 5 b) Brief evolution of scientific management. 5 6. Write short notes on any two:  $(2 \times 5 = 10)$ a) What type of compensation is given to a employee injured in the organization during working? b) Explain safety majors during fire in a workshop. c) Brief inventory management.

|   | Seat |  |
|---|------|--|
| ı | No.  |  |

Set P

## T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018 SPECIAL MACHINES (Self Learning Technical)

Day and Date: Friday, 25-5-2018 Max. Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

Note: 1) Q. No. 1 is compulsory. Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

Marks: 10

|                                                                                                                                                                                                                  | manto i io                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Choose the correct answer:                                                                                                                                                                                       | (1×10=10)                                    |
| 1) A stepper motor is a                                                                                                                                                                                          | device.                                      |
| a) Mechanical                                                                                                                                                                                                    | b) Electrical                                |
| c) Analog                                                                                                                                                                                                        | d) Incremental                               |
| <ol><li>A variable reluctance step<br/>material with salient poles.</li></ol>                                                                                                                                    | oper motor is constructed of                 |
| a) Paramagnetic                                                                                                                                                                                                  | b) Ferromagnetic                             |
| c) Diamagnetic                                                                                                                                                                                                   | d) Non-magnetic                              |
| 3) The controls stator and rotor.                                                                                                                                                                                | ynchro's has three phase winding both on its |
| a) Differential                                                                                                                                                                                                  | b) Transformer                               |
| c) Receiver                                                                                                                                                                                                      | d) Transmitter                               |
| <ul> <li>4) Which of the following motor magnetized salient poles or</li> <li>a) Permanent magnet d.c.</li> <li>b) Disk d.c. motor</li> <li>c) Permanent magnet sync</li> <li>d) Brushless d.c. motor</li> </ul> | motor                                        |
|                                                                                                                                                                                                                  | <ol> <li>A stepper motor is a</li></ol>      |



| 5)  | <ul> <li>A D.C. Servomotor is similar to a regular d.c. motor except that its designs is modified to cope with</li> </ul> |                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|     | a) Electronic switching                                                                                                   | b) Slow speeds                       |
|     | c) Static conditions                                                                                                      | d) Both b) and c)                    |
| 6)  | Which of the following synchros are control system?                                                                       | used for error detection in a servo  |
|     | a) Control transmitter                                                                                                    | b) Control transformer               |
|     | c) Control receiver                                                                                                       | d) Both a) and b)                    |
| 7)  | A stepper motor may be considered a                                                                                       | as aconverter.                       |
|     | a) D. C. to D.C.                                                                                                          | b) A. C. to A. C.                    |
|     | c) D. C. to A. C.                                                                                                         | d) Digital to analog                 |
| 8)  | In a brushless d.c. motor we have                                                                                         |                                      |
|     | a) No mechanical commutator                                                                                               | b) No brushes                        |
|     | c) No arcing                                                                                                              | d) All of above                      |
| 9)  | Motors that use electronic commutate                                                                                      | ors are classified as                |
|     | a) Thyristor controlled                                                                                                   | b) Servo motors                      |
|     | c) Brushless motors                                                                                                       | d) Electronic motors                 |
| 10) | The amount of torque required to m called                                                                                 | ake a stepper motor one full step is |
|     | a) Holding torque                                                                                                         | b) Residual torque                   |
|     | c) Dent torque                                                                                                            | d) Developed torque                  |
|     |                                                                                                                           |                                      |
|     |                                                                                                                           |                                      |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018 SPECIAL MACHINES (Self Learning Technical)

Day and Date: Friday, 25-5-2018 Marks: 40

Time: 2.30 p.m. to 4.30 p.m.

Note: Answer any four questions from Q. No. 2 to Q. No. 6.

| 2. | a) | What is a stepper motor? Explain its applications.                   | 5 |
|----|----|----------------------------------------------------------------------|---|
|    | b) | Explain the construction of variable reluctance stepper motor.       | 5 |
| 3. | a) | Explain the construction and working of permanent magnet D.C. motor. | 5 |
|    | b) | Explain the construction and working of hybrid stepper motor.        | 5 |
| 4. | a) | Explain the constructional features of synchros.                     | 5 |
|    | b) | Explain the application of synchro for torque transmission.          | 5 |
| 5. | a) | Explain the construction and working of A.C. servo motor.            | 5 |
|    | b) | Explain the working of switched reluctance motor.                    | 5 |
| 6. | a) | Explain the construction and working of brushless D.C. motor.        | 5 |
|    | b) | Explain the construction and working of Scharge motor.               | 5 |

| Spat |  |
|------|--|

Set Q

Seat No.

## T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018 SPECIAL MACHINES (Self Learning Technical)

Day and Date: Friday, 25-5-2018 Max. Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

1.

Note: 1) Q. No. 1 is compulsory. Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Marks: 10

| Ch | oose the correct answer :               |            |                  | (1×10=10)        |
|----|-----------------------------------------|------------|------------------|------------------|
| 1) | Motors that use electronic commutation  | tators are | e classified as  |                  |
|    | a) Thyristor controlled                 | b) Se      | ervo motors      |                  |
|    | c) Brushless motors                     | d) El      | lectronic motors |                  |
| 2) | The amount of torque required to called | make a     | stepper motor of | one full step is |
|    | a) Holding torque                       | b) Re      | esidual torque   |                  |
|    | c) Dent torque                          | d) De      | eveloped torque  |                  |
| 3) | A stepper motor may be considered       | ed as a _  |                  | converter.       |
|    | a) D. C. to D.C.                        | b) A.      | . C. to A. C.    |                  |
|    | c) D. C. to A. C.                       | d) Di      | igital to analog |                  |
| 4) | In a brushless d.c. motor we have       |            |                  |                  |
|    | a) No mechanical commutator             | b) No      | o brushes        |                  |
|    | c) No arcing                            | d) Al      | I of above       |                  |
| 5) | A stepper motor is a                    | _device.   |                  |                  |
|    | a) Mechanical                           | b) El      | lectrical        |                  |
|    | c) Analog                               | d) In      | cremental        |                  |
|    | ,                                       | ,          |                  |                  |



| 6)  | A variable reluctance stepper material with salient poles.                                                                                                            | motor is constructed of                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|     | a) Paramagnetic                                                                                                                                                       | b) Ferromagnetic                            |
|     | c) Diamagnetic                                                                                                                                                        | d) Non-magnetic                             |
| 7)  | The controlsync stator and rotor.                                                                                                                                     | nro's has three phase winding both on its   |
|     | a) Differential                                                                                                                                                       | b) Transformer                              |
|     | c) Receiver                                                                                                                                                           | d) Transmitter                              |
| 8)  | Which of the following motor runs magnetized salient poles on its a) Permanent magnet d.c. mot b) Disk d.c. motor c) Permanent magnet synchro d) Brushless d.c. motor | or                                          |
| 9)  | A D.C. Servomotor is similar to is modified to cope with                                                                                                              | a regular d.c. motor except that its design |
|     | a) Electronic switching                                                                                                                                               | b) Slow speeds                              |
|     | c) Static conditions                                                                                                                                                  | d) Both b) and c)                           |
| 10) | Which of the following synchrocontrol system?                                                                                                                         | es are used for error detection in a servo  |
|     | a) Control transmitter                                                                                                                                                | b) Control transformer                      |
|     | c) Control receiver                                                                                                                                                   | d) Both a) and b)                           |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018 SPECIAL MACHINES (Self Learning Technical)

Day and Date: Friday, 25-5-2018 Marks: 40

Time: 2.30 p.m. to 4.30 p.m.

Note: Answer any four questions from Q. No. 2 to Q. No. 6.

| 2. | a) | what is a stepper motor? Explain its applications.                   | 5 |
|----|----|----------------------------------------------------------------------|---|
|    | b) | Explain the construction of variable reluctance stepper motor.       | 5 |
| 3. | a) | Explain the construction and working of permanent magnet D.C. motor. | 5 |
|    | b) | Explain the construction and working of hybrid stepper motor.        | 5 |
| 4. | a) | Explain the constructional features of synchros.                     | 5 |
|    | b) | Explain the application of synchro for torque transmission.          | 5 |
| 5. | a) | Explain the construction and working of A.C. servo motor.            | 5 |
|    | b) | Explain the working of switched reluctance motor.                    | 5 |
| 6. | a) | Explain the construction and working of brushless D.C. motor.        | 5 |
|    | b) | Explain the construction and working of Scharge motor.               | 5 |

| Seat |  |  |
|------|--|--|

No.

### **SLR-TC - 502**

Set R

T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018
SPECIAL MACHINES
(Self Learning Technical)

Day and Date: Friday, 25-5-2018 Max. Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

Note: 1) Q. No. 1 is compulsory. Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Marks: 10

1. Choose the correct answer:

 $(1 \times 10 = 10)$ 

1) A D.C. Servomotor is similar to a regular d.c. motor except that its design is modified to cope with

a) Electronic switching

b) Slow speeds

c) Static conditions

d) Both b) and c)

2) Which of the following synchros are used for error detection in a servo control system?

a) Control transmitter

b) Control transformer

c) Control receiver

d) Both a) and b)

3) Motors that use electronic commutators are classified as

a) Thyristor controlled

b) Servo motors

c) Brushless motors

d) Electronic motors

4) The amount of torque required to make a stepper motor one full step is called

a) Holding torque

b) Residual torque

c) Dent torque

d) Developed torque

| 5)  | The controlstator and rotor.                                                                                                                      | synchro's               | has   | three   | phase    | windi  | ing both on | ı its |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|---------|----------|--------|-------------|-------|
|     | a) Differential                                                                                                                                   |                         | b)    | Trans   | former   |        |             |       |
|     | c) Receiver                                                                                                                                       |                         | d)    | Trans   | mitter   |        |             |       |
| 6)  | Which of the following motor magnetized salient poles (a) Permanent magnet d.c. b) Disk d.c. motor c) Permanent magnet syrd) Brushless d.c. motor | on its rotor<br>. motor | ?     | ow d.c. | supply a | and ha | as permane  | ntly  |
| 7)  | A stepper motor is a                                                                                                                              | d                       | evic  | e.      |          |        |             |       |
|     | a) Mechanical                                                                                                                                     |                         | b)    | Electr  | ical     |        |             |       |
|     | c) Analog                                                                                                                                         |                         | d)    | Increr  | nental   |        |             |       |
| 8)  | A variable reluctance stematerial with salient poles                                                                                              |                         | or is | s cons  | tructed  | of     |             |       |
|     | a) Paramagnetic                                                                                                                                   |                         | b)    | Ferro   | nagnet   | ic     |             |       |
|     | c) Diamagnetic                                                                                                                                    |                         | d)    | Non-n   | nagneti  | С      |             |       |
| 9)  | A stepper motor may be considered as a                                                                                                            |                         |       |         |          |        | converter.  |       |
|     | a) D. C. to D.C.                                                                                                                                  |                         | b)    | A. C.   | to A. C. |        |             |       |
|     | c) D. C. to A. C.                                                                                                                                 |                         | d)    | Digita  | l to ana | ılog   |             |       |
| 10) | In a brushless d.c. motor                                                                                                                         | we have                 |       |         |          |        |             |       |
|     | a) No mechanical commu                                                                                                                            | itator                  | b)    | No br   | ushes    |        |             |       |
|     | c) No arcing                                                                                                                                      |                         | d)    | All of  | above    |        |             |       |
|     |                                                                                                                                                   |                         |       |         |          |        |             |       |
|     |                                                                                                                                                   |                         |       |         |          |        |             |       |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018 SPECIAL MACHINES (Self Learning Technical)

Day and Date: Friday, 25-5-2018 Marks: 40

Time: 2.30 p.m. to 4.30 p.m.

Note: Answer any four questions from Q. No. 2 to Q. No. 6.

| 2. | a) | what is a stepper motor? Explain its applications.                   | 5 |
|----|----|----------------------------------------------------------------------|---|
|    | b) | Explain the construction of variable reluctance stepper motor.       | 5 |
| 3. | a) | Explain the construction and working of permanent magnet D.C. motor. | 5 |
|    | b) | Explain the construction and working of hybrid stepper motor.        | 5 |
| 4. | a) | Explain the constructional features of synchros.                     | 5 |
|    | b) | Explain the application of synchro for torque transmission.          | 5 |
| 5. | a) | Explain the construction and working of A.C. servo motor.            | 5 |
|    | b) | Explain the working of switched reluctance motor.                    | 5 |
| 6. | a) | Explain the construction and working of brushless D.C. motor.        | 5 |
|    | b) | Explain the construction and working of Scharge motor.               | 5 |

| Seat |  |
|------|--|

Set S

# Seat No.

# T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018 SPECIAL MACHINES (Self Learning Technical)

Day and Date: Friday, 25-5-2018 Max. Marks: 50

Time: 2.30 p.m. to 4.30 p.m.

Note: 1) Q. No. 1 is compulsory. Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

| 1. | Choose the correct answer                                                                                                                                                                                  | Marks: 10 : (1×10=10)                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|    | 1) The controlstator and rotor.                                                                                                                                                                            | _synchro's has three phase winding both on its       |
|    | a) Differential                                                                                                                                                                                            | b) Transformer                                       |
|    | c) Receiver                                                                                                                                                                                                | d) Transmitter                                       |
|    | <ul> <li>2) Which of the following modern magnetized salient poles</li> <li>a) Permanent magnet of</li> <li>b) Disk d.c. motor</li> <li>c) Permanent magnet st</li> <li>d) Brushless d.c. motor</li> </ul> | .c. motor                                            |
|    | 3) A D.C. Servomotor is sin is modified to cope with                                                                                                                                                       | milar to a regular d.c. motor except that its design |
|    | a) Electronic switching                                                                                                                                                                                    | b) Slow speeds                                       |
|    | c) Static conditions                                                                                                                                                                                       | d) Both b) and c)                                    |
|    | 4) Which of the following control system?                                                                                                                                                                  | synchros are used for error detection in a servo     |
|    | a) Control transmitter                                                                                                                                                                                     | b) Control transformer                               |
|    | c) Control receiver                                                                                                                                                                                        | d) Both a) and b)                                    |



| 5)  | A stepper motor may be considered a                              | as a                  | _converter.      |
|-----|------------------------------------------------------------------|-----------------------|------------------|
|     | a) D. C. to D.C.                                                 | b) A. C. to A. C.     |                  |
|     | c) D. C. to A. C.                                                | d) Digital to analog  |                  |
| 6)  | In a brushless d.c. motor we have                                |                       |                  |
|     | a) No mechanical commutator                                      | b) No brushes         |                  |
|     | c) No arcing                                                     | d) All of above       |                  |
| 7)  | Motors that use electronic commutate                             | ors are classified as |                  |
|     | a) Thyristor controlled                                          | b) Servo motors       |                  |
|     | c) Brushless motors                                              | d) Electronic motors  |                  |
| 8)  | The amount of torque required to m called                        | ake a stepper motor   | one full step is |
|     | a) Holding torque                                                | b) Residual torque    |                  |
|     | c) Dent torque                                                   | d) Developed torque   | )                |
| 9)  | A stepper motor is ade                                           | evice.                |                  |
|     | a) Mechanical                                                    | b) Electrical         |                  |
|     | c) Analog                                                        | d) Incremental        |                  |
| 10) | A variable reluctance stepper motor material with salient poles. | or is constructed of_ |                  |
|     | a) Paramagnetic                                                  | b) Ferromagnetic      |                  |
|     | c) Diamagnetic                                                   | d) Non-magnetic       |                  |
|     |                                                                  |                       |                  |
|     |                                                                  |                       |                  |
|     |                                                                  |                       |                  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Electrical and Electronics Engg.) Part – II (CGPA) Examination, 2018 SPECIAL MACHINES (Self Learning Technical)

Day and Date: Friday, 25-5-2018 Marks: 40

Time: 2.30 p.m. to 4.30 p.m.

Note: Answer any four questions from Q. No. 2 to Q. No. 6.

| 2. | a) | What is a stepper motor? Explain its applications.                   | 5 |
|----|----|----------------------------------------------------------------------|---|
|    | b) | Explain the construction of variable reluctance stepper motor.       | 5 |
| 3. | a) | Explain the construction and working of permanent magnet D.C. motor. | 5 |
|    | b) | Explain the construction and working of hybrid stepper motor.        | 5 |
| 4. | a) | Explain the constructional features of synchros.                     | 5 |
|    | b) | Explain the application of synchro for torque transmission.          | 5 |
| 5. | a) | Explain the construction and working of A.C. servo motor.            | 5 |
|    | b) | Explain the working of switched reluctance motor.                    | 5 |
| 6. | a) | Explain the construction and working of brushless D.C. motor.        | 5 |
|    | b) | Explain the construction and working of Scharge motor.               | 5 |

\_\_\_\_\_



c) CRO

| Seat |     |   |
|------|-----|---|
| No.  | Set | P |

| B.E. (Electrical and Electronics Engineering) (Part – I) (Old) Examination, 2018 INSTRUMENTATION TECHNIQUES                                                                                                                                                                                                                                   |                                                  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Day and Date : Friday, 11-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                                                                                                                                                                                                                                                             | Total Marks: 100                                 |  |  |  |  |
| Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.                                                                            |                                                  |  |  |  |  |
| MCQ/Objective Duration: 30 Minutes                                                                                                                                                                                                                                                                                                            | Type Questions  Marks: 20                        |  |  |  |  |
| Choose the correct answer :                                                                                                                                                                                                                                                                                                                   | 20                                               |  |  |  |  |
| <ol> <li>The output of current to voltage co</li> <li>a) - If.Rf</li> <li>b) Vo/Rin</li> <li>Bourdon tube are made of</li> </ol>                                                                                                                                                                                                              |                                                  |  |  |  |  |
| <ul> <li>3) Butterworth filters are also known a <ul> <li>a) Ripple filter</li> <li>c) Flat filter</li> </ul> </li> <li>4) In Pt-100 RTD 100 means <ul> <li>a) Can measure up to 100°C</li> <li>b) Has 100 ohm resistance at 100°C</li> <li>c) Has 0 ohm resistance at 100°C</li> <li>d) Has 100 ohm resistance at 0°C</li> </ul> </li> </ul> | as b) Ripple stop band d) Spike filter           |  |  |  |  |
| 5) Radiation pyrometer is used in for a) 0 – 500°C c) – 250 – 500°C                                                                                                                                                                                                                                                                           |                                                  |  |  |  |  |
| <ul> <li>6) X-Y recorders record</li> <li>a) one quality with respect to othe</li> <li>b) one quantity on x axis with respect one quantity on y axis with respect of the cord both quantity on both ax</li> </ul>                                                                                                                             | pect to time on y axis<br>pect to time on x axis |  |  |  |  |

7) Telemetry processes the information from remote by means of a) Mechanical means b) Electrical means

d) All of the above

| 8)    | Which of the following is transducer a) Piezoelectric                              | ?<br>b) Thermocouple                                         |       |                |
|-------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|----------------|
|       | c) Photovoltaic cell                                                               | d) LVDT                                                      |       |                |
| 9)    | Which of the following is non-planar a) LCD                                        | display ?<br>b) LED                                          |       |                |
|       | c) Rear projection display                                                         | d) None of these                                             |       |                |
| 10)   | What are selection criteria of PLC?                                                | LV NI f ' I                                                  |       |                |
|       | <ul><li>a) Size of memory of CPU</li><li>c) Scan time</li></ul>                    | <ul><li>b) No. of input an</li><li>d) All of above</li></ul> | a o   | utput          |
| 11)   | In optical pyrometer temperature is r                                              |                                                              |       |                |
|       | <ul><li>a) Photocell principle</li><li>c) Comparing brightness of source</li></ul> | <ul><li>b) Peltier effect</li><li>d) None of these</li></ul> |       |                |
| 12)   | Strip chart recorders have advantage                                               |                                                              |       |                |
| ,     | a) Long period run                                                                 | b) Change in spe                                             | ed o  | chart          |
| 4.0\  | c) Uniform resolution                                                              | d) All of above                                              |       |                |
| 13)   | High value pot resistance leads to a) Low sensitivity                              | b) High sensitivity                                          | ,     |                |
|       | c) Low non-linearity                                                               | d) Less error                                                |       |                |
| 14)   | What is value of LSB of an 8-bit DAC                                               | _                                                            |       |                |
| 4 = \ | a) 1.6 v b) 50 mv                                                                  | c) 0.625 v                                                   | ,     | 1.28 v         |
| 15)   | In microwave telemetry repeater state a) 2 Km b) 5 Km                              | tions are required a<br>c) 40 Km                             |       | very<br>100 Km |
| 16)   | The strain gauge should have low                                                   |                                                              |       |                |
|       | <ul><li>a) Resistance</li><li>c) Gauge factor</li></ul>                            | <ul><li>b) Resistance ten</li><li>d) All of above</li></ul>  | npe   | rature         |
| 17)   | For surface temperature measurement                                                |                                                              |       |                |
| 4.0\  | a) Strain gauge b) Diaphragm                                                       | •                                                            | d)    | Thermocouple   |
| 18)   | Null type recorders area) Potentiometric b) Bridge                                 |                                                              | d)    | Any of above   |
| 19)   | The sensitivity factor of strain gauge                                             | ,                                                            | er of | ;              |
|       | a) 1 to 1.5 b) 1.5 to 2.0                                                          | c) 0.5 to 1.0                                                | d)    | 5 to 10        |
| 20)   | Doppler shift principle is used in mea<br>a) Temperature b) Frequency              |                                                              | d)    | Pressure       |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (Old) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 11-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any four. (5×4=20)

- a) How velocity is measured? Explain with neat diagram.
- b) Explain various types of transducer. Explain active and passive transducer with example based on working principle.
- c) Explain Chopper stabilized amplifier.
- d) What is error? Explain various errors in instrumentation.
- e) Define:
  - 1) Resolution
- 2) Accuracy
- 3) Threshold
- 4) Static error

3. Solve any two.

 $(10 \times 2 = 20)$ 

- a) Explain the instrumentation system with neat block diagram. Give a practical example of it with explanation.
- b) Explain various types of modulation.
- c) Define telemetry. Explain voltage and current telemetry system.

### SECTION - II

4. Solve any four.

 $(5 \times 4 = 20)$ 

- a) Explain the various types of DAC.
- b) Enlist different types of digital and analog input, output devices.



- c) Write short note on:
  - 1) LCD display
  - 2) LED display.
- d) Explain in short about sample and hold circuit.
- e) Explain data acquisition system.

5. Solve any two. (2×10=20)

- a) Explain magnetic strip chart recorder in detail.
- b) Explain frequency division multiplexing and time division multiplexing.
- c) Explain the architecture of PLC with neat diagram.



| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |

| Exan                                                                                                  | ronics Engineering) (Part – I) (Old)<br>nination, 2018<br>TATION TECHNIQUES                                                                                                                                                                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Day and Date : Friday, 11-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                     | Total Marks: 100                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 30 minutes<br>carries one n<br>2) Answer MC                                                           | Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.  2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. |  |  |  |  |  |
| MCQ/Object                                                                                            | ctive Type Questions                                                                                                                                                                                                                                                |  |  |  |  |  |
| Duration: 30 Minutes                                                                                  | Marks: 20                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 1. Choose the correct answer:                                                                         | 20                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| <ol> <li>The strain gauge should have</li> <li>a) Resistance</li> <li>c) Gauge factor</li> </ol>      | b) Resistance temperature d) All of above                                                                                                                                                                                                                           |  |  |  |  |  |
| <ol> <li>For surface temperature meas</li> <li>a) Strain gauge b) Diaphra</li> </ol>                  |                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| <ul><li>3) Null type recorders are</li><li>a) Potentiometric b) Bridge</li></ul>                      |                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 4) The sensitivity factor of strain a) 1 to 1.5 b) 1.5 to 2                                           |                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| <ul><li>5) Doppler shift principle is used</li><li>a) Temperature b) Freque</li></ul>                 |                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 6) The output of current to voltag<br>a) – If.Rf b) Vo/Rin                                            | ge converter is given by c) - Rf/R1 d) 1 + (Rf/R1)                                                                                                                                                                                                                  |  |  |  |  |  |
| <ul><li>7) Bourdon tube are made of</li><li>a) Copper</li><li>b) Alumina</li></ul>                    | um c) Metal Alloy d) Phosphorous                                                                                                                                                                                                                                    |  |  |  |  |  |
| <ul><li>8) Butterworth filters are also kno</li><li>a) Ripple filter</li><li>c) Flat filter</li></ul> | own as b) Ripple stop band d) Spike filter                                                                                                                                                                                                                          |  |  |  |  |  |



| 9)   | In Pt-100 RTD 100                                               | means                |      |                                 |      |        |
|------|-----------------------------------------------------------------|----------------------|------|---------------------------------|------|--------|
|      | a) Can measure u                                                | p to 100°C           |      |                                 |      |        |
|      | b) Has 100 ohm re                                               |                      |      |                                 |      |        |
|      | c) Has 0 ohm resis                                              |                      |      |                                 |      |        |
|      | d) Has 100 ohm re                                               |                      |      |                                 | _    |        |
| 10)  | Radiation pyrometer                                             | er is used in for te |      |                                 | f    |        |
|      | a) 0 – 500°C                                                    |                      | •    | 500 – 1000°C<br>1200 – 2500°C   |      |        |
| 44\  | c) - 250 - 500°C                                                | al                   | u)   | 1200 – 2500 C                   |      |        |
| 11)  | X-Y recorders reco                                              |                      | בוור | ntity                           |      |        |
|      | b) one quantity on                                              | •                    | •    | •                               |      |        |
|      | c) one quantity on                                              | •                    |      | •                               |      |        |
|      | d) record both qua                                              | intity on both axis  |      |                                 |      |        |
| 12)  | Telemetry process                                               |                      |      | _                               |      | s of   |
|      | a) Mechanical mea                                               | ans                  | ,    | Electrical mear                 |      |        |
|      | c) CRO                                                          |                      | ,    | All of the above                | €    |        |
| 13)  | Which of the follow                                             | ing is transducer    |      | Thormoounlo                     |      |        |
|      | <ul><li>a) Piezoelectric</li><li>c) Photovoltaic ce</li></ul>   | II                   | ,    | Thermocouple LVDT               |      |        |
| 14)  | Which of the follow                                             |                      | ,    |                                 |      |        |
| 1 1) | a) LCD                                                          | ang io non pianai    |      | LED                             |      |        |
|      | c) Rear projection                                              | display              | ,    | None of these                   |      |        |
| 15)  | What are selection                                              | criteria of PLC?     |      |                                 |      |        |
|      | a) Size of memory                                               | of CPU               | ,    | No. of input an                 | d oı | utput  |
|      | c) Scan time                                                    |                      | ,    | All of above                    |      |        |
| 16)  | In optical pyrometer                                            |                      |      | -                               |      |        |
|      | <ul><li>a) Photocell princi</li><li>c) Comparing brig</li></ul> |                      | ,    | Peltier effect<br>None of these |      |        |
| 17)  | Strip chart recorde                                             |                      | •    |                                 |      |        |
| 17)  | a) Long period run                                              |                      |      |                                 | ed c | chart  |
|      | c) Uniform resolut                                              |                      |      | All of above                    |      |        |
| 18)  | High value pot resi                                             | stance leads to      |      |                                 |      |        |
|      | a) Low sensitivity                                              |                      | ,    | High sensitivity                | ,    |        |
|      | c) Low non-lineari                                              |                      | ,    | Less error                      |      |        |
| 19)  | What is value of LS                                             |                      |      | •                               |      | 1.00   |
|      | a) 1.6 v                                                        | b) 50 mv             | ,    | 0.625 v                         | ,    | 1.28 v |
| 20)  | In microwave telen                                              | , ,                  |      | •                               |      | •      |
|      | a) 2 Km                                                         | b) 5 Km              | C)   | 40 Km                           | d)   | 100 Km |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (Old) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 11-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any four. (5×4=20)

- a) How velocity is measured? Explain with neat diagram.
- b) Explain various types of transducer. Explain active and passive transducer with example based on working principle.
- c) Explain Chopper stabilized amplifier.
- d) What is error? Explain various errors in instrumentation.
- e) Define:
  - 1) Resolution
- 2) Accuracy
- 3) Threshold
- 4) Static error
- 3. Solve any two.

 $(10 \times 2 = 20)$ 

- a) Explain the instrumentation system with neat block diagram. Give a practical example of it with explanation.
- b) Explain various types of modulation.
- c) Define telemetry. Explain voltage and current telemetry system.

### SECTION - II

## 4. Solve any four.

 $(5 \times 4 = 20)$ 

- a) Explain the various types of DAC.
- b) Enlist different types of digital and analog input, output devices.



- c) Write short note on:
  - 1) LCD display
  - 2) LED display.
- d) Explain in short about sample and hold circuit.
- e) Explain data acquisition system.

5. Solve any two. (2×10=20)

- a) Explain magnetic strip chart recorder in detail.
- b) Explain frequency division multiplexing and time division multiplexing.
- c) Explain the architecture of PLC with neat diagram.



| Seat |     |          |
|------|-----|----------|
| No.  | Set | <b>R</b> |

# B.E. (Electrical and Electronics Engineering) (Part – I) (Old)

|                                                                                                                                                                                                                             | mination, 2018<br>ITATION TECHNIQUES                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day and Date : Friday, 11-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                                                                                                                                           | Total Marks: 100                                                                                                                                                               |
| 30 minutes<br>carries one<br>2) Answer MC                                                                                                                                                                                   | compulsory. It should be solved in first in Answer Book Page No. 3. Each question mark. CQ/Objective type questions on Page No. 3 forget to mention, Q.P. Set (P/Q/R/S) on Top |
| MCQ/Objection : 30 Minutes                                                                                                                                                                                                  | ective Type Questions  Marks: 20                                                                                                                                               |
| Choose the correct answer :                                                                                                                                                                                                 | 20                                                                                                                                                                             |
| <ol> <li>In optical pyrometer tempera</li> <li>a) Photocell principle</li> <li>c) Comparing brightness of s</li> <li>2) Strip chart recorders have ac</li> <li>a) Long period run</li> <li>c) Uniform resolution</li> </ol> | ture is measured by b) Peltier effect source d) None of these                                                                                                                  |
| <ul><li>3) High value pot resistance lea</li><li>a) Low sensitivity</li><li>c) Low non-linearity</li></ul>                                                                                                                  | ds to b) High sensitivity d) Less error                                                                                                                                        |
| 4) What is value of LSB of an 8-<br>a) 1.6 v b) 50 mv                                                                                                                                                                       | •                                                                                                                                                                              |
| 5) In microwave telemetry repeated a) 2 Km b) 5 Km                                                                                                                                                                          | ater stations are required at every<br>c) 40 Km d) 100 Km                                                                                                                      |
| <ul><li>6) The strain gauge should have</li><li>a) Resistance</li><li>c) Gauge factor</li></ul>                                                                                                                             | e low b) Resistance temperature d) All of above                                                                                                                                |
| <ul><li>7) For surface temperature mea</li><li>a) Strain gauge b) Diaphi</li></ul>                                                                                                                                          |                                                                                                                                                                                |

| 8)  | Null type recorders                                                                                                                                                                                                       | s are                                                |           | recorders.                          |      |              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|-------------------------------------|------|--------------|
|     | a) Potentiometric                                                                                                                                                                                                         | b) Bridge                                            | c)        | LVDT                                | d)   | Any of above |
| 9)  | The sensitivity fact                                                                                                                                                                                                      | tor of strain gauge                                  | is ı      | normally of orde                    | r of | f            |
|     | a) 1 to 1.5                                                                                                                                                                                                               | b) 1.5 to 2.0                                        | c)        | 0.5 to 1.0                          | d)   | 5 to 10      |
| 10) | Doppler shift princi                                                                                                                                                                                                      | iple is used in mea                                  | เรน       | rement of                           |      |              |
|     | a) Temperature                                                                                                                                                                                                            | b) Frequency                                         | c)        | Speed                               | d)   | Pressure     |
| 11) | The output of curre a) – If.Rf                                                                                                                                                                                            | ent to voltage conv<br>b) Vo/Rin                     | ert<br>c) | er is given by<br>– Rf/R1           | d)   | 1 + (Rf/R1)  |
| 12) | Bourdon tube are an a) Copper                                                                                                                                                                                             |                                                      | c)        | Metal Alloy                         | d)   | Phosphorous  |
| 13) | Butterworth filters and Ripple filter c) Flat filter                                                                                                                                                                      | are also known as                                    | b)        | Ripple stop bar<br>Spike filter     | nd   |              |
| 14) | In Pt-100 RTD 100<br>a) Can measure u<br>b) Has 100 ohm re<br>c) Has 0 ohm resi<br>d) Has 100 ohm re                                                                                                                      | ip to 100°C<br>esistance at 100°C<br>stance at 100°C | ;         |                                     |      |              |
| 15) | Radiation pyrometer is used in for temperature range of a) 0 - 500°C b) 500 - 1000°C c) - 250 - 500°C d) 1200 - 2500°C                                                                                                    |                                                      |           |                                     |      |              |
| 16) | X-Y recorders record a) one quality with respect to other quantity b) one quantity on x axis with respect to time on y axis c) one quantity on y axis with respect to time on x axis d) record both quantity on both axis |                                                      |           |                                     |      |              |
| 17) | Telemetry process a) Mechanical me                                                                                                                                                                                        |                                                      |           | m remote by mear<br>Electrical mear |      | s of         |
|     | c) CRO                                                                                                                                                                                                                    |                                                      | d)        | All of the above                    | Э    |              |
| 18) | Which of the follow                                                                                                                                                                                                       | ving is transducer '                                 | ?         |                                     |      |              |
|     | a) Piezoelectric                                                                                                                                                                                                          |                                                      | ,         | Thermocouple                        |      |              |
|     | c) Photovoltaic ce                                                                                                                                                                                                        |                                                      | ,         | LVDT                                |      |              |
| 19) | Which of the follow                                                                                                                                                                                                       | ving is non-planar                                   |           |                                     |      |              |
|     | <ul><li>a) LCD</li><li>c) Rear projection</li></ul>                                                                                                                                                                       | display                                              | ,         | LED None of these                   |      |              |
| 3U) | What are selection                                                                                                                                                                                                        | , ,                                                  | u)        | THORIC OF LITES                     |      |              |
| 20) | a) Size of memory                                                                                                                                                                                                         |                                                      | b)        | No. of input an                     | d o  | utout        |
|     | c) Scan time                                                                                                                                                                                                              | ,                                                    |           | All of above                        | J. 0 |              |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (Old) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 11-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any four. (5×4=20)

- a) How velocity is measured? Explain with neat diagram.
- b) Explain various types of transducer. Explain active and passive transducer with example based on working principle.
- c) Explain Chopper stabilized amplifier.
- d) What is error? Explain various errors in instrumentation.
- e) Define:
  - 1) Resolution
- 2) Accuracy
- 3) Threshold
- 4) Static error

3. Solve any two.

 $(10 \times 2 = 20)$ 

- a) Explain the instrumentation system with neat block diagram. Give a practical example of it with explanation.
- b) Explain various types of modulation.
- c) Define telemetry. Explain voltage and current telemetry system.

## SECTION - II

4. Solve any four.

 $(5 \times 4 = 20)$ 

- a) Explain the various types of DAC.
- b) Enlist different types of digital and analog input, output devices.



- c) Write short note on:
  - 1) LCD display
  - 2) LED display.
- d) Explain in short about sample and hold circuit.
- e) Explain data acquisition system.

5. Solve any two. (2×10=20)

- a) Explain magnetic strip chart recorder in detail.
- b) Explain frequency division multiplexing and time division multiplexing.
- c) Explain the architecture of PLC with neat diagram.



a) Photocell principle

c) Comparing brightness of source d) None of these

| Seat |     |   |
|------|-----|---|
| No.  | Set | S |

# B.E. (Electrical and Electronics Engineering) (Part – I) (Old) Examination, 2018

**INSTRUMENTATION TECHNIQUES** Total Marks: 100 Day and Date: Friday, 11-5-2018 Time: 2.30 p.m. to 5.30 p.m. Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. MCQ/Objective Type Questions **Duration: 30 Minutes** Marks: 20 1. Choose the correct answer: 20 1) X-Y recorders record a) one quality with respect to other quantity b) one quantity on x axis with respect to time on y axis c) one quantity on y axis with respect to time on x axis d) record both quantity on both axis 2) Telemetry processes the information from remote by means of b) Electrical means a) Mechanical means c) CRO d) All of the above 3) Which of the following is transducer? a) Piezoelectric b) Thermocouple c) Photovoltaic cell d) LVDT 4) Which of the following is non-planar display? b) LED a) LCD d) None of these c) Rear projection display 5) What are selection criteria of PLC? a) Size of memory of CPU b) No. of input and output d) All of above c) Scan time 6) In optical pyrometer temperature is measured by

b) Peltier effect



| 7)  | Strip chart recorde                                                                                  | rs have advantage                                   | e o                                                                | f                               |     |                |
|-----|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|---------------------------------|-----|----------------|
|     | ,                                                                                                    |                                                     | <ul><li>b) Change in speed chart</li><li>d) All of above</li></ul> |                                 |     |                |
| 8)  | High value pot res a) Low sensitivity                                                                |                                                     | ,                                                                  | High sensitivity                | ,   |                |
|     | c) Low non-lineari                                                                                   | ty                                                  | d)                                                                 | Less error                      |     |                |
| 9)  | What is value of L                                                                                   | SB of an 8-bit DAC                                  | C fc                                                               | or 0-12.8 v range               | ?   |                |
|     | a) 1.6 v                                                                                             | b) 50 mv                                            | c)                                                                 | 0.625 v                         | d)  | 1.28 v         |
| 10) | In microwave teler a) 2 Km                                                                           |                                                     |                                                                    | s are required a<br>40 Km       |     | very<br>100 Km |
| 11) | The strain gauge sa) Resistance                                                                      | should have low                                     | b)                                                                 | Resistance ten                  | npe | rature         |
|     | c) Gauge factor                                                                                      |                                                     | d)                                                                 | All of above                    |     |                |
| 12) | For surface tempe a) Strain gauge                                                                    |                                                     |                                                                    | one can use<br>RTD              | d)  | Thermocouple   |
| 13) | Null type recorders a) Potentiometric                                                                | s are                                               |                                                                    |                                 | d)  | Any of above   |
| 14) | The sensitivity fact                                                                                 | ,                                                   | ,                                                                  |                                 | ,   | •              |
| ,   | a) 1 to 1.5                                                                                          |                                                     |                                                                    | 0.5 to 1.0                      |     | 5 to 10        |
| 15) | Doppler shift princ                                                                                  | iple is used in mea                                 | asu                                                                | rement of                       |     |                |
|     | a) Temperature                                                                                       | b) Frequency                                        | c)                                                                 | Speed                           | d)  | Pressure       |
| 16) | The output of curre a) – If.Rf                                                                       | ent to voltage conv<br>b) Vo/Rin                    |                                                                    |                                 | d)  | 1 + (Rf/R1)    |
| 17) | Bourdon tube are a) Copper                                                                           |                                                     | c)                                                                 | Metal Alloy                     | d)  | Phosphorous    |
| 18) | Butterworth filters <ul><li>a) Ripple filter</li><li>c) Flat filter</li></ul>                        | are also known as                                   | b)                                                                 | Ripple stop bar<br>Spike filter | nd  |                |
| 19) | In Pt-100 RTD 100<br>a) Can measure u<br>b) Has 100 ohm re<br>c) Has 0 ohm resi<br>d) Has 100 ohm re | p to 100°C<br>esistance at 100°C<br>stance at 100°C |                                                                    |                                 |     |                |
| 20) | Radiation pyromet a) 0 – 500°C                                                                       | er is used in for te                                | b)                                                                 | 500 – 1000°C                    |     |                |
|     | c) - 250 - 500°C                                                                                     |                                                     | d)                                                                 | 1200 – 2500°C                   | ,   |                |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (Old) Examination, 2018 INSTRUMENTATION TECHNIQUES

Day and Date: Friday, 11-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any four. (5×4=20)

- a) How velocity is measured? Explain with neat diagram.
- b) Explain various types of transducer. Explain active and passive transducer with example based on working principle.
- c) Explain Chopper stabilized amplifier.
- d) What is error? Explain various errors in instrumentation.
- e) Define:
  - 1) Resolution
- 2) Accuracy
- 3) Threshold
- 4) Static error

3. Solve any two.

 $(10 \times 2 = 20)$ 

- a) Explain the instrumentation system with neat block diagram. Give a practical example of it with explanation.
- b) Explain various types of modulation.
- c) Define telemetry. Explain voltage and current telemetry system.

### SECTION - II

4. Solve any four.

 $(5 \times 4 = 20)$ 

- a) Explain the various types of DAC.
- b) Enlist different types of digital and analog input, output devices.



- c) Write short note on:
  - 1) LCD display
  - 2) LED display.
- d) Explain in short about sample and hold circuit.
- e) Explain data acquisition system.

5. Solve any two. (2×10=20)

- a) Explain magnetic strip chart recorder in detail.
- b) Explain frequency division multiplexing and time division multiplexing.
- c) Explain the architecture of PLC with neat diagram.

| Seat |  |
|------|--|
| No.  |  |

## B.E. (Part – I) (Old) (Electrical and Electronics Engineering) Examination, 2018 POWER SYSTEM - II

Day and Date: Saturday, 12-5-2018 Max. Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

Instructions: i) All questions are compulsory.

- ii) Figures to right indicate full marks.
- iii) Assume suitable data if necessary.
- iv) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- v) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

**Duration: 30 Minutes** Marks: 20

1. Choose the correct answer:

 $(20 \times 1 = 20)$ 

- 1) Load flow study is carried out for
  - a) Load frequency control
- b) Planning of power system

c) Fault calculation

- d) Study of stability of the system
- 2) The stability of power system is not affected by
  - a) Generator reactance

b) Line reactance

c) Line losses

- d) Excitation of generators
- 3) Which of the following results in a symmetrical fault?
  - a) Single L-G fault

- b) L-L faults
- c) All three phase to earth fault
- d) Two phase to earth fault
- 4) Zero sequence fault current is absent when fault is
  - a) Single L-G fault
- b) L-L faults
- c) Double L-L fault d) None of these
- 5) A negative sequence relay is commonly used to protect
  - a) Alternator
- b) Transformer
- c) Transmission line d) Bus bar
- 6) The magnitude of fault current depends on
  - a) Total impedance up to fault
  - b) Voltage at the fault point
  - c) Load current being supply before occurrence of faults
  - d) Both a) and b)
- 7) Equal area criterion gives the information regarding
  - a) Stability region

b) Absolute stability

c) Relative stability

- d) Swing curves
- 8) The critical clearing time of a fault in power system is related to
  - a) Reactive power limit

b) Short circuit limit

c) Steady state limit

d) Transient stability limit



| 9)  | Negative sequence reactance of a transformer is  a) Equal to the positive sequence reactance b) Lesser than positive sequence reactance c) Greater than positive sequence reactance d) None of these                                         |                                                                                                                |                                                           |    |                            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----|----------------------------|
| 10) | If all sequence voltages at the fault point in a) 3-phase fault c) L-L fault                                                                                                                                                                 | <ul><li>a power system are equal, then the fault is</li><li>b) L-G fault</li><li>d) Double L-G fault</li></ul> |                                                           |    |                            |
| 11) | The positive sequence currents of a transmal alpha Always c) Equal to negative sequence current                                                                                                                                              | b)                                                                                                             | on line is<br>1/3 of negative se<br>3 times the negati    | •  |                            |
| 12) | When a line to ground fault occurs, the cur equence current in this case will be a) Zero b) 33.3 A                                                                                                                                           |                                                                                                                | in the faulted phase 66.6 A                               |    | s 100 A. The zero<br>100 A |
| 13) | <ul> <li>A balanced 3-phase system consists of</li> <li>a) Zero sequence currents only</li> <li>b) Positive sequence currents only</li> <li>c) Negative sequence currents only</li> <li>d) Zero, positive and negative sequence c</li> </ul> | urre                                                                                                           | ents                                                      |    |                            |
| 14) | The distribution systems in India are mostly a) Radial b) Parallel                                                                                                                                                                           |                                                                                                                | Network                                                   | d) | None of these              |
| 15) | Transient disturbance are caused by a) Sudden load changes c) Faults in the power system                                                                                                                                                     | •                                                                                                              | Switching operation All of the above                      | on |                            |
| 16) | The constant H of a turbo-generator of 2 300 MVA base will be                                                                                                                                                                                |                                                                                                                |                                                           |    |                            |
| 17) | <ul><li>a) 9.0</li><li>b) 4.0</li><li>If the torque angle of an alternator increase</li><li>a) Steady state stability</li><li>c) Instability</li></ul>                                                                                       | s in<br>b)                                                                                                     | 6.0 finitely the system Transient stability None of these | ,  | 13.5<br>show               |
| 18) | Load-flow studies involve solving simultane <ul><li>a) Linear algebraic equations</li><li>c) Linear differential equations</li></ul>                                                                                                         | b)                                                                                                             | Non-linear algebra<br>Non-linear differer                 |    | =                          |
| 19) | Slack bus is bus. a) Load b) Generator                                                                                                                                                                                                       | c)                                                                                                             | Feeder                                                    | d) | Measurement                |
| 20) | In load-flow analysis, the load connected at a) Constant current drawn from the bus b) Constant impedance connected at the bc) Voltage and frequency dependent sourced) Constant real and reactive power drawn                               | ous<br>ce a                                                                                                    | t the bus                                                 | as |                            |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – I) (Old) (Electrical and Electronics Engineering) Examination, 2018 POWER SYSTEM – II

Day and Date: Saturday, 12-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: i) **All** questions are **compulsory**.

- ii) Figures to **right** indicate **full** marks.
- iii) Assume suitable data if necessary.

### SECTION - I

2. Solve any four: (5×4=20)

- a) Explain representation of loads.
- b) State advantages of PU system.
- c) Write short note on Slack bus.
- d) Derive an expression for SLFE.
- e) Explain the advantages and disadvantages of Gauss Seidel method and Newton Raphson method.
- f) Explain short circuit on synchronous machine at no load.

3. Solve any two: (10×2=20)

- a) Derive and explain the expression of Newton Raphson method.
- b) Explain briefly equal area criterion and how it may be used to study the stability of a two machine system.
- c) A double line fault occurs between the two phases of the transmission line with impedance Zf between them. Find the interconnection of the three sequence networks and hence determine the fault current.

#### SECTION - II

4. Solve any four: (5×4=20)

- a) Derive and draw sequence network of two conductor open fault.
- b) Draw the zero sequence network of different type of transformer connections.
- c) Write a short note on selection of circuit breaker.
- d) Explain the equal area criteria of power system stability.
- e) Analyze a single line to ground fault and show the connections of sequence network.



5. Solve any two: (10×2=20)

- a) What are the factors affecting transient stability? Explain the methods for improving stability of system.
- b) Explain in detail contingency analysis and sensitivity factors.
- c) Explain the system constraints in the power system. What is Unit commitment? Explain in detail.

| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |
|      |     |   |

# B F (Part – I) (Old) (Flectrical and Flectronics Engineering) Examination, 2018.

| D.     |     | (Part – I) (Old                                                               | , ,                                                                     | POWER S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               | •                                                                     | 511119 <i>)</i> L <i>7</i>       | ammau                   | )II, 2010   |
|--------|-----|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|-------------------------|-------------|
| -      |     | Date: Saturday<br>30 p.m. to 5.30                                             | •                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                       |                                  | Max.                    | Marks : 100 |
|        | ,   | Instructions :                                                                | ii) Figures<br>iii) Assume<br>iv) Q. No.<br>Answer<br>v) <b>Answe</b> l | stions are conto right indices suitable dans 1 is compuls Book Page North MCQ/Objecton, Communication, Communic | cate <b>fu</b><br>ta if ne<br><b>sory</b> . I<br>No. <b>3</b> . I<br>ctive ty | II marks.<br>cessary.<br>It should be<br>Each question<br>pe question | on carries<br>n <b>s on Pa</b> g | one mark.<br>ge No. 3 o |             |
| Durati | on  | : 30 Minutes                                                                  | МС                                                                      | Q/Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Туре                                                                          | Questions                                                             |                                  |                         | Marks : 20  |
| 1. C   | Chc | oose the correct                                                              | answer:                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                       |                                  |                         | (20×1=20)   |
|        | 1)  | The constant<br>300 MVA base<br>a) 9.0                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | MVA is 6.0.                                                           |                                  | correspor               | nding to    |
|        | 2)  | If the torque ar a) Steady star c) Instability                                | ngle of an alte                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ses in<br>b)                                                                  |                                                                       | ystem will<br>tability           |                         |             |
|        | 3)  | Load-flow stud<br>a) Linear alge<br>c) Linear diffe                           | braic equatio                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b)                                                                            | Non-linear o                                                          | •                                | •                       |             |
|        | 4)  | Slack bus is<br>a) Load                                                       |                                                                         | s.<br>Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c)                                                                            | Feeder                                                                | d)                               | Measurer                | nent        |
|        | 5)  | In load-flow an  a) Constant c  b) Constant ir  c) Voltage an  d) Constant re | urrent drawn<br>npedance co<br>d frequency d                            | from the bus<br>nnected at th<br>dependent so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e bus<br>urce a                                                               | t the bus                                                             | ented as                         |                         |             |
|        | 6)  | Load flow stud  a) Load frequ  c) Fault calcu                                 | ency control                                                            | ut for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               | Planning of<br>Study of sta                                           |                                  |                         |             |
|        | 7)  | The stability of a) Generator c) Line losses                                  | power syster                                                            | m is not affec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted by                                                                        | -                                                                     | nce                              | -                       |             |



| 8)  | , •                                                                                                                                                                                                                                                         |      | cal fault ? b) L-L faults d) Two phase to earth fault           |      |                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------|------|----------------------------|
| 9)  | Zero sequence fault current is absent when a) Single L-G fault b) L-L faults                                                                                                                                                                                |      | ılt is<br>Double L-L fault                                      | d)   | None of these              |
| 10) | A negative sequence relay is commonly use a) Alternator b) Transformer                                                                                                                                                                                      |      |                                                                 | d)   | Bus bar                    |
| 11) | The magnitude of fault current depends on a) Total impedance up to fault b) Voltage at the fault point c) Load current being supply before occurr d) Both a) and b)                                                                                         | rend | ce of faults                                                    |      |                            |
| 12) | Equal area criterion gives the information re<br>a) Stability region<br>c) Relative stability                                                                                                                                                               | b)   | rding<br>Absolute stability<br>Swing curves                     |      |                            |
| 13) | The critical clearing time of a fault in power a) Reactive power limit c) Steady state limit                                                                                                                                                                | b)   | tem is related to<br>Short circuit limit<br>Transient stability | limi | it                         |
| 14) | <ul> <li>Negative sequence reactance of a transformer is</li> <li>a) Equal to the positive sequence reactance</li> <li>b) Lesser than positive sequence reactance</li> <li>c) Greater than positive sequence reactance</li> <li>d) None of these</li> </ul> |      |                                                                 |      |                            |
| 15) | ) If all sequence voltages at the fault point in a power system are equal, then the fault is a) 3-phase fault b) L-G fault c) L-L fault d) Double L-G fault                                                                                                 |      |                                                                 |      | I, then the fault is       |
| 16) | The positive sequence currents of a transm a) Always c) Equal to negative sequence current                                                                                                                                                                  | b)   | b) 1/3 of negative sequence current                             |      |                            |
| 17) | When a line to ground fault occurs, the currequence current in this case will be a) Zero b) 33.3 A                                                                                                                                                          |      | in the faulted phase 66.6 A                                     |      | s 100 A. The zero<br>100 A |
| 18) | <ul> <li>A balanced 3-phase system consists of</li> <li>a) Zero sequence currents only</li> <li>b) Positive sequence currents only</li> <li>c) Negative sequence currents only</li> <li>d) Zero, positive and negative sequence currents</li> </ul>         | urre | ents                                                            |      |                            |
| 19) | The distribution systems in India are mostly a) Radial b) Parallel                                                                                                                                                                                          |      | Network                                                         | d)   | None of these              |
| 20) | Transient disturbance are caused by a) Sudden load changes c) Faults in the power system                                                                                                                                                                    |      | Switching operation All of the above                            | n    |                            |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – I) (Old) (Electrical and Electronics Engineering) Examination, 2018 POWER SYSTEM – II

Day and Date: Saturday, 12-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: i) **All** questions are **compulsory**.

- ii) Figures to **right** indicate **full** marks.
- iii) Assume suitable data if necessary.

### SECTION - I

2. Solve any four: (5×4=20)

- a) Explain representation of loads.
- b) State advantages of PU system.
- c) Write short note on Slack bus.
- d) Derive an expression for SLFE.
- e) Explain the advantages and disadvantages of Gauss Seidel method and Newton Raphson method.
- f) Explain short circuit on synchronous machine at no load.

3. Solve any two: (10×2=20)

- a) Derive and explain the expression of Newton Raphson method.
- b) Explain briefly equal area criterion and how it may be used to study the stability of a two machine system.
- c) A double line fault occurs between the two phases of the transmission line with impedance Zf between them. Find the interconnection of the three sequence networks and hence determine the fault current.

#### SECTION - II

4. Solve any four: (5×4=20)

- a) Derive and draw sequence network of two conductor open fault.
- b) Draw the zero sequence network of different type of transformer connections.
- c) Write a short note on selection of circuit breaker.
- d) Explain the equal area criteria of power system stability.
- e) Analyze a single line to ground fault and show the connections of sequence network.



5. Solve any two: (10×2=20)

- a) What are the factors affecting transient stability? Explain the methods for improving stability of system.
- b) Explain in detail contingency analysis and sensitivity factors.
- c) Explain the system constraints in the power system. What is Unit commitment? Explain in detail.

| Seat |  |
|------|--|
| No.  |  |

Set

R

# B.E. (Part – I) (Old) (Electrical and Electronics Engineering) Examination, 2018 POWER SYSTEM – II

| Day a | nd Date : Saturday, | 12-5-2018 | Max. Marks: 100 |
|-------|---------------------|-----------|-----------------|
|       |                     |           |                 |

Time: 2.30 p.m. to 5.30 p.m.

Instructions: i) All questions are compulsory.

- ii) Figures to right indicate full marks.
- iii) Assume suitable data if necessary.
- iv) Q. No. 1 is **compulsory**. It should be solved in **first 30 minutes** in Answer Book Page No. 3. **Each** question carries **one** mark.
- v) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

Duration : 30 Minutes

1. Choose the correct answer : (20×1=20)

- 1) The positive sequence currents of a transmission line is
  - a) Always

- b) 1/3 of negative sequence current
- c) Equal to negative sequence current
- d) 3 times the negative sequence current
- 2) When a line to ground fault occurs, the current in the faulted phase is 100 A. The zero equence current in this case will be
  - a) Zero
- b) 33.3 A
- c) 66.6 A
- d) 100 A

- 3) A balanced 3-phase system consists of
  - a) Zero sequence currents only
  - b) Positive sequence currents only
  - c) Negative sequence currents only
  - d) Zero, positive and negative sequence currents
- 4) The distribution systems in India are mostly
  - a) Radial
- b) Parallel
- c) Network
- d) None of these

- 5) Transient disturbance are caused by
  - a) Sudden load changes

- b) Switching operation
- c) Faults in the power system
- d) All of the above
- 6) The constant H of a turbo-generator of 200 MVA is 6.0. Its value corresponding to 300 MVA base will be
  - a) 9.0
- b) 4.0
- c) 6.0
- d) 13.5
- 7) If the torque angle of an alternator increases infinitely the system will show
  - a) Steady state stability

b) Transient stability

c) Instability

d) None of these



| 8)  | Load-flow studies involve solving simultaneous                                                                                                                                                                                                                     |                                                                                                                |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
|     | a) Linear algebraic equations                                                                                                                                                                                                                                      | b) Non-linear algebraic equations                                                                              |  |  |  |
|     | c) Linear differential equations                                                                                                                                                                                                                                   | d) Non-linear differential equations                                                                           |  |  |  |
| 9)  | Slack bus is bus.                                                                                                                                                                                                                                                  |                                                                                                                |  |  |  |
|     | a) Load b) Generator                                                                                                                                                                                                                                               | c) Feeder d) Measurement                                                                                       |  |  |  |
| 10) | In load-flow analysis, the load connected at a bus is represented as a) Constant current drawn from the bus b) Constant impedance connected at the bus c) Voltage and frequency dependent source at the bus d) Constant real and reactive power drawn from the bus |                                                                                                                |  |  |  |
| 11) | Load flow study is carried out for a) Load frequency control c) Fault calculation                                                                                                                                                                                  | <ul><li>b) Planning of power system</li><li>d) Study of stability of the system</li></ul>                      |  |  |  |
| 12) | The stability of power system is not affected a) Generator reactance c) Line losses                                                                                                                                                                                | d by b) Line reactance d) Excitation of generators                                                             |  |  |  |
| 13) | Which of the following results in a symmetri<br>a) Single L-G fault<br>c) All three phase to earth fault                                                                                                                                                           | b) L-L faults                                                                                                  |  |  |  |
| 14) | Zero sequence fault current is absent when a) Single L-G fault b) L-L faults                                                                                                                                                                                       |                                                                                                                |  |  |  |
| 15) | A negative sequence relay is commonly use a) Alternator b) Transformer                                                                                                                                                                                             | ed to protect<br>c) Transmission line d) Bus bar                                                               |  |  |  |
| 16) | <ul> <li>The magnitude of fault current depends on</li> <li>a) Total impedance up to fault</li> <li>b) Voltage at the fault point</li> <li>c) Load current being supply before occurrence of faults</li> <li>d) Both a) and b)</li> </ul>                          |                                                                                                                |  |  |  |
| 17) | <ul><li>Equal area criterion gives the information re</li><li>a) Stability region</li><li>c) Relative stability</li></ul>                                                                                                                                          | egarding b) Absolute stability d) Swing curves                                                                 |  |  |  |
| 18) | The critical clearing time of a fault in power a) Reactive power limit c) Steady state limit                                                                                                                                                                       | system is related to b) Short circuit limit d) Transient stability limit                                       |  |  |  |
| 19) | Negative sequence reactance of a transformal Equal to the positive sequence reactance by Lesser than positive sequence reactance control of these                                                                                                                  | ce<br>ce                                                                                                       |  |  |  |
| 20) | If all sequence voltages at the fault point in a) 3-phase fault c) L-L fault                                                                                                                                                                                       | <ul><li>a power system are equal, then the fault is</li><li>b) L-G fault</li><li>d) Double L-G fault</li></ul> |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – I) (Old) (Electrical and Electronics Engineering) Examination, 2018 POWER SYSTEM – II

Day and Date: Saturday, 12-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: i) **All** questions are **compulsory**.

ii) Figures to **right** indicate **full** marks.

iii) Assume suitable data if necessary.

### SECTION - I

2. Solve any four: (5×4=20)

- a) Explain representation of loads.
- b) State advantages of PU system.
- c) Write short note on Slack bus.
- d) Derive an expression for SLFE.
- e) Explain the advantages and disadvantages of Gauss Seidel method and Newton Raphson method.
- f) Explain short circuit on synchronous machine at no load.

3. Solve any two: (10×2=20)

- a) Derive and explain the expression of Newton Raphson method.
- b) Explain briefly equal area criterion and how it may be used to study the stability of a two machine system.
- c) A double line fault occurs between the two phases of the transmission line with impedance Zf between them. Find the interconnection of the three sequence networks and hence determine the fault current.

#### SECTION - II

4. Solve any four: (5×4=20)

- a) Derive and draw sequence network of two conductor open fault.
- b) Draw the zero sequence network of different type of transformer connections.
- c) Write a short note on selection of circuit breaker.
- d) Explain the equal area criteria of power system stability.
- e) Analyze a single line to ground fault and show the connections of sequence network.



5. Solve any two: (10×2=20)

- a) What are the factors affecting transient stability? Explain the methods for improving stability of system.
- b) Explain in detail contingency analysis and sensitivity factors.
- c) Explain the system constraints in the power system. What is Unit commitment? Explain in detail.



| Seat |  |
|------|--|
| No.  |  |

Set

S

# B.E. (Part – I) (Old) (Electrical and Electronics Engineering) Examination, 2018 POWER SYSTEM – II

Day and Date: Saturday, 12-5-2018 Max. Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

Instructions: i) All questions are compulsory.

- ii) Figures to **right** indicate **full** marks.
- iii) Assume suitable data if necessary.
- iv) Q. No. 1 is **compulsory**. It should be solved in **first 30 minutes** in Answer Book Page No. 3. **Each** question carries **one** mark.
- v) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 20

1. Choose the correct answer:

 $(20 \times 1 = 20)$ 

- 1) The magnitude of fault current depends on
  - a) Total impedance up to fault
  - b) Voltage at the fault point
  - c) Load current being supply before occurrence of faults
  - d) Both a) and b)
- 2) Equal area criterion gives the information regarding
  - a) Stability region

b) Absolute stability

c) Relative stability

- d) Swing curves
- 3) The critical clearing time of a fault in power system is related to
  - a) Reactive power limit

b) Short circuit limit

c) Steady state limit

- d) Transient stability limit
- 4) Negative sequence reactance of a transformer is
  - a) Equal to the positive sequence reactance
  - b) Lesser than positive sequence reactance
  - c) Greater than positive sequence reactance
  - d) None of these
- 5) If all sequence voltages at the fault point in a power system are equal, then the fault is
  - a) 3-phase fault

b) L-G fault

c) L-L fault

- d) Double L-G fault
- 6) The positive sequence currents of a transmission line is
  - a) Always

- b) 1/3 of negative sequence current
- c) Equal to negative sequence current
- d) 3 times the negative sequence current

| 7)  | equence current in this case will be                                                                                                                                                                                                                                           | irrent in the faulted phase is 100 A. The zero                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 8)  | <ul> <li>a) Zero</li> <li>b) 33.3 A</li> <li>A balanced 3-phase system consists of</li> <li>a) Zero sequence currents only</li> <li>b) Positive sequence currents only</li> <li>c) Negative sequence currents only</li> <li>d) Zero, positive and negative sequence</li> </ul> | c) 66.6 A d) 100 A currents                                                               |
| 9)  | The distribution systems in India are most a) Radial b) Parallel                                                                                                                                                                                                               | ly<br>c) Network d) None of these                                                         |
| 10) | Transient disturbance are caused by a) Sudden load changes c) Faults in the power system                                                                                                                                                                                       | <ul><li>b) Switching operation</li><li>d) All of the above</li></ul>                      |
| 11) | 300 MVA base will be                                                                                                                                                                                                                                                           | 200 MVA is 6.0. Its value corresponding to c) 6.0 d) 13.5                                 |
| 12) | <ul><li>a) 9.0</li><li>b) 4.0</li><li>If the torque angle of an alternator increas</li><li>a) Steady state stability</li><li>c) Instability</li></ul>                                                                                                                          | ,                                                                                         |
| 13) | Load-flow studies involve solving simultantal a) Linear algebraic equations c) Linear differential equations                                                                                                                                                                   | eous b) Non-linear algebraic equations d) Non-linear differential equations               |
| 14) | Slack bus is bus. a) Load b) Generator                                                                                                                                                                                                                                         | c) Feeder d) Measurement                                                                  |
| 15) | In load-flow analysis, the load connected a a) Constant current drawn from the bus b) Constant impedance connected at the c) Voltage and frequency dependent sou d) Constant real and reactive power draw                                                                      | bus<br>rce at the bus                                                                     |
| 16) | Load flow study is carried out for a) Load frequency control c) Fault calculation                                                                                                                                                                                              | <ul><li>b) Planning of power system</li><li>d) Study of stability of the system</li></ul> |
| 17) | The stability of power system is not affected a) Generator reactance c) Line losses                                                                                                                                                                                            | ed by b) Line reactance d) Excitation of generators                                       |
| 18) | Which of the following results in a symmeta) Single L-G fault c) All three phase to earth fault                                                                                                                                                                                | rical fault ?<br>b) L-L faults<br>d) Two phase to earth fault                             |
| 19) | Zero sequence fault current is absent whe a) Single L-G fault b) L-L faults                                                                                                                                                                                                    | n fault is<br>c) Double L-L fault d) None of these                                        |
| 20) | A negative sequence relay is commonly u<br>a) Alternator b) Transformer                                                                                                                                                                                                        | ·                                                                                         |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – I) (Old) (Electrical and Electronics Engineering) Examination, 2018 POWER SYSTEM – II

Day and Date: Saturday, 12-5-2018 Marks: 80

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: i) **All** questions are **compulsory**.

ii) Figures to **right** indicate **full** marks.

iii) Assume suitable data if necessary.

### SECTION - I

2. Solve any four: (5×4=20)

- a) Explain representation of loads.
- b) State advantages of PU system.
- c) Write short note on Slack bus.
- d) Derive an expression for SLFE.
- e) Explain the advantages and disadvantages of Gauss Seidel method and Newton Raphson method.
- f) Explain short circuit on synchronous machine at no load.

3. Solve any two: (10×2=20)

- a) Derive and explain the expression of Newton Raphson method.
- b) Explain briefly equal area criterion and how it may be used to study the stability of a two machine system.
- c) A double line fault occurs between the two phases of the transmission line with impedance Zf between them. Find the interconnection of the three sequence networks and hence determine the fault current.

#### SECTION - II

4. Solve any four: (5×4=20)

- a) Derive and draw sequence network of two conductor open fault.
- b) Draw the zero sequence network of different type of transformer connections.
- c) Write a short note on selection of circuit breaker.
- d) Explain the equal area criteria of power system stability.
- e) Analyze a single line to ground fault and show the connections of sequence network.



5. Solve any two: (10×2=20)

- a) What are the factors affecting transient stability? Explain the methods for improving stability of system.
- b) Explain in detail contingency analysis and sensitivity factors.
- c) Explain the system constraints in the power system. What is Unit commitment? Explain in detail.

**SLR-TC - 507** 

| Seat | Cot |   |
|------|-----|---|
| No.  | Set | P |

# B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

Day and Date: Thursday, 3-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions : 1) Assume suitable data wherever necessary.

- 2) Non-programmable calculators are permitted.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

- 14
- 1) A pole changing type squirrel cage motors used in derricks has four, eight and twenty four poles. In this, the medium speed is used for
  - a) lifting

b) hoisting

c) lowering

- d) landing the load
- 2) Light duty cranes are generally used in
  - a) automobile workshops
- b) pumping stations

c) power houses

- d) all of above
- 3) To get speed higher than the base speed of the dc shunt motor
  - a) armature resistance control is used
  - b) field resistance control is used
  - c) armature voltage control is used
  - d) none of these
- 4) Which of the following pair is used for frequency converter?
  - a) squirrel cage IM and synchronous motor
  - b) wound rotor IM and synchronous motor
  - c) wound rotor IM and squirrel cage IM
  - d) any of above



| 5) Which of the following is preferred for automatic drive? a) Synchronous motor b) Squirrel cage IM c) Ward Leonard controlled dc motors d) Any of above 6) A wound rotor IM is preferred over squirrel cage IM when the major consideration involved is a) high starting torque b) low starting current c) speed control over limited range d) any of above 7) 15 minutes rated motors are suitable for a) light duty crane b) medium duty crane c) high duty crane d) all of above 8) In motor circuit, static frequency changers are used for a) power factor improvement b) improved cooling c) reversal of direction d) speed regulation 9) During regenerative braking a) E < V b) E > V c) E = V d) none of above 10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All 11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor 12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above 13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being started c) when the drive is being started d) when drive at half of its normal speed 14) The motor commonly used in computers and digital systems is a) dc shunt motor d) synchronous motor |     |                                                                                                                                                               |            |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|
| consideration involved is a) high starting torque c) speed control over limited range d) any of above 7) 15 minutes rated motors are suitable for a) light duty crane c) high duty crane d) all of above 8) In motor circuit, static frequency changers are used for a) power factor improvement b) improved cooling c) reversal of direction d) speed regulation 9) During regenerative braking a) E < V b) E > V c) E = V d) none of above 10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All 11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor 12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above 13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being stopped d) when drive at half of its normal speed 14) The motor commonly used in computers and digital systems is a) dc shunt motor b) low starting current b) low starting current c) speed control over limited range d) any of above                                                                                                                                                                                                                                  | 5)  | a) Synchronous motor                                                                                                                                          | b)         | Squirrel cage IM                        |
| 7) 15 minutes rated motors are suitable for a) light duty crane c) high duty crane d) all of above  8) In motor circuit, static frequency changers are used for a) power factor improvement b) improved cooling c) reversal of direction d) speed regulation  9) During regenerative braking a) E < V b) E > V c) E = V d) none of above  10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All  11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor  12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being started c) when the drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                              | 6)  | consideration involved is                                                                                                                                     |            |                                         |
| a) light duty crane c) high duty crane d) all of above  8) In motor circuit, static frequency changers are used for a) power factor improvement b) improved cooling c) reversal of direction d) speed regulation  9) During regenerative braking a) E < V b) E > V c) E = V d) none of above  10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All  11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor  12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being started c) when the drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor  b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | c) speed control over limited range                                                                                                                           | d)         | any of above                            |
| c) high duty crane d) all of above  8) In motor circuit, static frequency changers are used for a) power factor improvement b) improved cooling c) reversal of direction d) speed regulation  9) During regenerative braking a) E < V b) E > V c) E = V d) none of above  10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All  11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor  12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is being started c) when the drive is being started c) when the drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7)  |                                                                                                                                                               |            |                                         |
| a) power factor improvement c) improved cooling c) reversal of direction d) speed regulation  9) During regenerative braking a) E < V b) E > V c) E = V d) none of above  10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All  11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor  12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being started d) when drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | , .                                                                                                                                                           | ,          | •                                       |
| a) E < V b) E > V c) E = V d) none of above  10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All  11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor  12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being started c) when the drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8)  | a) power factor improvement                                                                                                                                   | b)         | improved cooling                        |
| 10) The variable frequency supply to IM for speed control can be made available using a) VSI b) CSI c) Cycloconverter d) All  11) When quick speed reversal consideration, the motor preferred is a) Synchronous motor b) Squirrel cage IM c) Wound rotor IM d) DC motor  12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being stopped d) when drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9)  |                                                                                                                                                               | c)         | E = V d) none of above                  |
| a) Synchronous motor c) Wound rotor IM d) DC motor  12) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being stopped d) when drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor b) Squirrel cage IM d) DC motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10) | The variable frequency supply to IM for                                                                                                                       | r sp       | eed control can be made available using |
| major consideration is a) high starting torque b) low starting current c) speed control over limited range d) any of above  13) Effect of friction torque is more pronounced a) when the drive is running on full speed b) when the drive is being started c) when the drive is being stopped d) when drive at half of its normal speed  14) The motor commonly used in computers and digital systems is a) dc shunt motor b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11) | a) Synchronous motor                                                                                                                                          | b)         | Squirrel cage IM                        |
| 13) Effect of friction torque is more pronounced     a) when the drive is running on full speed     b) when the drive is being started     c) when the drive is being stopped     d) when drive at half of its normal speed  14) The motor commonly used in computers and digital systems is     a) dc shunt motor     b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12) | major consideration is a) high starting torque                                                                                                                | b)         | low starting current                    |
| a) dc shunt motor b) induction motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13) | Effect of friction torque is more prone<br>a) when the drive is running on full s<br>b) when the drive is being started<br>c) when the drive is being stopped | oun<br>spe | ced<br>ed                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14) | a) dc shunt motor                                                                                                                                             | b)         | induction motor                         |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any three:

 $(3 \times 4 = 12)$ 

Marks: 56

- a) Explain the function of Control Unit and Sensing Unit in electrical drives.
- b) Give classification of Drives.
- c) What are the criteria for selection of Electrical Drives?
- d) Explain Current limit control loop with block diagram.
- e) Define dynamics and explain effect of dynamics on Electrical Drives.

3. Solve any two:

 $(2 \times 8 = 16)$ 

- a) A drive has following parameters:
  - J = 10kg-m², T = 100-0.1N, Nm, passive load torque  $T_1 = 0.05$ N, Nm where N is speed in rpm. Initially, the drive is operating in steady state. Now, it is to be reversed. For this, motor characteristics is changed to T = -100-0.1N,Nm. Calculate the time of reversal.
- b) A 220V, 970 rpm, 100A dc separately excited motor has an armature resistance of 0.05 Ohm. It is braked by plugging from an initial speed of 1000 rpm.
   Calculate:
  - i) Resistance to be placed in armature circuit to twice full load torque.
  - ii) Braking torque.
- c) Explain braking methods of D.C. drives with necessary diagram.



### 4. Solve any three:

 $(3 \times 4 = 12)$ 

- a) Explain speed control of induction motor by VSI.
- b) Explain static rotor resistance control method.
- c) Explain static Krammer drive with block diagram and waveforms.
- d) Explain operation stepper motor drives.
- e) A 440V, 50 Hz, 6 pole Y-connected wound rotor motor has following parameters-RS =  $0.5\Omega$ , Rr' =  $0.4\Omega$ , Xs = Xr' =  $1.2\Omega$ , Xm =  $50\Omega$  . Stator to rotor turn ratio is 3.5.

Motor is controlled by static rotor resistance control. External resistance is chosen such that breakdown torque is produced at stand still for duty ratio of zero. Calculate value of external resistance.

### 5. Solve any two:

 $(8 \times 2 = 16)$ 

- a) Describe Slip Power Recovery Scheme with needed diagram.
- b) A 440V, 50 Hz, 970 rpm, 6 pole, star connected,  $3\Phi$  wound rotor IM has following parameter referred to stator :

Rs =  $0.1\Omega$ , Rr' =  $0.08\Omega$ , Xs = $0.3\Omega$ , Xr' =  $0.4\Omega$ . Stator to rotor turn ratio is 2. Motor speed is controlled by Static Scherbius Drive. Drive is designed for speed range of 25% below synchronous speed. Maximum value of firing angle 165°. Calculate

- i) Transformer turns ratio.
- ii) Torque for the speed of 780 rpm and  $\alpha$  =140° [Note : Rd = 0.01 $\Omega$ ].
- c) Explain variable frequency control of multiple synchronous motor drives.



**SLR-TC - 507** 

| Seat | Sat   | 1 |
|------|-------|---|
| No.  | Set Q |   |

# B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

| Day and Date: Thursday, 3-5-2018 | Total Marks: 70 |
|----------------------------------|-----------------|

Time: 2.30 p.m. to 5.30 p.m.

Instructions : 1) Assume suitable data wherever necessary.

- 2) Non-programmable calculators are **permitted**.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration : 30 Minutes Marks : 14

1. Choose the correct answer : 14

- 1) In motor circuit, static frequency changers are used for
- a) power factor improvement
- b) improved cooling
- c) reversal of direction
- d) speed regulation
- 2) During regenerative braking
  - a) E < V
- b) E > V
- c) E = V
- d) none of above
- 3) The variable frequency supply to IM for speed control can be made available using
  - a) VSI
- b) CSI
- c) Cycloconverter d) All
- 4) When quick speed reversal consideration, the motor preferred is
  - a) Synchronous motor
- b) Squirrel cage IM

c) Wound rotor IM

- d) DC motor
- 5) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is
  - a) high starting torque
  - b) low starting current
  - c) speed control over limited range
  - d) any of above



| R-TO | C – 507                                                                                                                                                                                         | -2-            |                                                              |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|
| 6)   | Effect of friction torque is more pro<br>a) when the drive is running on ful<br>b) when the drive is being started<br>c) when the drive is being stopped<br>d) when drive at half of its normal | ll speed<br>d  |                                                              |
| 7)   | The motor commonly used in com a) dc shunt motor c) stepper motor                                                                                                                               | b) ii          | and digital systems is<br>nduction motor<br>ynchronous motor |
| 8)   | A pole changing type squirrel cage and twenty four poles. In this, the a lifting c) lowering                                                                                                    | mediun<br>b) h | _                                                            |
| 9)   | Light duty cranes are generally use<br>a) automobile workshops<br>c) power houses                                                                                                               | b) p           | umping stations<br>Il of above                               |
| 10)  | To get speed higher than the base<br>a) armature resistance control is used<br>b) field resistance control is used<br>c) armature voltage control is use<br>d) none of these                    | used           | of the dc shunt motor                                        |
| 11)  | Which of the following pair is used a) squirrel cage IM and synchronous b) wound rotor IM and synchronous c) wound rotor IM and squirrel cag d) any of above                                    | ous mot        | or                                                           |
| 12)  | <ul><li>Which of the following is preferred</li><li>a) Synchronous motor</li><li>c) Ward Leonard controlled dc motor</li></ul>                                                                  | b) S           | Squirrel cage IM                                             |
| 13)  | A wound rotor IM is preferred or consideration involved is a) high starting torque c) speed control over limited range                                                                          | b) lo          | ow starting current                                          |
| 14)  | <ul><li>15 minutes rated motors are suital</li><li>a) light duty crane</li><li>c) high duty crane</li></ul>                                                                                     | b) n           | nedium duty crane<br>Il of above                             |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **Assume** suitable data **wherever** necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any three:

 $(3 \times 4 = 12)$ 

Marks: 56

- a) Explain the function of Control Unit and Sensing Unit in electrical drives.
- b) Give classification of Drives.
- c) What are the criteria for selection of Electrical Drives?
- d) Explain Current limit control loop with block diagram.
- e) Define dynamics and explain effect of dynamics on Electrical Drives.

3. Solve any two:

 $(2 \times 8 = 16)$ 

- a) A drive has following parameters:
  - J = 10kg-m², T = 100-0.1N, Nm, passive load torque  $T_1 = 0.05$ N, Nm where N is speed in rpm. Initially, the drive is operating in steady state. Now, it is to be reversed. For this, motor characteristics is changed to T = -100-0.1N,Nm. Calculate the time of reversal.
- b) A 220V, 970 rpm, 100A dc separately excited motor has an armature resistance of 0.05 Ohm. It is braked by plugging from an initial speed of 1000 rpm.
  - Calculate:
  - i) Resistance to be placed in armature circuit to twice full load torque.
  - ii) Braking torque.
- c) Explain braking methods of D.C. drives with necessary diagram.

### 

#### SECTION - II

### 4. Solve any three:

 $(3\times 4=12)$ 

- a) Explain speed control of induction motor by VSI.
- b) Explain static rotor resistance control method.
- c) Explain static Krammer drive with block diagram and waveforms.
- d) Explain operation stepper motor drives.
- e) A 440V, 50 Hz, 6 pole Y-connected wound rotor motor has following parameters-RS =  $0.5\Omega$ , Rr' =  $0.4\Omega$ , Xs = Xr' =  $1.2\Omega$ , Xm =  $50\Omega$  . Stator to rotor turn ratio is 3.5.

Motor is controlled by static rotor resistance control. External resistance is chosen such that breakdown torque is produced at stand still for duty ratio of zero. Calculate value of external resistance.

### 5. Solve any two:

 $(8 \times 2 = 16)$ 

- a) Describe Slip Power Recovery Scheme with needed diagram.
- b) A 440V, 50 Hz, 970 rpm, 6 pole, star connected, 3Φ wound rotor IM has following parameter referred to stator :

Rs =  $0.1\Omega$ , Rr' =  $0.08\Omega$ , Xs = $0.3\Omega$ , Xr' =  $0.4\Omega$ . Stator to rotor turn ratio is 2. Motor speed is controlled by Static Scherbius Drive. Drive is designed for speed range of 25% below synchronous speed. Maximum value of firing angle 165°. Calculate

- i) Transformer turns ratio.
- ii) Torque for the speed of 780 rpm and  $\alpha$  =140° [Note : Rd = 0.01 $\Omega$ ].
- c) Explain variable frequency control of multiple synchronous motor drives.

|--|--|

**SLR-TC - 507** 

| Seat |   | Set |   |
|------|---|-----|---|
| No.  |   | Set | R |
|      | • | -   |   |

# B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

| Total Marks: 70 |
|-----------------|
|                 |

Time: 2.30 p.m. to 5.30 p.m.

Instructions : 1) Assume suitable data wherever necessary.

- 2) Non-programmable calculators are **permitted**.
- 3) Q. No. 1 is **compulsory**. It should be solved in **first 30 minutes** in Answer Book Page No. 3. **Each** question carries **one** mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

- 1. Choose the correct answer:
  - 1) Which of the following is preferred for automatic drive?
  - a) Synchronous motor
- b) Squirrel cage IM
- c) Ward Leonard controlled dc motors d) Any of above
- 2) A wound rotor IM is preferred over squirrel cage IM when the major consideration involved is
  - a) high starting torque

- b) low starting current
- c) speed control over limited range d) any of above
- 3) 15 minutes rated motors are suitable for
  - a) light duty crane

b) medium duty crane

c) high duty crane

- d) all of above
- 4) In motor circuit, static frequency changers are used for
  - a) power factor improvement
- b) improved cooling
- c) reversal of direction
- d) speed regulation
- 5) During regenerative braking
  - a) E < V
- b) E > V
- c) E = V
- d) none of above
- 6) The variable frequency supply to IM for speed control can be made available using
  - a) VSI
- b) CSI
- c) Cycloconverter d) All

14



| 7)  | When quick speed reversal consider                                                                                                                                                                      |                                                                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|     | a) Synchronous motor                                                                                                                                                                                    | b) Squirrel cage IM                                                                             |
|     | c) Wound rotor IM                                                                                                                                                                                       | d) DC motor                                                                                     |
| 8)  | As compared to squirrel cage IM, a major consideration is a) high starting torque                                                                                                                       | wound rotor IM is preferred when the b) low starting current                                    |
|     | c) speed control over limited range                                                                                                                                                                     | ,                                                                                               |
| 9)  | Effect of friction torque is more prono<br>a) when the drive is running on full s<br>b) when the drive is being started<br>c) when the drive is being stopped<br>d) when drive at half of its normal sp | punced<br>speed                                                                                 |
| 10) | The motor commonly used in computa) dc shunt motor c) stepper motor                                                                                                                                     | ters and digital systems is b) induction motor d) synchronous motor                             |
| 11) | A pole changing type squirrel cage mand twenty four poles. In this, the mea) lifting c) lowering                                                                                                        | notors used in derricks has four, eight edium speed is used for b) hoisting d) landing the load |
| 12) | Light duty cranes are generally used a) automobile workshops c) power houses                                                                                                                            | <ul><li>in</li><li>b) pumping stations</li><li>d) all of above</li></ul>                        |
| 13) | To get speed higher than the base signal armature resistance control is used b) field resistance control is used c) armature voltage control is used d) none of these                                   |                                                                                                 |
| 14) | Which of the following pair is used for a) squirrel cage IM and synchronous b) wound rotor IM and synchronous c) wound rotor IM and squirrel cage d) any of above                                       | motor<br>motor                                                                                  |
|     |                                                                                                                                                                                                         |                                                                                                 |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any three:

 $(3 \times 4 = 12)$ 

Marks: 56

- a) Explain the function of Control Unit and Sensing Unit in electrical drives.
- b) Give classification of Drives.
- c) What are the criteria for selection of Electrical Drives?
- d) Explain Current limit control loop with block diagram.
- e) Define dynamics and explain effect of dynamics on Electrical Drives.

3. Solve any two:

 $(2 \times 8 = 16)$ 

- a) A drive has following parameters:
  - J = 10kg-m², T = 100-0.1N, Nm, passive load torque  $T_1 = 0.05$ N, Nm where N is speed in rpm. Initially, the drive is operating in steady state. Now, it is to be reversed. For this, motor characteristics is changed to T = -100-0.1N,Nm. Calculate the time of reversal.
- b) A 220V, 970 rpm, 100A dc separately excited motor has an armature resistance of 0.05 Ohm. It is braked by plugging from an initial speed of 1000 rpm.
  - Calculate:
  - i) Resistance to be placed in armature circuit to twice full load torque.
  - ii) Braking torque.
- c) Explain braking methods of D.C. drives with necessary diagram.



### 4. Solve any three:

 $(3\times 4=12)$ 

- a) Explain speed control of induction motor by VSI.
- b) Explain static rotor resistance control method.
- c) Explain static Krammer drive with block diagram and waveforms.
- d) Explain operation stepper motor drives.
- e) A 440V, 50 Hz, 6 pole Y-connected wound rotor motor has following parameters-RS =  $0.5\Omega$ , Rr' =  $0.4\Omega$ , Xs = Xr' =  $1.2\Omega$ , Xm =  $50\Omega$  . Stator to rotor turn ratio is 3.5.

Motor is controlled by static rotor resistance control. External resistance is chosen such that breakdown torque is produced at stand still for duty ratio of zero. Calculate value of external resistance.

### 5. Solve any two:

 $(8 \times 2 = 16)$ 

- a) Describe Slip Power Recovery Scheme with needed diagram.
- b) A 440V, 50 Hz, 970 rpm, 6 pole, star connected, 3Φ wound rotor IM has following parameter referred to stator :

Rs =  $0.1\Omega$ , Rr' =  $0.08\Omega$ , Xs = $0.3\Omega$ , Xr' =  $0.4\Omega$ . Stator to rotor turn ratio is 2. Motor speed is controlled by Static Scherbius Drive. Drive is designed for speed range of 25% below synchronous speed. Maximum value of firing angle 165°. Calculate

- i) Transformer turns ratio.
- ii) Torque for the speed of 780 rpm and  $\alpha$  =140° [Note : Rd = 0.01 $\Omega$ ].
- c) Explain variable frequency control of multiple synchronous motor drives.

**SLR-TC - 507** 

| Seat | Set |   |
|------|-----|---|
| No.  | Set | 5 |

### B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

| Day and Date: Thursday, 3-5-2018 | Total Marks: 70      |
|----------------------------------|----------------------|
| Day and Date: marsday, 0 0 2010  | i otal ivialità . 70 |

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

- 2) Non-programmable calculators are **permitted**.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

- 14
- 1) The variable frequency supply to IM for speed control can be made available using
  - a) VSI
- b) CSI
- c) Cycloconverter d) All
- 2) When guick speed reversal consideration, the motor preferred is
  - a) Synchronous motor
- b) Squirrel cage IM

c) Wound rotor IM

- d) DC motor
- 3) As compared to squirrel cage IM, a wound rotor IM is preferred when the major consideration is
  - a) high starting torque

- b) low starting current
- c) speed control over limited range d) any of above
- 4) Effect of friction torque is more pronounced
  - a) when the drive is running on full speed
  - b) when the drive is being started
  - c) when the drive is being stopped
  - d) when drive at half of its normal speed
- 5) The motor commonly used in computers and digital systems is
  - a) dc shunt motor

b) induction motor

c) stepper motor

d) synchronous motor



| 6)  | A pole changing type squirrel cage mand twenty four poles. In this, the mea) lifting c) lowering                                                                    | notors used in derricks has four, eight edium speed is used for b) hoisting d) landing the load |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 7)  | Light duty cranes are generally used a) automobile workshops c) power houses                                                                                        | in b) pumping stations d) all of above                                                          |
| 8)  | To get speed higher than the base span armature resistance control is used b) field resistance control is used c) armature voltage control is used d) none of these |                                                                                                 |
| 9)  | Which of the following pair is used for a) squirrel cage IM and synchronous b) wound rotor IM and synchronous c) wound rotor IM and squirrel cage d) any of above   | motor                                                                                           |
| 10) | <ul><li>Which of the following is preferred fo</li><li>a) Synchronous motor</li><li>c) Ward Leonard controlled dc motors</li></ul>                                  | b) Squirrel cage IM                                                                             |
| 11) | A wound rotor IM is preferred over<br>consideration involved is<br>a) high starting torque<br>c) speed control over limited range                                   | er squirrel cage IM when the major b) low starting current d) any of above                      |
| 12) | <ul><li>15 minutes rated motors are suitable</li><li>a) light duty crane</li><li>c) high duty crane</li></ul>                                                       | for b) medium duty crane d) all of above                                                        |
| 13) | In motor circuit, static frequency char<br>a) power factor improvement<br>c) reversal of direction                                                                  | ngers are used for<br>b) improved cooling<br>d) speed regulation                                |
| 14) | During regenerative braking a) E < V b) E > V                                                                                                                       | c) E = V d) none of above                                                                       |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – I) (CGPA) Examination, 2018 INDUSTRIAL DRIVES AND CONTROL

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Assume suitable data wherever necessary.

2) Non-programmable calculators are **permitted**.

### SECTION - I

2. Solve any three:

 $(3 \times 4 = 12)$ 

Marks: 56

- a) Explain the function of Control Unit and Sensing Unit in electrical drives.
- b) Give classification of Drives.
- c) What are the criteria for selection of Electrical Drives?
- d) Explain Current limit control loop with block diagram.
- e) Define dynamics and explain effect of dynamics on Electrical Drives.

3. Solve any two:

 $(2 \times 8 = 16)$ 

- a) A drive has following parameters:
  - J = 10kg-m², T = 100-0.1N, Nm, passive load torque  $T_1 = 0.05$ N, Nm where N is speed in rpm. Initially, the drive is operating in steady state. Now, it is to be reversed. For this, motor characteristics is changed to T = -100-0.1N,Nm. Calculate the time of reversal.
- b) A 220V, 970 rpm, 100A dc separately excited motor has an armature resistance of 0.05 Ohm. It is braked by plugging from an initial speed of 1000 rpm.
   Calculate:
  - i) Resistance to be placed in armature circuit to twice full load torque.
  - ii) Braking torque.
- c) Explain braking methods of D.C. drives with necessary diagram.



### 4. Solve any three:

 $(3 \times 4 = 12)$ 

- a) Explain speed control of induction motor by VSI.
- b) Explain static rotor resistance control method.
- c) Explain static Krammer drive with block diagram and waveforms.
- d) Explain operation stepper motor drives.
- e) A 440V, 50 Hz, 6 pole Y-connected wound rotor motor has following parameters-RS =  $0.5\Omega$ , Rr' =  $0.4\Omega$ , Xs = Xr' =  $1.2\Omega$ , Xm =  $50\Omega$  . Stator to rotor turn ratio is 3.5.

Motor is controlled by static rotor resistance control. External resistance is chosen such that breakdown torque is produced at stand still for duty ratio of zero. Calculate value of external resistance.

### 5. Solve any two:

 $(8 \times 2 = 16)$ 

- a) Describe Slip Power Recovery Scheme with needed diagram.
- b) A 440V, 50 Hz, 970 rpm, 6 pole, star connected, 3Φ wound rotor IM has following parameter referred to stator:

Rs =  $0.1\Omega$ , Rr' =  $0.08\Omega$ , Xs = $0.3\Omega$ , Xr' =  $0.4\Omega$ . Stator to rotor turn ratio is 2. Motor speed is controlled by Static Scherbius Drive. Drive is designed for speed range of 25% below synchronous speed. Maximum value of firing angle 165°. Calculate

- i) Transformer turns ratio.
- ii) Torque for the speed of 780 rpm and  $\alpha$  =140° [Note : Rd = 0.01 $\Omega$ ].
- c) Explain variable frequency control of multiple synchronous motor drives.



| Seat |  |
|------|--|
| No.  |  |

Set



14

# B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL ENERGY UTILIZATION AND TRACTION

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

- 1. Choose the correct answer.
  - 1) What will be the total flux emitted by a source of 60 candle power?
    - a) 754.2 lumens

b) 0.001326 lumens

c) 60 lumens

- d) None of these
- 2) For intermittent work which of the following furnace is suitable?
  - a) Core less furnace

b) Indirect arc furnace

c) Either of above

- d) Neither of above
- 3) Induction heating takes place in
  - a) Conducting but non magnetic materials
  - b) Conducting materials may be magnetic or nonmagnetic materials
  - c) Insulating materials
  - d) Conducting and magnetic material
- 4) Subcooling is a process of cooling the refrigerant in vapour compression refrigeration system before
  - a) Evaporation
- b) Throttling
- c) Condensation d) Compression
- 5) Which of the following statement is correct?
  - a) Light consists of electromagnetic waves
  - b) Light consists of ultraviolet waves
  - c) Light consists of infrared waves
  - d) Light consists of gamma rays



| 6)  | The main application of indirect arc fu<br>a) Steel<br>c) Non-ferrous metals                                                                                                | b) | ace is to melt<br>Iron<br>None of the abo               | ove                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------|---------------------|
| 7)  | Candela is the unit of a) Wavelength c) Luminous flux                                                                                                                       | ,  | Luminous inten<br>Frequency                             | sity                |
| 8)  | The efficiency of diesel locomotives is a) 20-25 percent c) 50-55 percent                                                                                                   | b) | early<br>35-40 percent<br>70-75 percent                 |                     |
| 9)  | Which locomotive has the highest open a) Diesel c) Steam                                                                                                                    | b) | tional availability<br>Electric<br>All have same a      |                     |
| 10) | The advantages of electric traction ova.  a) No pollution problems  c) Better braking action                                                                                | b) | other methods is<br>Faster accelera<br>All of the above | ition               |
| 11) | What are the constituents in speed tire a) Coasting c) Constant speed                                                                                                       | b) | curve of train ?<br>Initial accelerat<br>All of these   | ion                 |
| 12) | The magnitude for the tractive effort votation of the train depends on  a) The adhesive weight b) Friction between the driving wheel c) Both a) and b) d) Neither a) nor b) |    | ·                                                       | r the propulsion    |
| 13) | A trolley bus runs on tyres driven by a) A DC compound motor c) An AC series motor                                                                                          | -  | A DC series mo                                          |                     |
| 14) | The function of duct in air conditioning a) air cooling b) air cleaning                                                                                                     |    |                                                         | d) air distribution |
|     |                                                                                                                                                                             |    |                                                         |                     |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL ENERGY UTILIZATION AND TRACTION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and explain illumination.
- 2) With a neat sketch explain Ajax-Wyatt furnace.
- 3) Explain refrigeration cycle with neat diagram.
- 4) What is air conditioning? Discuss the role of air conditioning in our day to day life.
- 5) A 250V lamp has a total flux of 3000 lumens and takes a current of 0.8 A. Calculate lumens/watt and MSCP/Watt.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) a) Discuss the general requirements of good lighting scheme.
  - b) What are the factors affecting in designing of lighting scheme?
- 2) What do you understand by refrigerator? Draw and explain electrical circuits used in a refrigerator.
- 3) A lamp of 500 Watts having MSCP of 1000 is suspended 2.7 m above the working plane.

#### Calculate:

- i) Illumination directly below the lamp at the working plane.
- ii) Lamp efficiency.
- iii) Illumination at a point 2.5 m away on the horizontal plane from vertically below the lamp.



4. Write short notes on the following (any three):

 $(3 \times 4 = 12)$ 

- 1) Design features of traction motor.
- 2) Current collection system for electric traction.
- 3) Quadrilateral speed-time curve.
- 4) Speed control of traction motors.
- 5) Discharging operation of battery in EV.

### 5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What do you mean by hybrid vehicles? What are motors to be selected for interconnection with hybrid vehicles?
- 2) What is specific energy consumption of a train? Discuss the various factors affecting it.
- 3) An electric train has quadrilateral speed time curve as follows:
  - i) Uniform acceleration from rest at 2 kmphps for 30 secs.
  - ii) Coasting for 50 secs.
  - iii) Uniform braking to rest for 20 secs.

If train is moving a uniform up gradient of 10/1000, train resistance is 40 N/tone, rotational inertia effect 10% of dead weight and duration of stop 30 secs, find the scheduled speed.



| Seat |  |
|------|--|
| No.  |  |

Set



# B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL ENERGY UTILIZATION AND TRACTION

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer. 14

- 1) The efficiency of diesel locomotives is nearly
  - a) 20-25 percent

b) 35-40 percent

c) 50-55 percent

- d) 70-75 percent
- 2) Which locomotive has the highest operational availability?
  - a) Diesel

b) Electric

c) Steam

- d) All have same availability
- 3) The advantages of electric traction over other methods is
  - a) No pollution problems

b) Faster acceleration

c) Better braking action

- d) All of the above
- 4) What are the constituents in speed time curve of train?
  - a) Coasting

b) Initial acceleration

c) Constant speed

- d) All of these
- 5) The magnitude for the tractive effort which is required for the propulsion of the train depends on
  - a) The adhesive weight
  - b) Friction between the driving wheel and the track
  - c) Both a) and b)
  - d) Neither a) nor b)



| 6)  | A trolley bus runs on tyres driven by a) A DC compound motor c) An AC series motor                                                                                                           | <ul><li>b) A DC series motor</li><li>d) An AC shunt motor</li></ul>     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 7)  | The function of duct in air conditioning a) air cooling b) air cleaning                                                                                                                      | g unit is c) air drying d) air distribution                             |
| 8)  | What will be the total flux emitted by a a) 754.2 lumens c) 60 lumens                                                                                                                        | a source of 60 candle power? b) 0.001326 lumens d) None of these        |
| 9)  | For intermittent work which of the followal Core less furnace c) Either of above                                                                                                             | owing furnace is suitable ? b) Indirect arc furnace d) Neither of above |
| 10) | Induction heating takes place in a) Conducting but non magnetic mat b) Conducting materials may be mag c) Insulating materials d) Conducting and magnetic materia                            | netic or nonmagnetic materials                                          |
| 11) | Subcooling is a process of cooling the refrigeration system before a) Evaporation b) Throttling                                                                                              |                                                                         |
| 12) | Which of the following statement is coal Light consists of electromagnetic values b) Light consists of ultraviolet waves c) Light consists of infrared waves d) Light consists of gamma rays |                                                                         |
| 13) | The main application of indirect arc fu<br>a) Steel<br>c) Non-ferrous metals                                                                                                                 | irnace is to melt b) Iron d) None of the above                          |
| 14) | Candela is the unit of a) Wavelength c) Luminous flux                                                                                                                                        | <ul><li>b) Luminous intensity</li><li>d) Frequency</li></ul>            |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL ENERGY UTILIZATION AND TRACTION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and explain illumination.
- 2) With a neat sketch explain Ajax-Wyatt furnace.
- 3) Explain refrigeration cycle with neat diagram.
- 4) What is air conditioning? Discuss the role of air conditioning in our day to day life.
- 5) A 250V lamp has a total flux of 3000 lumens and takes a current of 0.8 A. Calculate lumens/watt and MSCP/Watt.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) a) Discuss the general requirements of good lighting scheme.
  - b) What are the factors affecting in designing of lighting scheme?
- 2) What do you understand by refrigerator? Draw and explain electrical circuits used in a refrigerator.
- 3) A lamp of 500 Watts having MSCP of 1000 is suspended 2.7 m above the working plane.

#### Calculate:

- i) Illumination directly below the lamp at the working plane.
- ii) Lamp efficiency.
- iii) Illumination at a point 2.5 m away on the horizontal plane from vertically below the lamp.



4. Write short notes on the following (any three):

 $(3 \times 4 = 12)$ 

- 1) Design features of traction motor.
- 2) Current collection system for electric traction.
- 3) Quadrilateral speed-time curve.
- 4) Speed control of traction motors.
- 5) Discharging operation of battery in EV.

5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What do you mean by hybrid vehicles? What are motors to be selected for interconnection with hybrid vehicles?
- 2) What is specific energy consumption of a train? Discuss the various factors affecting it.
- 3) An electric train has quadrilateral speed time curve as follows:
  - i) Uniform acceleration from rest at 2 kmphps for 30 secs.
  - ii) Coasting for 50 secs.
  - iii) Uniform braking to rest for 20 secs.

If train is moving a uniform up gradient of 10/1000, train resistance is 40 N/tone, rotational inertia effect 10% of dead weight and duration of stop 30 secs, find the scheduled speed.



| Seat |  |
|------|--|
| No.  |  |

Set

R

14

# B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL ENERGY UTILIZATION AND TRACTION

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

- 1. Choose the correct answer.
  - 1) Which of the following statement is correct?
    - a) Light consists of electromagnetic waves
    - b) Light consists of ultraviolet waves
    - c) Light consists of infrared waves
    - d) Light consists of gamma rays
  - 2) The main application of indirect arc furnace is to melt
    - a) Steel

b) Iron

c) Non-ferrous metals

d) None of the above

- 3) Candela is the unit of
  - a) Wavelength

b) Luminous intensity

c) Luminous flux

- d) Frequency
- 4) The efficiency of diesel locomotives is nearly
  - a) 20-25 percent

b) 35-40 percent

c) 50-55 percent

- d) 70-75 percent
- 5) Which locomotive has the highest operational availability?
  - a) Diesel

b) Electric

c) Steam

d) All have same availability



| 6)  | The advantages of electric traction ov<br>a) No pollution problems<br>c) Better braking action                                                                    | ver other methods is b) Faster acceleration d) All of the above         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 7)  | What are the constituents in speed tinal Coasting c) Constant speed                                                                                               | me curve of train ? b) Initial acceleration d) All of these             |
| 8)  | The magnitude for the tractive effort of the train depends on a) The adhesive weight b) Friction between the driving whee c) Both a) and b) d) Neither a) nor b)  |                                                                         |
| 9)  | A trolley bus runs on tyres driven by a) A DC compound motor c) An AC series motor                                                                                | <ul><li>b) A DC series motor</li><li>d) An AC shunt motor</li></ul>     |
| 10) | The function of duct in air conditioning a) air cooling b) air cleaning                                                                                           |                                                                         |
| 11) | What will be the total flux emitted by a a) 754.2 lumens c) 60 lumens                                                                                             | a source of 60 candle power ?<br>b) 0.001326 lumens<br>d) None of these |
| 12) | For intermittent work which of the folla) Core less furnace c) Either of above                                                                                    | owing furnace is suitable ? b) Indirect arc furnace d) Neither of above |
| 13) | Induction heating takes place in a) Conducting but non magnetic mat b) Conducting materials may be mag c) Insulating materials d) Conducting and magnetic materia | netic or nonmagnetic materials                                          |
| 14) | Subcooling is a process of cooling the refrigeration system before a) Evaporation b) Throttling                                                                   | e refrigerant in vapour compression c) Condensation d) Compression      |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL ENERGY UTILIZATION AND TRACTION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and explain illumination.
- 2) With a neat sketch explain Ajax-Wyatt furnace.
- 3) Explain refrigeration cycle with neat diagram.
- 4) What is air conditioning? Discuss the role of air conditioning in our day to day life.
- 5) A 250V lamp has a total flux of 3000 lumens and takes a current of 0.8 A. Calculate lumens/watt and MSCP/Watt.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) a) Discuss the general requirements of good lighting scheme.
  - b) What are the factors affecting in designing of lighting scheme?
- 2) What do you understand by refrigerator? Draw and explain electrical circuits used in a refrigerator.
- 3) A lamp of 500 Watts having MSCP of 1000 is suspended 2.7 m above the working plane.

#### Calculate:

- i) Illumination directly below the lamp at the working plane.
- ii) Lamp efficiency.
- iii) Illumination at a point 2.5 m away on the horizontal plane from vertically below the lamp.



4. Write short notes on the following (any three):

 $(3 \times 4 = 12)$ 

- 1) Design features of traction motor.
- 2) Current collection system for electric traction.
- 3) Quadrilateral speed-time curve.
- 4) Speed control of traction motors.
- 5) Discharging operation of battery in EV.

### 5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What do you mean by hybrid vehicles? What are motors to be selected for interconnection with hybrid vehicles?
- 2) What is specific energy consumption of a train? Discuss the various factors affecting it.
- 3) An electric train has quadrilateral speed time curve as follows:
  - i) Uniform acceleration from rest at 2 kmphps for 30 secs.
  - ii) Coasting for 50 secs.
  - iii) Uniform braking to rest for 20 secs.

If train is moving a uniform up gradient of 10/1000, train resistance is 40 N/tone, rotational inertia effect 10% of dead weight and duration of stop 30 secs, find the scheduled speed.



Seat No.

### B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 **ELECTRICAL ENERGY UTILIZATION AND TRACTION**

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Make suitable assumption if necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

- 1. Choose the correct answer.
  - 1) The advantages of electric traction over other methods is
    - a) No pollution problems
- b) Faster acceleration
- c) Better braking action
- d) All of the above
- 2) What are the constituents in speed time curve of train?
  - a) Coasting

b) Initial acceleration

c) Constant speed

- d) All of these
- 3) The magnitude for the tractive effort which is required for the propulsion of the train depends on
  - a) The adhesive weight
  - b) Friction between the driving wheel and the track
  - c) Both a) and b)
  - d) Neither a) nor b)
- 4) A trolley bus runs on tyres driven by
  - a) A DC compound motor
- b) A DC series motor
- c) An AC series motor
- d) An AC shunt motor
- 5) The function of duct in air conditioning unit is

  - a) air cooling b) air cleaning
    - c) air drying
- d) air distribution

14



| 6)  | a) 754.2 lumens c) 60 lumens                                                                                                                                                                 | b) 0.001326 lumens d) None of these                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 7)  | For intermittent work which of the followal Core less furnace c) Either of above                                                                                                             | owing furnace is suitable ? b) Indirect arc furnace d) Neither of above |
| 8)  | Induction heating takes place in a) Conducting but non magnetic mat b) Conducting materials may be mag c) Insulating materials d) Conducting and magnetic materia                            | netic or nonmagnetic materials                                          |
| 9)  | Subcooling is a process of cooling the refrigeration system before a) Evaporation b) Throttling                                                                                              | e refrigerant in vapour compression c) Condensation d) Compression      |
| 10) | Which of the following statement is coa) Light consists of electromagnetic values b) Light consists of ultraviolet waves c) Light consists of infrared waves d) Light consists of gamma rays |                                                                         |
| 11) | The main application of indirect arc fu<br>a) Steel<br>c) Non-ferrous metals                                                                                                                 | urnace is to melt<br>b) Iron<br>d) None of the above                    |
| 12) | Candela is the unit of a) Wavelength c) Luminous flux                                                                                                                                        | <ul><li>b) Luminous intensity</li><li>d) Frequency</li></ul>            |
| 13) | The efficiency of diesel locomotives is a) 20-25 percent c) 50-55 percent                                                                                                                    | s nearly<br>b) 35-40 percent<br>d) 70-75 percent                        |
| 14) | Which locomotive has the highest open a) Diesel c) Steam                                                                                                                                     | erational availability ? b) Electric d) All have same availability      |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL ENERGY UTILIZATION AND TRACTION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Make suitable assumption if necessary.

#### SECTION - I

### 2. Solve any three:

 $(3 \times 4 = 12)$ 

- 1) State and explain illumination.
- 2) With a neat sketch explain Ajax-Wyatt furnace.
- 3) Explain refrigeration cycle with neat diagram.
- 4) What is air conditioning? Discuss the role of air conditioning in our day to day life.
- 5) A 250V lamp has a total flux of 3000 lumens and takes a current of 0.8 A. Calculate lumens/watt and MSCP/Watt.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) a) Discuss the general requirements of good lighting scheme.
  - b) What are the factors affecting in designing of lighting scheme?
- 2) What do you understand by refrigerator? Draw and explain electrical circuits used in a refrigerator.
- 3) A lamp of 500 Watts having MSCP of 1000 is suspended 2.7 m above the working plane.

#### Calculate:

- i) Illumination directly below the lamp at the working plane.
- ii) Lamp efficiency.
- iii) Illumination at a point 2.5 m away on the horizontal plane from vertically below the lamp.



4. Write short notes on the following (any three):

 $(3 \times 4 = 12)$ 

- 1) Design features of traction motor.
- 2) Current collection system for electric traction.
- 3) Quadrilateral speed-time curve.
- 4) Speed control of traction motors.
- 5) Discharging operation of battery in EV.

### 5. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) What do you mean by hybrid vehicles? What are motors to be selected for interconnection with hybrid vehicles?
- 2) What is specific energy consumption of a train? Discuss the various factors affecting it.
- 3) An electric train has quadrilateral speed time curve as follows:
  - i) Uniform acceleration from rest at 2 kmphps for 30 secs.
  - ii) Coasting for 50 secs.
  - iii) Uniform braking to rest for 20 secs.

If train is moving a uniform up gradient of 10/1000, train resistance is 40 N/tone, rotational inertia effect 10% of dead weight and duration of stop 30 secs, find the scheduled speed.

|--|--|

operating value. a) 1 to 2

### **SLR-TC - 509**

| Seat |     |   |
|------|-----|---|
| No.  | Set | P |

### B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018

|      | \    | ELECTRICAL I                           | _                                   | I, TESTING A                      | ND MAINTENANCE                                                                                                  |         |
|------|------|----------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|
| •    |      | d Date : Saturday<br>2.30 p.m. to 5.30 | •                                   |                                   | Max. Marks                                                                                                      | : 70    |
|      |      | ,                                      | minutes in Ansone mark. Answer MCQ/ | ver Book Page I<br>Objective type | nould be solved in first 3<br>No. 3. Each question carried<br>questions on Page No.<br>Q.P. Set (P/Q/R/S) on To | es<br>3 |
|      |      |                                        | MCQ/Objecti                         | e Type Questi                     | ons                                                                                                             |         |
| Dura | atio | n : 30 Minutes                         |                                     |                                   | Marks                                                                                                           | : 14    |
| 1.   | Ch   | oose the correct a                     | answer:                             |                                   | (1×14=                                                                                                          | =14)    |
|      | 1)   | In fire extinguish                     | er we use                           |                                   |                                                                                                                 |         |
|      |      | a) CO <sub>2</sub>                     | b) $SO_2$                           | c) O <sub>2</sub>                 | d) $H_2O$                                                                                                       |         |
|      | 2)   | The torque of inc                      | duction motor is                    |                                   |                                                                                                                 |         |
|      |      |                                        |                                     |                                   | proportional to V <sup>2</sup>                                                                                  |         |
|      |      | c) Inversely prop                      | portional to V                      | d) Inversel                       | y proportional to V <sup>2</sup>                                                                                |         |
|      | 3)   | Brake test is                          | r                                   | ethod of testing                  | machine.                                                                                                        |         |
|      |      | a) Regenerative                        | b) Direct                           | c) Indirect                       | d) All of these                                                                                                 |         |
|      | 4)   | Short circuit test                     | on transformer                      | s performed to                    | determine                                                                                                       |         |
|      |      | a) Copper losse                        | S                                   | b) Iron loss                      |                                                                                                                 |         |
|      |      | c) Both a and b                        |                                     | d) None of                        | the above                                                                                                       |         |
|      | 5)   | `                                      | -                                   |                                   | duction motor, the                                                                                              |         |
|      |      | duration of exces                      |                                     |                                   | d) 0.F.aaa                                                                                                      |         |
|      |      | a) 2 sec                               | b) 5 Sec                            | c) a sec                          | d) 9.5 sec                                                                                                      |         |

6) The impulse test level is determined by operating level is \_\_\_\_\_ times normal

b) 2 to 2.5 c) 4 to 5 d) 7 to 9

| 7)  | As per I.E.C. for 66                   | 6 kv system voltag  | e, t | he impulse with  | sta   | nd voltage is    |
|-----|----------------------------------------|---------------------|------|------------------|-------|------------------|
|     | a) 100 kv                              | b) 150 kv           | c)   | 220 kv           | d)    | 325 kv           |
| 8)  | In Insulation resist                   | tance test of 132   | kv   | transformer, m   | ninir | mum insulation   |
|     | resistance is                          |                     |      |                  |       |                  |
|     | a) 250 M $\Omega$                      | b) 500 M $\Omega$   | c)   | 750 MΩ           | d)    | 1000 MΩ          |
| 9)  | For induced type to system voltage + 1 |                     | st v | oltage is equal  | to .  | highest          |
|     | a) twice                               | b) thrice           | c)   | four times       | d)    | None of these    |
| 10) | In moisture proofne                    | ess test, humidity  | is n | naintained to    |       |                  |
|     | a) 70%                                 | b) 80%              | c)   | 90%              | d)    | 110%             |
| 11) | In dielectric absor                    | rption test by usi  | ng   | megger, insula   | atio  | n resistance is  |
|     | measured at regula                     | ar interval of      | _ a  | nd recorded.     |       |                  |
|     | a) 24 hour                             | b) 12 hour          | c)   | 30 min           | d)    | 5 min            |
| 12) | Polarization index                     | is greater than     |      | for class A insu | ulat  | ion.             |
|     | a) 1                                   | b) 1.5              | c)   | 2                | d)    | 2.5              |
| 13) | While Installing ele                   | ectrical machines,  | che  | ecking of founda | tior  | n for correct    |
|     | level is to be carrie                  | ed out then, we use | Э    |                  |       |                  |
|     | a) Spirit level                        |                     | b)   | Dial indicator   |       |                  |
|     | c) Bearing puller                      |                     | d)   | Filler gauge     |       |                  |
| 14) | Thermal relays are                     | used for the prot   | ect  | ion of motors a  | gair  | nst over-current |
|     | owing to                               |                     |      |                  |       |                  |
|     | a) Short circuit                       |                     | •    | Heavy loads      |       |                  |
|     | c) Earth fault                         |                     | d)   | All the above    |       |                  |
|     |                                        |                     |      |                  |       |                  |



| Seat |  |
|------|--|
| No.  |  |

### B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL INSTALLATION, TESTING AND MAINTENANCE

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

### SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) What are the objectives of testing of electrical machines?
- 2) What precautions should be taken to avoid the electric accidents?
- 3) Explain the workmen's safety devices.
- 4) What precautions to be taken to avoid the fire due to electric reason?
- 5) Explain the voltage ratio test of transformer.
- 6) Explain routine and breakdown maintenance of transformer.

### 3. Solve any two:

 $(2 \times 6 = 12)$ 

- 1) Explain various methods of artificial respiration.
- 2) Explain the back to back test for transformer.
- 3) Explain the term efficiency and regulation of transformer.

### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the type test and routine test of induction motor.
- 2) Explain the various tests of transformer oil.



- 3) What are the effects of mis-alignment in the installation of synchronous machine?
- 4) Explain the retardation test of synchronous machine.
- 5) Explain the commissioning test for induction motor.
- 6) Explain the maintenance schedule of breaker.

5. Solve any two: (2×6=12)

- 1) What are the requirements of foundations for installing induction motors?
- 2) Explain the commissioning tests of synchronous machine.
- 3) Explain the factory test and site test for induction motor.

**SLR-TC - 509** 

| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |

# B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL INSTALLATION, TESTING AND MAINTENANCE

| Day and Date : Saturday, 5-5-2 | 018 | Max. Marks: 70 |
|--------------------------------|-----|----------------|
| -                              |     |                |

Time: 2.30 p.m. to 5.30 p.m.

c) Bearing puller

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

d) Filler gauge

|         | ı                                                   | MCQ/Objective T    | ype Questions       |                    |
|---------|-----------------------------------------------------|--------------------|---------------------|--------------------|
| Duratio | n : 30 Minutes                                      |                    |                     | Marks: 14          |
| 1. Ch   | oose the correct an                                 | swer:              |                     | (1×14=14)          |
| 1)      | In Insulation resistance is                         | tance test of 132  | kv transformer, m   | ninimum insulation |
|         | a) 250 M $\Omega$                                   | b) 500 M $\Omega$  | c) 750 M $\Omega$   | d) 1000 M $\Omega$ |
| 2)      | For induced type to system voltage + 1              |                    | st voltage is equal | to highest         |
|         | a) twice                                            | b) thrice          | c) four times       | d) None of these   |
| 3)      | In moisture proofne                                 | ess test, humidity | is maintained to    |                    |
|         | a) 70%                                              | b) 80%             | c) 90%              | d) 110%            |
| 4)      | In dielectric absormeasured at regula<br>a) 24 hour | ar interval of     | _ and recorded.     |                    |
| 5)      | Polarization index                                  | is greater than    | for class A insu    | ulation.           |
|         | a) 1                                                | b) 1.5             | c) 2                | d) 2.5             |
| 6)      | While Installing elelevel is to be carried          |                    | Э                   | tion for correct   |
|         | a) Spirit level                                     |                    | b) Dial indicator   |                    |

| 7)  | Thermal relays are owing to | used for the prote  | ection of motors a                    | gainst over-current        |
|-----|-----------------------------|---------------------|---------------------------------------|----------------------------|
|     | a) Short circuit            |                     | b) Heavy loads                        |                            |
|     | c) Earth fault              |                     | d) All the above                      |                            |
| 8)  | In fire extinguisher        | we use              |                                       |                            |
|     | a) CO <sub>2</sub>          |                     | c) O <sub>2</sub>                     | d) H <sub>2</sub> O        |
| 9)  | The torque of induc         | ction motor is      |                                       |                            |
|     | a) Directly proporti        | onal to V           | b) Directly propor                    | tional to $V^2$            |
|     | c) Inversely propor         | rtional to V        | d) Inversely propo                    | ortional to V <sup>2</sup> |
| 10) | Brake test is               | metho               | od of testing mach                    | ine.                       |
|     | a) Regenerative             | b) Direct           | c) Indirect                           | d) All of these            |
| 11) | Short circuit test or       | n transformer is pe | erformed to determ                    | ine                        |
|     | a) Copper losses            |                     | b) Iron losses                        |                            |
|     | c) Both a and b             |                     | d) None of the ab                     | ove                        |
| 12) | While conducting n          | nomentary overloa   | ad test on inductior                  | n motor, the               |
|     | duration of excess          | load 50 H.P. moto   | or is                                 |                            |
|     | a) 2 sec                    | b) 5 sec            | c) 8 sec                              | d) 9.5 sec                 |
| 13) | The impulse test lev        | el is determined by | operating level is _                  | times normal               |
|     | operating value.            |                     |                                       |                            |
|     | a) 1 to 2                   | b) 2 to 2.5         | c) 4 to 5                             | d) 7 to 9                  |
| 14) | As per I.E.C. for 66        | -                   | · · · · · · · · · · · · · · · · · · · | stand voltage is           |
|     | a) 100 kv                   | b) 150 kv           | c) 220 kv                             | d) 325 kv                  |
|     |                             |                     |                                       |                            |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL INSTALLATION, TESTING AND MAINTENANCE

Day and Date: Saturday, 5-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) What are the objectives of testing of electrical machines?
- 2) What precautions should be taken to avoid the electric accidents?
- 3) Explain the workmen's safety devices.
- 4) What precautions to be taken to avoid the fire due to electric reason?
- 5) Explain the voltage ratio test of transformer.
- 6) Explain routine and breakdown maintenance of transformer.

### 3. Solve any two:

 $(2 \times 6 = 12)$ 

- 1) Explain various methods of artificial respiration.
- 2) Explain the back to back test for transformer.
- 3) Explain the term efficiency and regulation of transformer.

#### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the type test and routine test of induction motor.
- 2) Explain the various tests of transformer oil.



- 3) What are the effects of mis-alignment in the installation of synchronous machine?
- 4) Explain the retardation test of synchronous machine.
- 5) Explain the commissioning test for induction motor.
- 6) Explain the maintenance schedule of breaker.

5. Solve any two: (2×6=12)

- 1) What are the requirements of foundations for installing induction motors?
- 2) Explain the commissioning tests of synchronous machine.
- 3) Explain the factory test and site test for induction motor.

**SLR-TC - 509** 

| Seat |     |   |
|------|-----|---|
| No.  | Set | K |

## B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018 **ELECTRICAL INSTALLATION, TESTING AND MAINTENANCE**

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

|         |                                        | mod/objective i      | ypo daoonono           |             |           |
|---------|----------------------------------------|----------------------|------------------------|-------------|-----------|
| Duratio | n : 30 Minutes                         |                      |                        |             | Marks: 14 |
| 1. Ch   | oose the correct an                    | swer:                |                        |             | (1×14=14) |
| 1)      | While conducting r duration of excess  | load 50 H.P. moto    | or is                  |             |           |
|         | a) 2 sec                               | b) 5 sec             | c) 8 sec               | d) 9.5 sec  |           |
| 2)      | The impulse test lev operating value.  | vel is determined by | y operating level is _ | times       | normal    |
|         | a) 1 to 2                              | b) 2 to 2.5          | c) 4 to 5              | d) 7 to 9   |           |
| 3)      | As per I.E.C. for 66                   | 6 kv system voltag   | e, the impulse with    | stand volta | ge is     |
|         | a) 100 kv                              | b) 150 kv            | c) 220 kv              | d) 325 kv   |           |
| 4)      | In Insulation resistence is            | tance test of 132    | kv transformer, m      | ninimum ins | sulation  |
|         | a) 250 M $\Omega$                      | b) 500 M $\Omega$    | c) 750 M $\Omega$      | d) 1000 M   | Ω         |
| 5)      | For induced type to system voltage + 1 |                      | st voltage is equal    | to          | highest   |
|         | a) twice                               | b) thrice            | c) four times          | d) None of  | f these   |
| 6)      | In moisture proofne                    | ess test, humidity   | is maintained to       |             |           |
|         | a) 70%                                 | b) 80%               | c) 90%                 | d) 110%     |           |

| 7)  | In dielectric absorption test by using megger, insulation resistance is measured at regular interval of and recorded. |                     |                         |                  |                            |
|-----|-----------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|------------------|----------------------------|
|     | a) 24 hour                                                                                                            | b) 12 hour          | c)                      | 30 min           | d) 5 min                   |
| 8)  | Polarization index                                                                                                    | is greater than     | for class A insulation. |                  |                            |
|     | a) 1                                                                                                                  | b) 1.5              | c)                      | 2                | d) 2.5                     |
| 9)  | While Installing elelevel is to be carried                                                                            |                     |                         | ecking of founda | tion for correct           |
|     | a) Spirit level                                                                                                       |                     | b)                      | Dial indicator   |                            |
|     | c) Bearing puller                                                                                                     |                     | d)                      | Filler gauge     |                            |
| 10) | Thermal relays are owing to                                                                                           | used for the prot   | ect                     | ion of motors a  | gainst over-current        |
|     | a) Short circuit                                                                                                      |                     | b)                      | Heavy loads      |                            |
|     | c) Earth fault                                                                                                        |                     | d)                      | All the above    |                            |
| 11) | In fire extinguisher                                                                                                  | we use              |                         |                  |                            |
|     | a) CO <sub>2</sub>                                                                                                    | b) $SO_2$           | c)                      | $O_2$            | d) H <sub>2</sub> O        |
| 12) | The torque of indu                                                                                                    | ction motor is      |                         |                  |                            |
|     | a) Directly proport                                                                                                   | ional to V          | b)                      | Directly propor  | tional to V <sup>2</sup>   |
|     | c) Inversely propo                                                                                                    | rtional to V        | d)                      | Inversely propo  | ortional to V <sup>2</sup> |
| 13) | Brake test is                                                                                                         | meth                | od                      | of testing machi | ine.                       |
|     | a) Regenerative                                                                                                       | b) Direct           | c)                      | Indirect         | d) All of these            |
| 14) | Short circuit test or                                                                                                 | n transformer is pe | erfo                    | rmed to determ   | ine                        |
|     | a) Copper losses                                                                                                      |                     | b)                      | Iron losses      |                            |
|     | c) Both a and b                                                                                                       |                     | d)                      | None of the ab   | ove                        |
|     |                                                                                                                       |                     |                         |                  |                            |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL INSTALLATION, TESTING AND MAINTENANCE

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) What are the objectives of testing of electrical machines?
- 2) What precautions should be taken to avoid the electric accidents?
- 3) Explain the workmen's safety devices.
- 4) What precautions to be taken to avoid the fire due to electric reason?
- 5) Explain the voltage ratio test of transformer.
- 6) Explain routine and breakdown maintenance of transformer.

### 3. Solve any two:

 $(2 \times 6 = 12)$ 

- 1) Explain various methods of artificial respiration.
- 2) Explain the back to back test for transformer.
- 3) Explain the term efficiency and regulation of transformer.

#### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the type test and routine test of induction motor.
- 2) Explain the various tests of transformer oil.



- 3) What are the effects of mis-alignment in the installation of synchronous machine?
- 4) Explain the retardation test of synchronous machine.
- 5) Explain the commissioning test for induction motor.
- 6) Explain the maintenance schedule of breaker.

5. Solve any two: (2×6=12)

- 1) What are the requirements of foundations for installing induction motors?
- 2) Explain the commissioning tests of synchronous machine.
- 3) Explain the factory test and site test for induction motor.

**SLR-TC - 509** 

P.T.O.

| Seat |     |   |
|------|-----|---|
| No.  | Set | S |

# B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL INSTALLATION, TESTING AND MAINTENANCE

| Day          | y and Date : | Saturday, 5-5-2018 | Max. Marks: 70 |
|--------------|--------------|--------------------|----------------|
| <del>-</del> | 0.00         |                    |                |

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                            | MCQ/Objective T     | ype Questions       |                     |
|---------|--------------------------------------------|---------------------|---------------------|---------------------|
| Duratio | on: 30 Minutes                             |                     |                     | Marks: 14           |
| 1. Ch   | oose the correct an                        | swer:               |                     | (1×14=14)           |
| 1)      | In moisture proofn                         | ess test, humidity  | is maintained to    |                     |
|         | a) 70%                                     | b) 80%              | c) 90%              | d) 110%             |
| 2)      | In dielectric abso<br>measured at regul    |                     |                     | ation resistance is |
|         | a) 24 hour                                 | b) 12 hour          | c) 30 min           | d) 5 min            |
| 3)      | Polarization index                         | is greater than     | for class A ins     | ulation.            |
|         | a) 1                                       | b) 1.5              | c) 2                | d) 2.5              |
| 4)      | While Installing elelevel is to be carried |                     | •                   | ation for correct   |
|         | a) Spirit level                            |                     | b) Dial indicator   |                     |
|         | c) Bearing puller                          |                     | d) Filler gauge     |                     |
| 5)      | Thermal relays are owing to                | e used for the prot | tection of motors a | gainst over-current |
|         | a) Short circuit                           |                     | b) Heavy loads      |                     |
|         | c) Earth fault                             |                     | d) All the above    |                     |
| 6)      | In fire extinguisher                       | we use              |                     |                     |
|         | a) CO                                      | b) SO.              | c) O                | d) H.O              |

| 7)  | The torque of indu    | ction motor is       |                                   |       |                        |
|-----|-----------------------|----------------------|-----------------------------------|-------|------------------------|
|     | a) Directly proport   | ional to V           | b) Directly propor                | tior  | nal to V <sup>2</sup>  |
|     | c) Inversely propo    | rtional to V         | d) Inversely propo                | ortic | onal to V <sup>2</sup> |
| 8)  | Brake test is         | meth                 | od of testing mach                | ine.  |                        |
|     | a) Regenerative       | b) Direct            | c) Indirect                       | d)    | All of these           |
| 9)  | Short circuit test or | n transformer is pe  | erformed to determ                | ine   |                        |
|     | a) Copper losses      |                      | b) Iron losses                    |       |                        |
|     | c) Both a and b       |                      | d) None of the ab                 | ove   | 9                      |
| 10) | While conducting r    | •                    |                                   | n m   | otor, the              |
|     | duration of excess    |                      |                                   |       |                        |
|     | a) 2 sec              | b) 5 sec             | c) 8 sec                          | d)    | 9.5 sec                |
| 11) | The impulse test lev  | vel is determined by | y operating level is <sub>-</sub> |       | times normal           |
|     | operating value.      |                      |                                   |       |                        |
|     | a) 1 to 2             | ·                    | •                                 | ,     |                        |
| 12) | As per I.E.C. for 66  | •                    | •                                 |       | •                      |
|     | a) 100 kv             | b) 150 kv            | c) 220 kv                         | d)    | 325 kv                 |
| 13) | In Insulation resis   | tance test of 132    | kv transformer, n                 | nini  | mum insulation         |
|     | resistance is         | 1) 500 140           | ) 750 MO                          | 15    | 4000 140               |
|     | a) 250 MΩ             | •                    | •                                 | -     |                        |
| 14) | For induced type to   |                      | est voltage is equal              | to    | highest                |
|     | system voltage + 1    |                      | ·                                 | -1\   | Ni fill                |
|     | a) twice              | b) thrice            | c) four times                     | a)    | ivone of these         |
|     |                       |                      |                                   |       |                        |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical & Electronics Engg.) (Part – I) (CGPA) Examination, 2018 ELECTRICAL INSTALLATION, TESTING AND MAINTENANCE

Day and Date: Saturday, 5-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Solve any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) What are the objectives of testing of electrical machines?
- 2) What precautions should be taken to avoid the electric accidents?
- 3) Explain the workmen's safety devices.
- 4) What precautions to be taken to avoid the fire due to electric reason?
- 5) Explain the voltage ratio test of transformer.
- 6) Explain routine and breakdown maintenance of transformer.

#### 3. Solve any two:

 $(2 \times 6 = 12)$ 

- 1) Explain various methods of artificial respiration.
- 2) Explain the back to back test for transformer.
- 3) Explain the term efficiency and regulation of transformer.

#### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the type test and routine test of induction motor.
- 2) Explain the various tests of transformer oil.



- 3) What are the effects of mis-alignment in the installation of synchronous machine?
- 4) Explain the retardation test of synchronous machine.
- 5) Explain the commissioning test for induction motor.
- 6) Explain the maintenance schedule of breaker.

5. Solve any two: (2×6=12)

- 1) What are the requirements of foundations for installing induction motors?
- 2) Explain the commissioning tests of synchronous machine.
- 3) Explain the factory test and site test for induction motor.



| Seat | 1 | Set | В |
|------|---|-----|---|
| No.  |   | Jet |   |

|                                                                                        | SWITCHGEAF                                                                    | R AND PROTECTION                                                                                                                                                                    |                            |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Day and Date: Mone<br>Time: 2.30 p.m. to 5                                             | -                                                                             | -                                                                                                                                                                                   | Total Marks : 70           |
| Instructions :                                                                         | <ul><li>3) Q. No. 1 is comin Answer Boomark.</li><li>4) Answer MCQ.</li></ul> | are compulsory.  Alle data whenever necessary.  Apple pulsory. It should be solved in file  Block Page No. 3. Each question  Block Pobjective type questions of  Bright graph (P/C) | n carries one n Page No. 3 |
| Duration : 30 Minute                                                                   | -                                                                             | ive Type Questions                                                                                                                                                                  | Marks : 14                 |
| 1. Choose the corr                                                                     | ect answer :                                                                  |                                                                                                                                                                                     | (1×14=14)                  |
| <ol> <li>Differential re<br/>a) Over curr</li> <li>Internal fa</li> </ol>              | ent                                                                           | rotect the equipment against. b) Reverse current d) None of the above                                                                                                               |                            |
| <ul><li>2) Surge divert protected.</li><li>a) close to</li><li>c) in the mid</li></ul> |                                                                               | b) far away from d) none of the above                                                                                                                                               | ratus to be                |
| 3) The IDMT re<br>transformer a<br>a) Heavy loa<br>c) External s                       | elays are used for against                                                    | over current and earth fault p b) Internal short circuits d) All of the above                                                                                                       | rotection of               |

d) Both inductance and capacitance system only5) The current rating of fuse wire is 5 A. The fusing current will be

a) Type of circuit breaker

b) Inductance of the system only

c) The capacitance of the system only

a) 5 A b) 2.5 A c) 1 A d) more than 5 A

P.T.O.

d) None of the above



|     | 3 310                                               | -2-     | 1 18811818 11811 88118 11811 88118 1181 88118 1181 |
|-----|-----------------------------------------------------|---------|----------------------------------------------------|
| 6)  | The fusing factor is                                |         |                                                    |
|     | a) Always one                                       | •       | Always more than one                               |
|     | c) Always less than one                             | d)      | None of above                                      |
| 7)  | A fuse should have                                  |         |                                                    |
|     | a) Low melting point                                | -       | High conductivity                                  |
|     | c) Low cost                                         | d)      | All above                                          |
| 8)  | The current chopping mainly occur                   |         |                                                    |
|     | a) Air blast circuit breaker                        | ,       | Oil circuit breaker                                |
|     | c) SF6 circuit breaker                              | d)      | Vacuum circuit breaker                             |
| 9)  | In low oil circuit breaker, the oil pe              | erform  | s the function of                                  |
|     | a) only insulation                                  |         |                                                    |
|     | b) arc extinction only                              | :       |                                                    |
|     | c) both insulation and arc extinct                  | IOH     |                                                    |
| 10) | d) none of the above                                |         |                                                    |
| 10) | Capacitive current breaking result a) Short circuit |         | Open circuit                                       |
|     | c) Voltage surges                                   | ,       | None of the above                                  |
| 11\ | Which statement is correct?                         | u)      | TVOTE OF THE ABOVE                                 |
| 11) | a) SF6 gas is non corrosive                         |         |                                                    |
|     | b) SF6 gas has high dielectric str                  | enath   |                                                    |
|     | c) SF6 gas is non toxic                             | -119    |                                                    |
|     | d) All above                                        |         |                                                    |
| 12) | Burden of a protective relay is the                 | powe    | r                                                  |
|     | a) Required to operate the circuit                  | break   | er                                                 |
|     | b) Absorbed by the circuit of                       |         |                                                    |
|     | c) Developed by the relay circuit                   |         |                                                    |
|     | d) None of the above                                |         |                                                    |
| 13) | Directional relays are based on flo                 |         |                                                    |
|     | a) Power b) Current                                 | c)      | Voltage wave d) All of the above                   |
| 14) | _                                                   | t detec | t abnormal conditions in electrical                |
|     | circuits by measuring                               |         |                                                    |
|     | a) Current during abnormal cond                     |         |                                                    |
|     | b) Voltage during abnormal cond                     |         | local diffor during a series less                  |
|     | •                                                   | ınınıes | which differ during normal and                     |
|     | abnormal conditions                                 |         |                                                    |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Assume suitable data whenever necessary.

#### SECTION - I

### 2. Solve any three of the following:

 $(3 \times 4 = 12)$ 

- 1) Explain the theories of arc extinction.
- 2) Explain the selection criterion of a fuse for induction motor protection.
- 3) Explain working principle of vacuum circuit breaker.
- 4) Describe the types of isolators.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Derive an expression for restriking voltage and RRRV.
- 2) Explain direct testing of circuit breaker with diagram.
- 3) Explain making and breaking capacity of circuit breaker.

#### SECTION - II

## 4. Solve any three:

 $(4 \times 3 = 12)$ 

- Explain the meaning of percentage differential protection. Why is it necessary to provide bias setting?
- 2) Explain the static definite time over current relay with block diagram.
- 3) What is the difference between MHO and OFFSET MHO?
- 4) Explain the advantages and disadvantages of microprocessor based relays.

## 5. Attempt any two:

 $(8 \times 2 = 16)$ 

- 1) Describe Metal Oxide Surge Arrester (MOA) with neat diagram.
- 2) Derive mathematical expression for distance relay.
- 3) Describe microprocessor based reactance relay with schematic block diagram of interface.



| Seat |  |
|------|--|
| No.  |  |

Set



# B.E. (Electrical and Electronics) (Part – I) (CGPA) Examination, 2018 SWITCHGEAR AND PROTECTION

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume suitable data whenever necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) The current chopping mainly occurs in
  - a) Air blast circuit breaker
- b) Oil circuit breaker

c) SF6 circuit breaker

- d) Vacuum circuit breaker
- 2) In low oil circuit breaker, the oil performs the function of
  - a) only insulation

- b) arc extinction only
- c) both insulation and arc extinction d) none of the above
- 3) Capacitive current breaking results in
  - a) Short circuit

b) Open circuit

c) Voltage surges

- d) None of the above
- 4) Which statement is correct?
  - a) SF6 gas is non corrosive
  - b) SF6 gas has high dielectric strength
  - c) SF6 gas is non toxic
  - d) All above
- 5) Burden of a protective relay is the power
  - a) Required to operate the circuit breaker
  - b) Absorbed by the circuit of
  - c) Developed by the relay circuit
  - d) None of the above

| 6)  | Directional relays are based on flow    | of                                      |
|-----|-----------------------------------------|-----------------------------------------|
|     | a) Power b) Current                     | c) Voltage wave d) All of the above     |
| 7)  | Protective relays are devices that de   | etect abnormal conditions in electrical |
|     | circuits by measuring                   |                                         |
|     | a) Current during abnormal condition    |                                         |
|     | b) Voltage during abnormal condition    |                                         |
|     | abnormal conditions                     | ties which differ during normal and     |
|     | d) None of the above                    |                                         |
| 8)  | Differential relays are used to protect | t the equipment against.                |
|     | a) Over current                         | b) Reverse current                      |
|     | c) Internal fault                       | d) None of the above                    |
| 9)  | Surge diverter should be located a      | t the apparatus to be                   |
|     | protected.                              |                                         |
|     | a) close to                             | b) far away from                        |
|     | c) in the middle of                     | d) none of the above                    |
| 10) |                                         | current and earth fault protection of   |
|     | transformer against                     |                                         |
|     | a) Heavy load                           | b) Internal short circuits              |
|     | c) External short circuits              | •                                       |
| 11) | The rate of rise of restriking voltage  | depends on                              |
|     | a) Type of circuit breaker              |                                         |
|     | b) Inductance of the system only        |                                         |
|     | c) The capacitance of the system or     |                                         |
|     | d) Both inductance and capacitance      |                                         |
| 12) | The current rating of fuse wire is 5 A  | _                                       |
|     | a) 5 A b) 2.5 A                         | c) 1 A d) more than 5 A                 |
| 13) | The fusing factor is                    |                                         |
|     | a) Always one                           | b) Always more than one                 |
|     | c) Always less than one                 | d) None of above                        |
| 14) | A fuse should have                      |                                         |
|     | a) Low melting point                    | b) High conductivity                    |
|     | c) Low cost                             | d) All above                            |
|     |                                         |                                         |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Assume suitable data whenever necessary.

#### SECTION - I

### 2. Solve any three of the following:

 $(3 \times 4 = 12)$ 

- 1) Explain the theories of arc extinction.
- 2) Explain the selection criterion of a fuse for induction motor protection.
- 3) Explain working principle of vacuum circuit breaker.
- 4) Describe the types of isolators.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Derive an expression for restriking voltage and RRRV.
- 2) Explain direct testing of circuit breaker with diagram.
- 3) Explain making and breaking capacity of circuit breaker.

#### SECTION - II

## 4. Solve any three:

 $(4 \times 3 = 12)$ 

- 1) Explain the meaning of percentage differential protection. Why is it necessary to provide bias setting?
- 2) Explain the static definite time over current relay with block diagram.
- 3) What is the difference between MHO and OFFSET MHO?
- 4) Explain the advantages and disadvantages of microprocessor based relays.

## 5. Attempt any two:

 $(8 \times 2 = 16)$ 

- 1) Describe Metal Oxide Surge Arrester (MOA) with neat diagram.
- 2) Derive mathematical expression for distance relay.
- 3) Describe microprocessor based reactance relay with schematic block diagram of interface.



| Seat<br>No. | Set | R |
|-------------|-----|---|
|             |     |   |

Day and Date : Monday, 7-5-2018 Total Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume suitable data whenever necessary.
- 3) Q. No. 1 is **compulsory**. It should be solved in **first 30 minutes** in Answer Book Page No. 3. **Each** question carries **one** mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes

1. Choose the correct answer:

1) The current rating of fuse wire is 5 A. The fusing current will be

- a) 5 A b) 2.5 A c) 1 A d) more than 5 A
- 2) The fusing factor is
  - a) Always one b) Always more than one
  - c) Always less than one d) None of above
- 3) A fuse should have
  - a) Low melting point b) High conductivity
  - c) Low cost d) All above
- 4) The current chopping mainly occurs in
  - a) Air blast circuit breaker b) Oil circuit breaker
  - c) SF6 circuit breaker d) Vacuum circuit breaker
- 5) In low oil circuit breaker, the oil performs the function of
  - a) only insulation
  - b) arc extinction only
  - c) both insulation and arc extinction
  - d) none of the above
- 6) Capacitive current breaking results in
  - a) Short circuit b) Open circuit
  - c) Voltage surges d) None of the above

| 7)  | Which statement is correct?                                                                         |      |                |                         |
|-----|-----------------------------------------------------------------------------------------------------|------|----------------|-------------------------|
|     | a) SF6 gas is non corrosive                                                                         |      |                |                         |
|     | b) SF6 gas is non toxic                                                                             | gtn  |                |                         |
|     | <ul><li>c) SF6 gas is non toxic</li><li>d) All above</li></ul>                                      |      |                |                         |
| 0/  | Burden of a protective relay is the po                                                              |      | r              |                         |
| 0)  | a) Required to operate the circuit broad                                                            |      |                |                         |
|     | b) Absorbed by the circuit of                                                                       | can  |                |                         |
|     | c) Developed by the relay circuit                                                                   |      |                |                         |
|     | d) None of the above                                                                                |      |                |                         |
| 9)  | Directional relays are based on flow                                                                | of   |                |                         |
|     | a) Power b) Current                                                                                 | c)   | Voltage wav    | e d) All of the above   |
| 10) | Protective relays are devices that de                                                               | etec | t abnormal c   | onditions in electrical |
|     | circuits by measuring                                                                               |      |                |                         |
|     | <ul><li>a) Current during abnormal condition</li><li>b) Voltage during abnormal condition</li></ul> |      |                |                         |
|     | c) Constantly the electrical quantit                                                                |      | which diffe    | r during normal and     |
|     | abnormal conditions                                                                                 |      | winon amo      | r danning morman ama    |
|     | d) None of the above                                                                                |      |                |                         |
| 11) | Differential relays are used to protect                                                             | t th | e equipment    | against.                |
|     | a) Over current                                                                                     |      | Reverse cur    |                         |
|     | c) Internal fault                                                                                   | d)   | None of the    | above                   |
| 12) | Surge diverter should be located a protected.                                                       | t    |                | the apparatus to be     |
|     | a) close to                                                                                         | ,    | far away from  |                         |
|     | c) in the middle of                                                                                 | ,    | none of the    |                         |
| 13) | The IDMT relays are used for over transformer against                                               | cu   | rrent and ear  | rth fault protection of |
|     | a) Heavy load                                                                                       | ,    | Internal shor  |                         |
|     | c) External short circuits                                                                          | ,    | All of the abo | ove                     |
| 14) | The rate of rise of restriking voltage of                                                           | dep  | ends on        |                         |
|     | a) Type of circuit breaker                                                                          |      |                |                         |
|     | <ul><li>b) Inductance of the system only</li><li>c) The capacitance of the system or</li></ul>      | sky  |                |                         |
|     | d) Both inductance and capacitance                                                                  | -    | stem only      |                         |
|     | a, zon madotanoo ana oapaolanoo                                                                     | Οy.  | otorii oriiy   |                         |
|     |                                                                                                     |      |                |                         |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Assume suitable data whenever necessary.

#### SECTION - I

### 2. Solve any three of the following:

 $(3 \times 4 = 12)$ 

- 1) Explain the theories of arc extinction.
- 2) Explain the selection criterion of a fuse for induction motor protection.
- 3) Explain working principle of vacuum circuit breaker.
- 4) Describe the types of isolators.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Derive an expression for restriking voltage and RRRV.
- 2) Explain direct testing of circuit breaker with diagram.
- 3) Explain making and breaking capacity of circuit breaker.

#### SECTION - II

## 4. Solve any three:

 $(4 \times 3 = 12)$ 

- Explain the meaning of percentage differential protection. Why is it necessary to provide bias setting?
- 2) Explain the static definite time over current relay with block diagram.
- 3) What is the difference between MHO and OFFSET MHO?
- 4) Explain the advantages and disadvantages of microprocessor based relays.

## 5. Attempt any two:

 $(8 \times 2 = 16)$ 

- 1) Describe Metal Oxide Surge Arrester (MOA) with neat diagram.
- 2) Derive mathematical expression for distance relay.
- 3) Describe microprocessor based reactance relay with schematic block diagram of interface.



| Seat |  |
|------|--|
| No.  |  |

Set

S

# B.E. (Electrical and Electronics) (Part – I) (CGPA) Examination, 2018 SWITCHGEAR AND PROTECTION

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume suitable data whenever necessary.
- 3) Q. No. 1 is **compulsory**. It should be solved in **first 30 minutes** in Answer Book Page No. 3. **Each** question carries **one** mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) Capacitive current breaking results in
  - a) Short circuit

b) Open circuit

c) Voltage surges

- d) None of the above
- 2) Which statement is correct?
  - a) SF6 gas is non corrosive
  - b) SF6 gas has high dielectric strength
  - c) SF6 gas is non toxic
  - d) All above
- 3) Burden of a protective relay is the power
  - a) Required to operate the circuit breaker
  - b) Absorbed by the circuit of
  - c) Developed by the relay circuit
  - d) None of the above
- 4) Directional relays are based on flow of
  - a) Power
  - b) Current
  - c) Voltage wave
  - d) All of the above



| SLR-T | C – 510                                                                                                                                                                      | 2-       |                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------|
| 5)    | Protective relays are devices that of circuits by measuring a) Current during abnormal conditions to Constantly the electrical quantabnormal conditions d) None of the above | on<br>on |                                                                              |
| 6)    | Differential relays are used to prote <ul><li>a) Over current</li><li>c) Internal fault</li></ul>                                                                            | b)       | e equipment against.<br>Reverse current<br>None of the above                 |
| 7)    | Surge diverter should be located protected. a) close to c) in the middle of                                                                                                  | b)       | far away from none of the above                                              |
| 8)    | The IDMT relays are used for over<br>transformer against<br>a) Heavy load<br>c) External short circuits                                                                      | b)       | rrent and earth fault protection of Internal short circuits All of the above |
| 9)    | The rate of rise of restriking voltage a) Type of circuit breaker b) Inductance of the system only c) The capacitance of the system of d) Both inductance and capacitance    | only     |                                                                              |
| 10)   | The current rating of fuse wire is 5 a) 5 A b) 2.5 A                                                                                                                         |          | ne fusing current will be 1 A d) more than 5 A                               |
| 11)   | The fusing factor is a) Always one c) Always less than one                                                                                                                   |          | Always more than one<br>None of above                                        |
| 12)   | A fuse should have a) Low melting point c) Low cost                                                                                                                          | ,        | High conductivity All above                                                  |
| 13)   | The current chopping mainly occurs a) Air blast circuit breaker c) SF6 circuit breaker                                                                                       | b)       | Oil circuit breaker<br>Vacuum circuit breaker                                |
| 14)   | In low oil circuit breaker, the oil per a) only insulation b) arc extinction only c) both insulation and arc extinctio d) none of the above                                  |          | s the function of                                                            |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

2) Assume suitable data whenever necessary.

#### SECTION - I

### 2. Solve any three of the following:

 $(3 \times 4 = 12)$ 

- 1) Explain the theories of arc extinction.
- 2) Explain the selection criterion of a fuse for induction motor protection.
- 3) Explain working principle of vacuum circuit breaker.
- 4) Describe the types of isolators.

### 3. Solve any two:

 $(8 \times 2 = 16)$ 

- 1) Derive an expression for restriking voltage and RRRV.
- 2) Explain direct testing of circuit breaker with diagram.
- 3) Explain making and breaking capacity of circuit breaker.

#### SECTION - II

## 4. Solve any three:

 $(4 \times 3 = 12)$ 

- Explain the meaning of percentage differential protection. Why is it necessary to provide bias setting?
- 2) Explain the static definite time over current relay with block diagram.
- 3) What is the difference between MHO and OFFSET MHO?
- 4) Explain the advantages and disadvantages of microprocessor based relays.

## 5. Attempt any two:

 $(8 \times 2 = 16)$ 

- 1) Describe Metal Oxide Surge Arrester (MOA) with neat diagram.
- 2) Derive mathematical expression for distance relay.
- 3) Describe microprocessor based reactance relay with schematic block diagram of interface.

**SLR-TC - 512** 



| Seat | Cot | D |
|------|-----|---|
| No.  | Set |   |

# B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book on Page No. 3.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer: (1 mark each)

1) Heliostats used for exploiting solar energy are called

a) diffusers

b) ponds

c) reflecting mirrors

d) mantle

2) For solar thermal electric plants, preferable area is

a) mountain tops

b) hot arid zones

c) coastal areas

d) high rainfall zones

3) Photovoltaic solar energy conversion system makes use of

a) fuel cell

b) solar cell

c) solar pond

d) none of the above

4) The output of a solar cell is of the order of

a) 0.1 W

b) 0.5 W

c) 1 W

d) 5 W

5) A module is a

a) newly installed solar cell

b) series parallel arrangement of solar cells

c) a series of solar cells when not used for power generation

d) none of the above

| is the major disadvantage             | e of solar cells for power generation.                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) lack of availability               | b) large area requirement                                                                                                                                                                                                                                                                                                                                                                                        |
| c) variable power                     | d) high cost                                                                                                                                                                                                                                                                                                                                                                                                     |
| Local winds are created due to        |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a) differential heating of land and   | water                                                                                                                                                                                                                                                                                                                                                                                                            |
| b) differential heating of plains and | d mountains                                                                                                                                                                                                                                                                                                                                                                                                      |
| c) any of the above                   |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| d) none of the above                  |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| What kind of energy does a wind to    | urbine use ?                                                                                                                                                                                                                                                                                                                                                                                                     |
| a) kinetic energy                     | b) potential energy                                                                                                                                                                                                                                                                                                                                                                                              |
| c) chemical energy                    | d) thermal energy                                                                                                                                                                                                                                                                                                                                                                                                |
| Geothermal energy is                  |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a) a renewable energy resource        | b) alternative energy source                                                                                                                                                                                                                                                                                                                                                                                     |
| c) inexhaustible energy source        | d) any of the above                                                                                                                                                                                                                                                                                                                                                                                              |
| Geologists believe that below the     | earth's crust, the molten mass exists in                                                                                                                                                                                                                                                                                                                                                                         |
| the form of                           |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a) magma b) vent                      | c) hot cell d) liquation                                                                                                                                                                                                                                                                                                                                                                                         |
| Tidal energy mainly utilises          |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| , .                                   |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                                     | energy of water                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | la Vicina a cita a <b>f</b> florida                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | b) viscosity of fluids                                                                                                                                                                                                                                                                                                                                                                                           |
| •                                     | d) discharge of fluids                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | la) lugging yetigu                                                                                                                                                                                                                                                                                                                                                                                               |
| ,                                     | b) Incineration                                                                                                                                                                                                                                                                                                                                                                                                  |
| c) Aerobic digestion                  | d) Decomposting                                                                                                                                                                                                                                                                                                                                                                                                  |
| ,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hydrogen can be stored as a           | b) liquid                                                                                                                                                                                                                                                                                                                                                                                                        |
| ,                                     | <ul><li>b) liquid</li><li>d) all of the above</li></ul>                                                                                                                                                                                                                                                                                                                                                          |
|                                       | a) lack of availability c) variable power Local winds are created due to a) differential heating of land and of the body differential heating of plains and c) any of the above d) none of the above What kind of energy does a wind to a) kinetic energy c) chemical energy Geothermal energy is a) a renewable energy resource c) inexhaustible energy source Geologists believe that below the of the form of |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any 4 questions:

(4 marks each)

- 1) With neat sketch, explain working of solar cooker.
- 2) What are the non-conventional sources of energy and explain briefly?
- 3) Write short note on India's energy production and energy alternatives.
- 4) Write short note on solar thermal storage.
- 5) Explain:
  - i) Solar distillation
  - ii) Solar still.
- 6) Write short note on recent development in wind energy.

3. Attempt any 2 questions:

(6 marks each)

- 1) With the help of a neat sketch, describe any two solar air heaters.
- 2) With the help of a neat sketch, explain PV hybrid system.
- 3) Explain briefly with neat sketch about :
  - 1) Horizontal wind mills.
  - 2) Vertical wind mills.

## 

#### SECTION - II

#### 4. Attempt any 4 questions:

(4 marks each)

- 1) State and explain site selection criteria for biogas generation plant.
- 2) Write a short note on utilization of biogas.
- 3) Explain limitations and scope of tidal energy.
- 4) Explain with neat sketch, open cycle and closed cycle Ocean Thermal Electric Conversion system.
- 5) Discuss the various problems associated for storage and transportation of hydrogen gas.
- 6) What is geothermal energy? How can geothermal energy are utilized for electric power generation?

### 5. Attempt any 2 questions:

(6 marks each)

- 1) State various types of batteries and with neat sketch, explain different types of battery arrangements.
- 2) With advantages and disadvantages, explain single basin and double basin tidal power plants.
- 3) Explain with neat sketch, various part of geothermal energy system.



| Seat | Set |   |
|------|-----|---|
| No.  | Set | Q |

## B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book on Page No. 3.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

(1 mark each) 1. Choose the correct answer:

- 1) What kind of energy does a wind turbine use?
  - a) kinetic energy

b) potential energy

c) chemical energy

- d) thermal energy
- 2) Geothermal energy is
  - a) a renewable energy resource b) alternative energy source
- - c) inexhaustible energy source d) any of the above
- 3) Geologists believe that below the earth's crust, the molten mass exists in the form of
  - a) magma
- b) vent
- c) hot cell
- d) liquation

- 4) Tidal energy mainly utilises
  - a) kinetic energy of water
  - b) potential energy of water
  - c) both kinetic as well as potential energy of water
  - d) none of the above
- 5) A rotameter measures
  - a) velocity of fluids

b) viscosity of fluids

c) density of fluids

d) discharge of fluids

14) Local winds are created due to

- a) differential heating of land and water
- b) differential heating of plains and mountains
- c) any of the above
- d) none of the above



| Seat |  |
|------|--|
| No.  |  |

# B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any 4 questions:

(4 marks each)

- 1) With neat sketch, explain working of solar cooker.
- 2) What are the non-conventional sources of energy and explain briefly?
- 3) Write short note on India's energy production and energy alternatives.
- 4) Write short note on solar thermal storage.
- 5) Explain:
  - i) Solar distillation
  - ii) Solar still.
- 6) Write short note on recent development in wind energy.

3. Attempt any 2 questions:

(6 marks each)

- 1) With the help of a neat sketch, describe any two solar air heaters.
- 2) With the help of a neat sketch, explain PV hybrid system.
- 3) Explain briefly with neat sketch about :
  - 1) Horizontal wind mills.
  - 2) Vertical wind mills.

# 

#### SECTION - II

#### 4. Attempt any 4 questions:

(4 marks each)

- 1) State and explain site selection criteria for biogas generation plant.
- 2) Write a short note on utilization of biogas.
- 3) Explain limitations and scope of tidal energy.
- 4) Explain with neat sketch, open cycle and closed cycle Ocean Thermal Electric Conversion system.
- 5) Discuss the various problems associated for storage and transportation of hydrogen gas.
- 6) What is geothermal energy? How can geothermal energy are utilized for electric power generation?

### 5. Attempt any 2 questions:

(6 marks each)

- 1) State various types of batteries and with neat sketch, explain different types of battery arrangements.
- 2) With advantages and disadvantages, explain single basin and double basin tidal power plants.
- 3) Explain with neat sketch, various part of geothermal energy system.

\_\_\_\_\_

| <b>SLR-TC</b> – 51 | 2 |
|--------------------|---|
|--------------------|---|



| Seat | Sot | D |
|------|-----|---|
| No.  | Set | R |

### B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book on Page No. 3.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

| 1. Choose the correct answer: | (1 mark each) |
|-------------------------------|---------------|
|-------------------------------|---------------|

- 1) A module is a
  - a) newly installed solar cell
  - b) series parallel arrangement of solar cells
  - c) a series of solar cells when not used for power generation
  - d) none of the above
- 2) \_\_\_\_\_ is the major disadvantage of solar cells for power generation.
  - a) lack of availability
- b) large area requirement

c) variable power

- d) high cost
- 3) Local winds are created due to
  - a) differential heating of land and water
  - b) differential heating of plains and mountains
  - c) any of the above
  - d) none of the above
- 4) What kind of energy does a wind turbine use?
  - a) kinetic energy

b) potential energy

c) chemical energy

d) thermal energy



| 5)   | Geothermal ener                | rgy is               |     |                                  |                       |
|------|--------------------------------|----------------------|-----|----------------------------------|-----------------------|
|      | a) a renewable of              | energy resource      | b)  | alternative en                   | ergy source           |
|      | c) inexhaustible               | energy source        | d)  | any of the abo                   | ove                   |
| 6)   | Geologists believe the form of | ve that below the    | ear | th's crust, the                  | molten mass exists in |
|      | a) magma                       | b) vent              | c)  | hot cell                         | d) liquation          |
| 7)   | Tidal energy mai               | nly utilises         |     |                                  |                       |
| ,    | a) kinetic energy of water     |                      |     |                                  |                       |
|      | b) potential ener              | gy of water          |     |                                  |                       |
|      | c) both kinetic a              | s well as potential  | en  | ergy of water                    |                       |
|      | d) none of the a               | bove                 |     |                                  |                       |
| 8)   | A rotameter mea                | sures                |     |                                  |                       |
|      | a) velocity of flui            | ds                   | b)  | viscosity of flu                 | ids                   |
|      | c) density of fluid            | ds                   | d)  | discharge of fl                  | luids                 |
| 9)   | Hydrogen is prod               | duced by             |     |                                  |                       |
|      | a) Electrolysis                |                      | b)  | Incineration                     |                       |
|      | c) Aerobic diges               | stion                | d)  | Decomposting                     | 9                     |
| 10)  | Hydrogen can be                | e stored as a        |     |                                  |                       |
|      | a) compressed (                | gas                  | b)  | liquid                           |                       |
|      | c) metal hydride               |                      | d)  | all of the abov                  | re                    |
| 11)  |                                | or exploiting solar  |     |                                  | d                     |
|      | a) diffusers                   |                      | ,   | ponds                            |                       |
| 4.0\ | c) reflecting mirr             |                      | ,   | mantle                           |                       |
| 12)  | a) mountain tops               | l electric plants, p |     | erable area is<br>hot arid zones |                       |
|      | c) coastal areas               |                      | ,   | high rainfall zo                 |                       |
| 13)  | •                              | ar energy conversi   | -   | _                                |                       |
| . 0) | a) fuel cell                   | ar onergy conversi   |     | solar cell                       |                       |
|      | c) solar pond                  |                      | ,   | none of the ab                   | oove                  |
| 14)  | The output of a s              | solar cell is of the | ord | er of                            |                       |
|      | a) 0.1 W                       | b) 0.5 W             | c)  | 1 W                              | d) 5 W                |
|      |                                |                      |     |                                  |                       |

\_\_\_\_\_



| Seat |  |
|------|--|
| No.  |  |

### B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any 4 questions:

(4 marks each)

- 1) With neat sketch, explain working of solar cooker.
- 2) What are the non-conventional sources of energy and explain briefly?
- 3) Write short note on India's energy production and energy alternatives.
- 4) Write short note on solar thermal storage.
- 5) Explain:
  - i) Solar distillation
  - ii) Solar still.
- 6) Write short note on recent development in wind energy.

3. Attempt any 2 questions:

(6 marks each)

- 1) With the help of a neat sketch, describe any two solar air heaters.
- 2) With the help of a neat sketch, explain PV hybrid system.
- 3) Explain briefly with neat sketch about :
  - 1) Horizontal wind mills.
  - 2) Vertical wind mills.



### SECTION - II

### 4. Attempt any 4 questions:

(4 marks each)

- 1) State and explain site selection criteria for biogas generation plant.
- 2) Write a short note on utilization of biogas.
- 3) Explain limitations and scope of tidal energy.
- 4) Explain with neat sketch, open cycle and closed cycle Ocean Thermal Electric Conversion system.
- 5) Discuss the various problems associated for storage and transportation of hydrogen gas.
- 6) What is geothermal energy? How can geothermal energy are utilized for electric power generation?

### 5. Attempt any 2 questions:

(6 marks each)

- 1) State various types of batteries and with neat sketch, explain different types of battery arrangements.
- 2) With advantages and disadvantages, explain single basin and double basin tidal power plants.
- 3) Explain with neat sketch, various part of geothermal energy system.

| SLR | -TC | <b>)</b> — | 51 | 2 |
|-----|-----|------------|----|---|
|-----|-----|------------|----|---|



| Seat        |  |
|-------------|--|
| Seat<br>No. |  |

Set

S

### B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book on Page No. 3.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

(1 mark each)

- 1) Geologists believe that below the earth's crust, the molten mass exists in the form of
  - a) magma
- b) vent
- c) hot cell
- d) liquation

- 2) Tidal energy mainly utilises
  - a) kinetic energy of water
  - b) potential energy of water
  - c) both kinetic as well as potential energy of water
  - d) none of the above
- 3) A rotameter measures
  - a) velocity of fluids

b) viscosity of fluids

c) density of fluids

- d) discharge of fluids
- 4) Hydrogen is produced by
  - a) Electrolysis

- b) Incineration
- c) Aerobic digestion
- d) Decomposting

| 5)  | Hydrogen can be stored as a                                                             |                                                                            |  |  |  |
|-----|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
|     | a) compressed gas                                                                       | b) liquid                                                                  |  |  |  |
|     | c) metal hydride                                                                        | d) all of the above                                                        |  |  |  |
| 6)  | Heliostats used for exploiting solar                                                    | energy are called                                                          |  |  |  |
|     | a) diffusers                                                                            | b) ponds                                                                   |  |  |  |
|     | c) reflecting mirrors                                                                   | d) mantle                                                                  |  |  |  |
| 7)  | For solar thermal electric plants, p                                                    | referable area is                                                          |  |  |  |
|     | a) mountain tops                                                                        | b) hot arid zones                                                          |  |  |  |
|     | c) coastal areas                                                                        | d) high rainfall zones                                                     |  |  |  |
| 8)  | Photovoltaic solar energy conversi                                                      | on system makes use of                                                     |  |  |  |
|     | a) fuel cell                                                                            | b) solar cell                                                              |  |  |  |
|     | c) solar pond                                                                           | d) none of the above                                                       |  |  |  |
| 9)  | The output of a solar cell is of the                                                    | order of                                                                   |  |  |  |
|     | a) 0.1 W b) 0.5 W                                                                       | c) 1 W d) 5 W                                                              |  |  |  |
| 10) | A module is a                                                                           |                                                                            |  |  |  |
|     | a) newly installed solar cell                                                           |                                                                            |  |  |  |
|     | b) series parallel arrangement of s                                                     | solar cells                                                                |  |  |  |
|     | c) a series of solar cells when not                                                     | t used for power generation                                                |  |  |  |
|     | d) none of the above                                                                    |                                                                            |  |  |  |
| l1) | -                                                                                       | e of solar cells for power generation.                                     |  |  |  |
|     | a) lack of availability                                                                 | b) large area requirement                                                  |  |  |  |
|     | c) variable power                                                                       | d) high cost                                                               |  |  |  |
| 12) | Local winds are created due to                                                          |                                                                            |  |  |  |
|     | a) differential heating of land and water                                               |                                                                            |  |  |  |
|     | b) differential heating of plains and                                                   | d mountains                                                                |  |  |  |
|     | <ul><li>c) any of the above</li><li>d) none of the above</li></ul>                      |                                                                            |  |  |  |
| ۱۵) | •                                                                                       | umbino uno O                                                               |  |  |  |
| 13) | What kind of energy does a wind to                                                      |                                                                            |  |  |  |
|     | <ul><li>a) kinetic energy</li><li>c) chemical energy</li></ul>                          | <ul><li>b) potential energy</li><li>d) thermal energy</li></ul>            |  |  |  |
| ۱۸۱ | ,                                                                                       | d) thermal energy                                                          |  |  |  |
| 14) | Geothermal energy is                                                                    | h) alternative energy source                                               |  |  |  |
|     | <ul><li>a) a renewable energy resource</li><li>c) inexhaustible energy source</li></ul> | <ul><li>b) alternative energy source</li><li>d) any of the above</li></ul> |  |  |  |
|     | of mexicaustible effergy source                                                         | a) any or the above                                                        |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

### B.E. (E&E) (Part – I) (CGPA) Examination, 2018 RENEWABLE ENERGY SOURCES (Elective – I)

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any 4 questions:

(4 marks each)

- 1) With neat sketch, explain working of solar cooker.
- 2) What are the non-conventional sources of energy and explain briefly?
- 3) Write short note on India's energy production and energy alternatives.
- 4) Write short note on solar thermal storage.
- 5) Explain:
  - i) Solar distillation
  - ii) Solar still.
- 6) Write short note on recent development in wind energy.

3. Attempt any 2 questions:

(6 marks each)

- 1) With the help of a neat sketch, describe any two solar air heaters.
- 2) With the help of a neat sketch, explain PV hybrid system.
- 3) Explain briefly with neat sketch about :
  - 1) Horizontal wind mills.
  - 2) Vertical wind mills.

### SECTION - II

### 4. Attempt any 4 questions:

(4 marks each)

- 1) State and explain site selection criteria for biogas generation plant.
- 2) Write a short note on utilization of biogas.
- 3) Explain limitations and scope of tidal energy.
- 4) Explain with neat sketch, open cycle and closed cycle Ocean Thermal Electric Conversion system.
- 5) Discuss the various problems associated for storage and transportation of hydrogen gas.
- 6) What is geothermal energy? How can geothermal energy are utilized for electric power generation?

### 5. Attempt any 2 questions:

(6 marks each)

- 1) State various types of batteries and with neat sketch, explain different types of battery arrangements.
- 2) With advantages and disadvantages, explain single basin and double basin tidal power plants.
- 3) Explain with neat sketch, various part of geothermal energy system.

\_\_\_\_\_

### B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 **FACTS AND HVDC**

Day and Date: Tuesday, 15-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Figures to the right indicate full marks.
- 3) Assume the suitable data whenever necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Type Questions                          |
|-----------------------------------------|
| Marks: 14                               |
| 14                                      |
| s inductor whose effective reactance is |
| b) Continuous manner                    |
| d) None of above                        |
| e 1 and 2 on, 3 and 4 off give          |
| b) + ve vtg, + ve current               |
| d) - ve vtg, - ve current               |
| ade for                                 |
| b) Minimizing standly losses            |
| d) All of the above                     |
| ensation is a                           |
| b) $Q = v^2/X \sin \delta/2$            |
| d) $Q = 2V^2x/X_1 (1 - \sin \delta/2)$  |
|                                         |

| 5)                                                                   | The dynamic compen                            | sator is type of    |                        |                    |
|----------------------------------------------------------------------|-----------------------------------------------|---------------------|------------------------|--------------------|
|                                                                      | a) Toppings of Trans                          | former              | b) TCR                 |                    |
|                                                                      | c) FC-TCR                                     |                     | d) TSC                 |                    |
| 6)                                                                   | The most fast operation                       | on of compensation  | on is                  |                    |
|                                                                      | a) TSSC                                       | b) GCSC             | c) TCSC                | d) All of above    |
| 7)                                                                   | The type static compe                         | ensator is equivale | ent to                 |                    |
|                                                                      | a) SSSC                                       |                     | b) Tapping's of        | transformer        |
|                                                                      | c) QBT                                        |                     | d) Synchronous         | s motor            |
| 8)                                                                   | The first commercially                        | used HVDC link      | was built in           |                    |
|                                                                      | a) 2006                                       | b) 1954             | c) 1986                | d) Yet to be built |
| 9)                                                                   | Reactive power to HV                          | DC system may b     | e supplied from        |                    |
|                                                                      | a) AC filters                                 |                     | b) Shunt capacitors    |                    |
|                                                                      | c) SVS                                        |                     | d) All of the abo      | ove                |
| 10)                                                                  | As compared to HVA                            | C line, the corona  | and radio interf       | erence on a HVDC   |
|                                                                      | line are                                      |                     |                        |                    |
|                                                                      | a) Lower                                      |                     | b) More                |                    |
|                                                                      | c) The same                                   |                     | d) All of the abo      | ove                |
| 11)                                                                  | A 12-pulse bridge is p                        | oreferred in HVDC   | because                |                    |
|                                                                      | a) It eliminates certain                      | n harmonics         |                        |                    |
|                                                                      | b) It results in better p                     | oower factor        |                        |                    |
|                                                                      | c) Series connection                          | of converters on [  | D.C. side is bette     | er                 |
|                                                                      | d) All of above                               |                     |                        |                    |
| 12)                                                                  | In HVDC transmission                          | -                   |                        | kept near          |
|                                                                      | a) 0°                                         | b) 15°              | c) 30°                 | d) 90°             |
| 13)                                                                  | Fault on a two terminal DC link is removed by |                     |                        |                    |
|                                                                      | a) Breakers on DC side                        |                     | b) Breakers on AC side |                    |
|                                                                      | c) Current control of o                       | converters          | d) All of above        |                    |
| 14) A commutation group is defined as, group of valves in which only |                                               |                     |                        |                    |
|                                                                      | valves conducts.                              |                     |                        |                    |
|                                                                      | a) One                                        | b) Two              | c) Three               | d) Four            |
|                                                                      |                                               |                     |                        |                    |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 FACTS AND HVDC

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

3) **Assume** the suitable data **whenever** necessary.

### SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail basic types of FACTS Controller.
- 2) Explain merits and demerits of STATCOM.
- 3) Explain variable impedance type series compensator.
- 4) Explain GTO Thyristor Controlled Series Compensator.
- 5) Explain objective of a series compensator.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Draw block diagram and characteristics of TSC.
- 2) Explain in detail power flow in AC system.
- 3) Explain how stability margin is increased when series compensator is used for transmission line.

### 

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain modified Vd-Id converter control characteristics.
- 2) Explain the IPC scheme of firing angle generation.
- 3) Explain power control in HVDC system with neat block diagram.
- 4) Explain with neat diagram the different types of DC links.
- 5) Write a short note on current and extinction angle controls.
- 5. Solve any two: (6×2=12)
  - 1) Explain the analysis of bridge converter with overlap less than 60 degree.
  - 2) Give detailed comparison between HVDC and AC transmission.
  - 3) Explain layout of HVDC substation with neat diagram.

Set P



| Seat |  |
|------|--|
| No.  |  |

Set

### B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 **FACTS AND HVDC**

Day and Date: Tuesday, 15-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Figures to the right indicate full marks.
- 3) Assume the suitable data whenever necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                                               | MCQ/Objective        | <b>Type Questions</b> | S                    |   |
|-----------------------------------------------|----------------------|-----------------------|----------------------|---|
| Duration: 30 Minutes                          |                      |                       | Marks: 1             | 4 |
| 1. Choose the correct                         | answer:              |                       | 1                    | 4 |
| 1) The first comme                            | rcially used HVDC    | link was built in     |                      |   |
| a) 2006                                       | b) 1954              | c) 1986               | d) Yet to be built   |   |
| 2) Reactive power                             | to HVDC system m     | ay be supplied fr     | rom                  |   |
| a) AC filters                                 |                      | b) Shunt ca           | pacitors             |   |
| c) SVS                                        |                      | d) All of the         | above                |   |
| <ol><li>As compared to<br/>line are</li></ol> | HVAC line, the co    | rona and radio in     | terference on a HVDC |   |
| a) Lower                                      |                      | b) More               |                      |   |
| c) The same                                   |                      | d) All of the         | above                |   |
| 4) A 12-pulse bridg                           | ge is preferred in H | VDC because           |                      |   |

d) All of above

a) It eliminates certain harmonics b) It results in better power factor

| 5)  | In HVDC transmission systa) 0° b)             | stem, rectifier<br>15° |                            | kept near<br>d) 90°   |  |
|-----|-----------------------------------------------|------------------------|----------------------------|-----------------------|--|
| 6)  | Fault on a two terminal De                    | C link is remov        | ved by                     |                       |  |
|     | a) Breakers on DC side                        |                        | b) Breakers on AC side     |                       |  |
|     | c) Current control of converters              |                        | d) All of above            |                       |  |
| 7)  | A commutation group is d                      | efined as, grou        | up of valves in w          | hich only             |  |
|     | valves conducts.                              |                        |                            |                       |  |
|     | a) One b)                                     | Two                    | c) Three                   | d) Four               |  |
| 8)  | Shunt connected, thyristovaried in a          |                        | ductor whose eff           | fective reactance is  |  |
|     | a) Stepwise manner                            |                        | b) Continuous i            | manner                |  |
|     | c) Linear manner                              |                        | d) None of abo             | ve                    |  |
| 9)  | In single phase full conve                    | erter, device 1        | and 2 on, 3 and            | 4 off give            |  |
|     | a) + ve vtg, - ve current                     |                        | b) + ve vtg, + ve current  |                       |  |
|     | c) - ve vtg, + ve current                     |                        | d) - ve vtg, - ve current  |                       |  |
| 10) | 0) TSC - TCR type var generator is made for   |                        |                            |                       |  |
|     | a) Dynamic compensation                       |                        | b) Minimizing s            | tandly losses         |  |
|     | c) Increasing operating fl                    | exibility              | d) All of the abo          | ove                   |  |
| 11) | Reactive power a capacitive compensation is a |                        |                            |                       |  |
|     | a) $Q = 2v^2/X (1 - \cos \delta)$             |                        | b) $Q = v^2/X \sin \theta$ | δ/2                   |  |
|     | c) Q = E1 E2/X sin $\delta$                   |                        | d) $Q = 2V^2x/X_L$         | $(1 - \sin \delta/2)$ |  |
| 12) | The dynamic compensato                        | or is type of          |                            |                       |  |
|     | a) Toppings of Transformer                    |                        | b) TCR                     |                       |  |
|     | c) FC-TCR                                     |                        | d) TSC                     |                       |  |
| 13) | The most fast operation of                    | of compensation        | on is                      |                       |  |
|     | a) TSSC b)                                    | GCSC                   | c) TCSC                    | d) All of above       |  |
| 14) | The type static compensa                      | ntor is equivale       | ent to                     | <u> </u>              |  |
|     | a) SSSC                                       |                        | b) Tapping's of            | transformer           |  |
|     | c) QBT                                        |                        | d) Synchronous             | s motor               |  |
|     |                                               |                        |                            |                       |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 FACTS AND HVDC

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

3) Assume the suitable data whenever necessary.

### SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail basic types of FACTS Controller.
- 2) Explain merits and demerits of STATCOM.
- 3) Explain variable impedance type series compensator.
- 4) Explain GTO Thyristor Controlled Series Compensator.
- 5) Explain objective of a series compensator.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Draw block diagram and characteristics of TSC.
- 2) Explain in detail power flow in AC system.
- 3) Explain how stability margin is increased when series compensator is used for transmission line.

### 

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain modified Vd-Id converter control characteristics.
- 2) Explain the IPC scheme of firing angle generation.
- 3) Explain power control in HVDC system with neat block diagram.
- 4) Explain with neat diagram the different types of DC links.
- 5) Write a short note on current and extinction angle controls.

5. Solve any two: (6×2=12)

- 1) Explain the analysis of bridge converter with overlap less than 60 degree.
- 2) Give detailed comparison between HVDC and AC transmission.
- 3) Explain layout of HVDC substation with neat diagram.

Set Q

| Seat |  |
|------|--|
| No.  |  |

Set F

## B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 FACTS AND HVDC

Day and Date: Tuesday, 15-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- **Instructions**: 1) **All** questions are **compulsory**.
  - 2) Figures to the right indicate full marks.
  - 3) Assume the suitable data whenever necessary.
  - 4) Q. No. 1 is **compulsory**. It should be solved in **first**30 minutes in Answer Book Page No. 3. Each question carries **one** mark.
  - 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                      | MCQ/Objective        | Type Questions    | 8                  |
|----------------------|----------------------|-------------------|--------------------|
| Duration: 30 Minutes |                      |                   | Marks: 14          |
| 1. Choose the corre  | ct answer :          |                   | 14                 |
| 1) The dynamic c     | ompensator is type o | f                 |                    |
| a) Toppings of       | f Transformer        | b) TCR            |                    |
| c) FC-TCR            |                      | d) TSC            |                    |
| 2) The most fast     | operation of compens | ation is          |                    |
| a) TSSC              | •                    |                   | d) All of above    |
| 3) The type static   | compensator is equi  | valent to         |                    |
| a) SSSC              |                      | b) Tapping's      | s of transformer   |
| c) QBT               |                      | d) Synchron       | ous motor          |
| 4) The first comm    | ercially used HVDC I | ink was built in  |                    |
| a) 2006              | b) 1954              | c) 1986           | d) Yet to be built |
| 5) Reactive power    | r to HVDC system ma  | ay be supplied fr | om                 |
| a) AC filters        |                      | b) Shunt cap      | pacitors           |
| c) SVS               |                      | d) All of the     | above              |

| 6)   | s) As compared to HVAC line, the corona and radio interference on a HVDC line are |                                   |                     |  |  |
|------|-----------------------------------------------------------------------------------|-----------------------------------|---------------------|--|--|
|      | a) Lower                                                                          | b) More                           |                     |  |  |
|      | c) The same                                                                       | d) All of the abo                 | ove                 |  |  |
| 7)   | A 12-pulse bridge is preferred in HVDC                                            |                                   |                     |  |  |
|      | a) It eliminates certain harmonics                                                | ) It eliminates certain harmonics |                     |  |  |
|      | b) It results in better power factor                                              |                                   |                     |  |  |
|      | <ul><li>c) Series connection of converters on E</li><li>d) All of above</li></ul> | D.C. side is bette                | er                  |  |  |
| 8)   | In HVDC transmission system, rectifier                                            | firing angle a is                 | kept near           |  |  |
| •,   | a) 0° b) 15°                                                                      |                                   | d) 90°              |  |  |
| 9)   | Fault on a two terminal DC link is remove                                         | •                                 | ,                   |  |  |
| -,   | a) Breakers on DC side                                                            | b) Breakers on AC side            |                     |  |  |
|      | c) Current control of converters                                                  | ,                                 |                     |  |  |
| 10)  | A commutation group is defined as, group                                          | up of valves in wl                | hich only           |  |  |
|      | valves conducts.                                                                  |                                   | -                   |  |  |
|      | a) One b) Two                                                                     | c) Three                          | d) Four             |  |  |
| l 1) | Shunt connected, thyristor switches incovaried in a                               | luctor whose eff                  | ective reactance is |  |  |
|      | a) Stepwise manner                                                                | b) Continuous manner              |                     |  |  |
|      | c) Linear manner                                                                  | d) None of abou                   | ve                  |  |  |
| 12)  | 2) In single phase full converter, device 1 and 2 on, 3 and 4 off give            |                                   |                     |  |  |
|      | a) + ve vtg, - ve current                                                         | b) + ve vtg, + ve current         |                     |  |  |
|      | c) - ve vtg, + ve current                                                         | d) $-$ ve vtg, $-$ ve             | e current           |  |  |
| 13)  | TSC - TCR type var generator is made                                              | for                               | <u>-</u>            |  |  |
|      | a) Dynamic compensation                                                           | b) Minimizing standly losses      |                     |  |  |
|      | c) Increasing operating flexibility                                               | d) All of the abo                 | ove                 |  |  |
| 14)  | Reactive power a capacitive compensa-                                             |                                   |                     |  |  |
|      | a) $Q = 2v^2/X (1 - \cos \delta)$                                                 | b) $Q = v^2/X \sin \theta$        |                     |  |  |
|      | c) Q = E1 E2/X sin $\delta$                                                       | d) $Q = 2V^2x/X_L$                | (1 – sin δ/2)       |  |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 FACTS AND HVDC

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

3) **Assume** the suitable data **whenever** necessary.

SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail basic types of FACTS Controller.
- 2) Explain merits and demerits of STATCOM.
- 3) Explain variable impedance type series compensator.
- 4) Explain GTO Thyristor Controlled Series Compensator.
- 5) Explain objective of a series compensator.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Draw block diagram and characteristics of TSC.
- 2) Explain in detail power flow in AC system.
- 3) Explain how stability margin is increased when series compensator is used for transmission line.

### 

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain modified Vd-Id converter control characteristics.
- 2) Explain the IPC scheme of firing angle generation.
- 3) Explain power control in HVDC system with neat block diagram.
- 4) Explain with neat diagram the different types of DC links.
- 5) Write a short note on current and extinction angle controls.

5. Solve any two: (6×2=12)

- 1) Explain the analysis of bridge converter with overlap less than 60 degree.
- 2) Give detailed comparison between HVDC and AC transmission.
- 3) Explain layout of HVDC substation with neat diagram.

Set R



Seat No.

### B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 **FACTS AND HVDC**

Day and Date: Tuesday, 15-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Figures to the right indicate full marks.
- 3) **Assume** the suitable data **whenever** necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| MCQ/Obje                               | ctive Type Questions                       |      |
|----------------------------------------|--------------------------------------------|------|
| Duration: 30 Minutes                   | Marks                                      | : 14 |
| 1. Choose the correct answer:          |                                            | 14   |
| As compared to HVAC line, the line are | ne corona and radio interference on a HVDC |      |
| a) Lower                               | b) More                                    |      |
| c) The same                            | d) All of the above                        |      |
| 2) A 12-pulse bridge is preferred      | in HVDC because                            |      |
| a) It eliminates certain harmor        |                                            |      |
| b) It results in better power fac      |                                            |      |
| c) Series connection of conve          | erters on D.C. side is better              |      |
| d) All of above                        |                                            |      |

c) 30° a) 0° b) 15°

4) Fault on a two terminal DC link is removed by

a) Breakers on DC side b) Breakers on AC side

c) Current control of converters d) All of above

3) In HVDC transmission system, rectifier firing angle a is kept near

d) 90°

| 5)  | A commutation group valves conducts.             | is defined as, gro | up of valves i | n which only                 |  |
|-----|--------------------------------------------------|--------------------|----------------|------------------------------|--|
|     | a) One                                           | b) Two             | c) Three       | d) Four                      |  |
| 6)  | Shunt connected, thy varied in a                 |                    | ductor whose   | e effective reactance is     |  |
|     | a) Stepwise manner                               |                    | b) Continuo    | ous manner                   |  |
|     | c) Linear manner                                 |                    | d) None of     | above                        |  |
| 7)  | In single phase full co                          | nverter, device 1  | and 2 on, 3    | and 4 off give               |  |
|     | a) + ve vtg, - ve curre                          | ent                | b) + ve vtg,   | + ve current                 |  |
|     | c) - ve vtg, + ve curre                          | ent                | d) – ve vtg,   | <ul><li>ve current</li></ul> |  |
| 8)  | TSC - TCR type var g                             | enerator is made   | for            |                              |  |
|     | a) Dynamic compensa                              | ation              | b) Minimizir   | ng standly losses            |  |
|     | c) Increasing operating                          | g flexibility      | d) All of the  | above                        |  |
| 9)  | 9) Reactive power a capacitive compensation is a |                    |                |                              |  |
|     | a) $Q = 2v^2/X (1 - \cos x)$                     | δ)                 | b) $Q = v^2/X$ | $\sin \delta/2$              |  |
|     | c) Q = E1 E2/X sin $\delta$                      |                    | d) $Q = 2V^2x$ | $x/X_L (1 - \sin \delta/2)$  |  |
| 10) | The dynamic compens                              | sator is type of   |                |                              |  |
|     | a) Toppings of Transf                            | ormer              | b) TCR         |                              |  |
|     | c) FC-TCR                                        |                    | d) TSC         |                              |  |
| 11) | The most fast operation                          | on of compensation | on is          |                              |  |
|     | a) TSSC                                          | b) GCSC            | c) TCSC        | d) All of above              |  |
| 12) | The type static compe                            | nsator is equivale | ent to         |                              |  |
|     | a) SSSC                                          |                    | b) Tapping'    | s of transformer             |  |
|     | c) QBT                                           |                    | d) Synchroi    | nous motor                   |  |
| 13) | The first commercially                           | used HVDC link     | was built in   |                              |  |
|     | a) 2006                                          | b) 1954            | c) 1986        | d) Yet to be built           |  |
| 14) | Reactive power to HV                             | DC system may b    | e supplied f   | rom                          |  |
|     | a) AC filters                                    |                    | b) Shunt ca    | pacitors                     |  |
|     | c) SVS                                           |                    | d) All of the  | above                        |  |
|     |                                                  |                    |                |                              |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Electrical and Electronics Engineering) (Part – II) (New-CGPA) Examination, 2018 FACTS AND HVDC

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the **right** indicate **full** marks.

3) Assume the suitable data whenever necessary.

### SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail basic types of FACTS Controller.
- 2) Explain merits and demerits of STATCOM.
- 3) Explain variable impedance type series compensator.
- 4) Explain GTO Thyristor Controlled Series Compensator.
- 5) Explain objective of a series compensator.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Draw block diagram and characteristics of TSC.
- 2) Explain in detail power flow in AC system.
- 3) Explain how stability margin is increased when series compensator is used for transmission line.

### 

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain modified Vd-Id converter control characteristics.
- 2) Explain the IPC scheme of firing angle generation.
- 3) Explain power control in HVDC system with neat block diagram.
- 4) Explain with neat diagram the different types of DC links.
- 5) Write a short note on current and extinction angle controls.

5. Solve any two: (6×2=12)

- 1) Explain the analysis of bridge converter with overlap less than 60 degree.
- 2) Give detailed comparison between HVDC and AC transmission.
- 3) Explain layout of HVDC substation with neat diagram.

Set S

| S | eat |  |
|---|-----|--|
|   | lo. |  |

Set P

# B.E. (Electrical and Electronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 ELECTRICAL MACHINE DESIGN

| Day and Date : Thursday, 17-5-2018 | Total Marks : 70 |
|------------------------------------|------------------|
|------------------------------------|------------------|

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume the suitable data whenever necessary.
- 3) Q. No. 1 is **compulsory**. It should be solved in **first**30 minutes in Answer Book Page No. 3. **Each** question carries **one** mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

| Dur | ation : 30 Minutes                 |                          |                     |    | Mar           | ks : 14 |
|-----|------------------------------------|--------------------------|---------------------|----|---------------|---------|
| 1.  | Choose the correct                 | answer:                  |                     |    | (1×1          | 14=14)  |
|     | 1) The material us                 | ed for making perma      | anent magnet is     |    |               |         |
|     | A) Cast iron                       | B) Soft steel            | C) Hard steel       | D) | Silicon steel |         |
|     | , .                                | or of the induction more | otor will be        |    | if the        |         |
|     | A) Low, low                        | B) High, high            | C) High, low        | D) | Low, high     |         |
|     | 3) Turbo-alternator                | rs are of                |                     |    |               |         |
|     | A) Salient                         | B) Non-Salient           | C) Circular         | D) | None of the a | above   |
|     | 4) Iron losses of a                | machine are              |                     |    |               |         |
|     | <ul><li>A) Directly prop</li></ul> | ortional to flux densi   | ty                  |    |               |         |
|     | B) Directly prop                   | ortional to the squar    | e of flux density   |    |               |         |
|     | C) Inversely pro                   | portional to flux den    | sity                |    |               |         |
|     | D) Inversely pro                   | portional to the squa    | are of flux density | 1  |               |         |
|     | 5) Which is non-ma                 | agnetic material?        |                     |    |               |         |
|     | A) Nickel                          | B) Cobalt                | C) Aluminium        | D) | Gadolinium    | P.T.O.  |

| 6)  | magnets is                               | es, the material p   | preferred for pole   | snoes of electro-        |
|-----|------------------------------------------|----------------------|----------------------|--------------------------|
|     | A) Pure iron                             | B) Aluminium         | C) Copper            | D) Lead                  |
| 7)  | The percentage of                        | silicon in transfori | mer stampings is     | usually limited to       |
|     | A) 0.4%                                  | B) 1.4%              | C) 4%                | D) 14%                   |
| 8)  | In an alternator, wh waveform?           | ich of the followin  | ng coils will have I | EMF closer to sine       |
|     | A) Concentrated wi                       | inding in full pitch | coils                |                          |
|     | B) Concentrated wi                       |                      |                      |                          |
|     | C) Distributed wind                      |                      |                      |                          |
|     | D) Distributed wind                      |                      |                      |                          |
| 9)  | In transformers, the generally used for  | e cylindrical windir | ng with rectangula   | ar conductors is         |
|     | A) Low voltage win                       | _                    | B) High voltage      | •                        |
|     | C) Tertiary voltage                      | winding              | D) Any of the at     | pove                     |
| 10) | The dimensions of                        | a dc machine prir    | •                    |                          |
|     | A) KW output                             |                      | B) Work done p       |                          |
|     | C) Exposed surface                       |                      | D) None of the       |                          |
| 11) | The heat generated mainly by             | I in the transform   | er is dissipated to  | the surroundings         |
|     | A) Conduction                            | B) Convection        | C) Radiation         | D) All of the above      |
| 12) | Larger values of air induction motors of | gap flux density     | can be adopted v     | vhile designing          |
|     | A) Larger output                         |                      | B) Larger diame      | eter of rotor            |
|     | C) Both A) and B) a                      | above                | D) None of the       | above                    |
| 13) | When D is the diam the best power factor | or can be obtaine    | ed when $(P = no.)$  | of poles)                |
|     | A) D = L                                 |                      |                      | D) D = 1.35 P $\sqrt{L}$ |
| 14) | The average value range                  | of specific electric | c loading of induc   | ction motors is in the   |
|     | A) 5000 to 45000 a                       | mpere conductor      | s/meter              |                          |
|     | B) 50 to 450 amper                       |                      |                      |                          |
|     | C) 500 to 4500 amp                       |                      |                      |                          |
|     | D) 5 to 50 ampere                        | conductors/meter     |                      |                          |
|     |                                          |                      |                      |                          |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (Electrical and Elctronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 ELECTRICAL MACHINE DESIGN

Day and Date: Thursday, 17-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) Assume the suitable data whenever necessary.

SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the different magnetic materials used for electrical machines.
- b) Explain various types of windings used in transformer.
- c) Estimate no load current per phase for 6600/400 V, 50 Hz, single phase core type transformer from following data:

Net cross section area of iron =  $130 \text{ cm}^2$ , maximum flux density =  $1.2 \text{ wb/m}^2$ , mean length of flux path = 270 cm, specific iron loss = 2.1 W/kg, specific gravity of iron = 7.5 gm/cc, effect of joints = air gap of 1 mm.

- d) Explain the choice of flux density and choice of current density in designing of transformer.
- e) Derive an output equation of 1 phase shell type transformer.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- a) Estimate the main dimensions of core for a 100 KVA, 11 KV/415 V, 50 Hz, three phase core transformer. EMF/turn = 5 V, stacking factor = 0.9, a flux density of 1.4 wb/m², current density of 2.6A/Sq. mm, window space factor of 0.3, use three stepped core.
- b) Design cooling arrangement for 250 KVA, 6600/400 V, 50 Hz, three phase delta/star oil immersed natural cooled transformer with the following data:
  - i) Winding temperature rise not be exceed 50°C
  - ii) Total losses at 90°C are 5 KW
  - iii) Tank dimensions  $H \times W \times L = 125 \times 100 \times 50$  (all in cm)
  - iv) Oil level = 1.15 cm.

Sketch the diagram to show the cooling arrangement.

c) Why stepped cores are used in transformer? Explain different core section used for transformer.



### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) What are different factors for making the choice of specific loading for an alternator?
- b) Derive an expression for Dispersion coefficient in an induction motor.
- c) An 11 KW, 3-phase, 6 pole, 50 Hz, 220 V, star connected induction motor has 54 stator slots, each containing a 9 conductors. Calculate the value of bar and end ring current. The number of rotor bars is 64. The machine has the efficiency of 0.86 and power factor of 0.82. The rotor MMF = 85% stator MMF. Also find the bar and end ring section if current density is 5A/mm<sup>2</sup>.
- d) Explain the concept of B60 in an induction motor.
- e) Discuss the factors that determine the choice of air gap length in induction motor.

### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- a) Explain procedure to draw circle diagram of 3 \$\phi\$ induction motor.
- b) Determine the no. of stator and rotor slots, no. of rotor conductor and area of 30 KW, 3-phase, 50 Hz, 400 V, 6 poles slip ring induction motor.
   D = 40 cm, efficiency = 0.8, power factor = 0.8, flux per pole = 12.4 mWb, current density = 4 A/mm², winding factor = 0.96, rotor voltage at slip ring at standstill about 200 V.
- c) Derive the expression for bar current and end ring current for a three phase induction motor.

Set P

| Seat |  |  |
|------|--|--|
| No.  |  |  |

### B.E. (Electrical and Electronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 **ELECTRICAL MACHINE DESIGN**

Total Marks: 70 Day and Date: Thursday, 17-5-2018

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) **Assume** the suitable data **whenever** necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(1\times14=14)$ 

- 1) In an alternator, which of the following coils will have EMF closer to sine waveform?
  - A) Concentrated winding in full pitch coils
  - B) Concentrated winding in short pitch coils
  - C) Distributed winding in full pitch coils
  - D) Distributed winding in short pitch coils
- 2) In transformers, the cylindrical winding with rectangular conductors is generally used for

A) Low voltage winding

B) High voltage winding

C) Tertiary voltage winding

D) Any of the above

3) The dimensions of a dc machine primarily depend on

A) KW output

B) Work done per revolution

C) Exposed surface

D) None of the above

4) The heat generated in the transformer is dissipated to the surroundings mainly by

A) Conduction

B) Convection C) Radiation

D) All of the above

| 5)  | induction motors of                    |                      |                      | vhile designing          |
|-----|----------------------------------------|----------------------|----------------------|--------------------------|
|     | A) Larger output                       |                      | B) Larger diame      | eter of rotor            |
|     | C) Both A) and B) a                    | above                | D) None of the a     | above                    |
| 6)  | When D is the diam                     | or can be obtaine    | d when $(P = no. c)$ | of poles)                |
|     | A) D = L                               | B) $D = PF$          | C) $D = \sqrt{(PL)}$ | D) D = 1.35 P $\sqrt{L}$ |
| 7)  | The average value range                | of specific electric | c loading of induc   | tion motors is in the    |
|     | A) 5000 to 45000 a                     | mpere conductor      | s/meter              |                          |
|     | B) 50 to 450 amper                     |                      |                      |                          |
|     | C) 500 to 4500 amp                     |                      |                      |                          |
| 0)  | D) 5 to 50 ampere                      |                      |                      |                          |
| 8)  | The material used f                    |                      | _                    | D) Cilicon stool         |
| ٥)  | A) Cast iron                           | •                    | •                    | ,                        |
| 9)  | The power factor of magnetizing curren |                      | tor will be          | if the                   |
|     | A) Low, low                            | B) High, high        | C) High, low         | D) Low, high             |
| 10) | Turbo-alternators a                    | re of                |                      |                          |
|     | A) Salient                             | B) Non-Salient       | C) Circular          | D) None of the above     |
| 11) | Iron losses of a ma                    | chine are            |                      |                          |
|     | A) Directly proportion                 | onal to flux densit  | у                    |                          |
|     | B) Directly proportion                 | onal to the square   | e of flux density    |                          |
|     | C) Inversely propor                    | tional to flux dens  | sity                 |                          |
|     | D) Inversely propor                    | tional to the squa   | re of flux density   |                          |
| 12) | Which is non-magn                      | etic material ?      |                      |                          |
|     | A) Nickel                              | B) Cobalt            | C) Aluminium         | D) Gadolinium            |
| 13) | In electrical machin magnets is        | es, the material p   | referred for pole    | shoes of electro-        |
|     | A) Pure iron                           | B) Aluminium         | C) Copper            | D) Lead                  |
| 14) | The percentage of                      | silicon in transforr | mer stampings is     | usually limited to       |
|     | A) 0.4%                                | B) 1.4%              | C) 4%                | D) 14%                   |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (Electrical and Elctronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 ELECTRICAL MACHINE DESIGN

Day and Date: Thursday, 17-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) **Assume** the suitable data **whenever** necessary.

SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the different magnetic materials used for electrical machines.
- b) Explain various types of windings used in transformer.
- c) Estimate no load current per phase for 6600/400 V, 50 Hz, single phase core type transformer from following data:

Net cross section area of iron =  $130 \text{ cm}^2$ , maximum flux density =  $1.2 \text{ wb/m}^2$ , mean length of flux path = 270 cm, specific iron loss = 2.1 W/kg, specific gravity of iron = 7.5 gm/cc, effect of joints = air gap of 1 mm.

- d) Explain the choice of flux density and choice of current density in designing of transformer.
- e) Derive an output equation of 1 phase shell type transformer.

### 3. Solve **any two**:

 $(6 \times 2 = 12)$ 

- a) Estimate the main dimensions of core for a 100 KVA, 11 KV/415 V, 50 Hz, three phase core transformer. EMF/turn = 5 V, stacking factor = 0.9, a flux density of 1.4 wb/m², current density of 2.6A/Sq. mm, window space factor of 0.3, use three stepped core.
- b) Design cooling arrangement for 250 KVA, 6600/400 V, 50 Hz, three phase delta/star oil immersed natural cooled transformer with the following data:
  - i) Winding temperature rise not be exceed 50°C
  - ii) Total losses at 90°C are 5 KW
  - iii) Tank dimensions  $H \times W \times L = 125 \times 100 \times 50$  (all in cm)
  - iv) Oil level = 1.15 cm.

Sketch the diagram to show the cooling arrangement.

c) Why stepped cores are used in transformer? Explain different core section used for transformer.



### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) What are different factors for making the choice of specific loading for an alternator?
- b) Derive an expression for Dispersion coefficient in an induction motor.
- c) An 11 KW, 3-phase, 6 pole, 50 Hz, 220 V, star connected induction motor has 54 stator slots, each containing a 9 conductors. Calculate the value of bar and end ring current. The number of rotor bars is 64. The machine has the efficiency of 0.86 and power factor of 0.82. The rotor MMF = 85% stator MMF. Also find the bar and end ring section if current density is 5A/mm<sup>2</sup>.
- d) Explain the concept of B60 in an induction motor.
- e) Discuss the factors that determine the choice of air gap length in induction motor.

### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- a) Explain procedure to draw circle diagram of 3 φ induction motor.
- b) Determine the no. of stator and rotor slots, no. of rotor conductor and area of 30 KW, 3-phase, 50 Hz, 400 V, 6 poles slip ring induction motor.
   D = 40 cm, efficiency = 0.8, power factor = 0.8, flux per pole = 12.4 mWb, current density = 4 A/mm², winding factor = 0.96, rotor voltage at slip ring at standstill about 200 V.
- c) Derive the expression for bar current and end ring current for a three phase induction motor.

Set Q

| ı | Seat |  |
|---|------|--|
| ı | No   |  |

### B.E. (Electrical and Electronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 **ELECTRICAL MACHINE DESIGN**

| Day and Date : Thursday, 17-5-2018 | Total Marks: 70 |
|------------------------------------|-----------------|
|------------------------------------|-----------------|

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume the suitable data whenever necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on

|                                             | 7                                                                                        | op of Page.           |                    |                    |         |  |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------|-----------------------|--------------------|--------------------|---------|--|--|--|--|
|                                             |                                                                                          | MCQ/Objective         | Type Questions     |                    |         |  |  |  |  |
| Dur                                         | ation : 30 Minutes                                                                       |                       |                    | Mar                | ks : 14 |  |  |  |  |
| 1.                                          | Choose the correct a                                                                     | nswer:                |                    | (1×1               | 14=14)  |  |  |  |  |
|                                             | 1) Which is non-mag                                                                      | netic material?       |                    |                    |         |  |  |  |  |
|                                             | A) Nickel                                                                                | B) Cobalt             | C) Aluminium       | D) Gadolinium      |         |  |  |  |  |
|                                             | In electrical mach magnets is                                                            | ines, the material    | preferred for pole | shoes of electro-  |         |  |  |  |  |
|                                             | A) Pure iron                                                                             | B) Aluminium          | C) Copper          | D) Lead            |         |  |  |  |  |
|                                             | 3) The percentage o                                                                      | f silicon in transfo  | rmer stampings is  | usually limited to |         |  |  |  |  |
|                                             | A) 0.4%                                                                                  | B) 1.4%               | C) 4%              | D) 14%             |         |  |  |  |  |
|                                             | 4) In an alternator, which of the following coils will have EMF closer to sine waveform? |                       |                    |                    |         |  |  |  |  |
| A) Concentrated winding in full pitch coils |                                                                                          |                       |                    |                    |         |  |  |  |  |
|                                             | B) Concentrated                                                                          | winding in short pi   | tch coils          |                    |         |  |  |  |  |
|                                             | <ul><li>C) Distributed win</li></ul>                                                     | iding in full pitch c | oils               |                    |         |  |  |  |  |
|                                             | D) Distributed win                                                                       | iding in short pitch  | coils              |                    |         |  |  |  |  |
|                                             |                                                                                          |                       |                    |                    |         |  |  |  |  |

: 14

| 5)  | In transformers, the cylindrical winding with rectangular conductors is generally used for                                                                                                                                                     |                                                                                                                                          |           |                                      |       |                      |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|-------|----------------------|--|
|     | A) Low voltage win                                                                                                                                                                                                                             | ding                                                                                                                                     | B)        | High voltage                         | win   | ding                 |  |
|     | C) Tertiary voltage                                                                                                                                                                                                                            | winding                                                                                                                                  | D)        | Any of the ab                        | ove   | )                    |  |
| 6)  | The dimensions of a dc machine primarily depend on                                                                                                                                                                                             |                                                                                                                                          |           |                                      |       |                      |  |
|     | A) KW output                                                                                                                                                                                                                                   |                                                                                                                                          | B)        | Work done p                          | er re | evolution            |  |
|     | C) Exposed surface                                                                                                                                                                                                                             | е                                                                                                                                        | D)        | None of the a                        | abov  | ve .                 |  |
| 7)  | The heat generated in the transformer mainly by                                                                                                                                                                                                |                                                                                                                                          |           | er is dissipated to the surroundings |       |                      |  |
|     | A) Conduction                                                                                                                                                                                                                                  | B) Convection                                                                                                                            | C)        | Radiation                            | D)    | All of the above     |  |
| 8)  | Larger values of air gap flux density can be adopted while designing induction motors of                                                                                                                                                       |                                                                                                                                          |           |                                      |       |                      |  |
|     | A) Larger output                                                                                                                                                                                                                               |                                                                                                                                          | B)        | Larger diame                         | eter  | of rotor             |  |
|     | C) Both A) and B) a                                                                                                                                                                                                                            | above                                                                                                                                    | D)        | None of the a                        | abov  | ve .                 |  |
| 9)  |                                                                                                                                                                                                                                                | Then D is the diameter and L is the length of rotor of an induction motor, e best power factor can be obtained when $(P = no. of poles)$ |           |                                      |       |                      |  |
|     | A) $D = L$                                                                                                                                                                                                                                     | B) D = PF                                                                                                                                | C)        | $D = \sqrt{(PL)}$                    | D)    | $D = 1.35 P\sqrt{L}$ |  |
| 10) | The average value of specific electric loading of induction motors is in the range  A) 5000 to 45000 ampere conductors/meter  B) 50 to 450 ampere conductors/meter  C) 500 to 4500 ampere conductors/meter  D) 5 to 50 ampere conductors/meter |                                                                                                                                          |           |                                      |       |                      |  |
| 11) | The material used to                                                                                                                                                                                                                           | for making perma                                                                                                                         | nen       | t magnet is                          |       |                      |  |
|     | A) Cast iron                                                                                                                                                                                                                                   | B) Soft steel                                                                                                                            | C)        | Hard steel                           | D)    | Silicon steel        |  |
| 12) | The power factor of magnetizing current                                                                                                                                                                                                        |                                                                                                                                          | otor<br>- | will be                              |       | if the               |  |
|     | A) Low, low                                                                                                                                                                                                                                    | B) High, high                                                                                                                            | C)        | High, low                            | D)    | Low,high             |  |
| 13) | Turbo-alternators a                                                                                                                                                                                                                            | re of                                                                                                                                    |           |                                      |       |                      |  |
|     | A) Salient                                                                                                                                                                                                                                     | B) Non-Salient                                                                                                                           | C)        | Circular                             | D)    | None of the above    |  |
| 14) | Iron losses of a machine are                                                                                                                                                                                                                   |                                                                                                                                          |           |                                      |       |                      |  |
|     | A) Directly proportional to flux density                                                                                                                                                                                                       |                                                                                                                                          |           |                                      |       |                      |  |
|     | B) Directly proportional to the square of flux density                                                                                                                                                                                         |                                                                                                                                          |           |                                      |       |                      |  |
|     | C) Inversely proportional to flux density                                                                                                                                                                                                      |                                                                                                                                          |           |                                      |       |                      |  |
|     | D) Inversely proportional to the square of flux density                                                                                                                                                                                        |                                                                                                                                          |           |                                      |       |                      |  |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (Electrical and Elctronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 ELECTRICAL MACHINE DESIGN

Day and Date: Thursday, 17-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) Assume the suitable data whenever necessary.

SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the different magnetic materials used for electrical machines.
- b) Explain various types of windings used in transformer.
- c) Estimate no load current per phase for 6600/400 V, 50 Hz, single phase core type transformer from following data:

Net cross section area of iron =  $130 \text{ cm}^2$ , maximum flux density =  $1.2 \text{ wb/m}^2$ , mean length of flux path = 270 cm, specific iron loss = 2.1 W/kg, specific gravity of iron = 7.5 gm/cc, effect of joints = air gap of 1 mm.

- d) Explain the choice of flux density and choice of current density in designing of transformer.
- e) Derive an output equation of 1 phase shell type transformer.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- a) Estimate the main dimensions of core for a 100 KVA, 11 KV/415 V, 50 Hz, three phase core transformer. EMF/turn = 5 V, stacking factor = 0.9, a flux density of 1.4 wb/m², current density of 2.6A/Sq. mm, window space factor of 0.3, use three stepped core.
- b) Design cooling arrangement for 250 KVA, 6600/400 V, 50 Hz, three phase delta/star oil immersed natural cooled transformer with the following data:
  - i) Winding temperature rise not be exceed 50°C
  - ii) Total losses at 90°C are 5 KW
  - iii) Tank dimensions  $H \times W \times L = 125 \times 100 \times 50$  (all in cm)
  - iv) Oil level = 1.15 cm.

Sketch the diagram to show the cooling arrangement.

c) Why stepped cores are used in transformer? Explain different core section used for transformer.

### 

### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) What are different factors for making the choice of specific loading for an alternator?
- b) Derive an expression for Dispersion coefficient in an induction motor.
- c) An 11 KW, 3-phase, 6 pole, 50 Hz, 220 V, star connected induction motor has 54 stator slots, each containing a 9 conductors. Calculate the value of bar and end ring current. The number of rotor bars is 64. The machine has the efficiency of 0.86 and power factor of 0.82. The rotor MMF = 85% stator MMF. Also find the bar and end ring section if current density is 5A/mm<sup>2</sup>.
- d) Explain the concept of B60 in an induction motor.
- e) Discuss the factors that determine the choice of air gap length in induction motor.

### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- a) Explain procedure to draw circle diagram of 3 φ induction motor.
- b) Determine the no. of stator and rotor slots, no. of rotor conductor and area of 30 KW, 3-phase, 50 Hz, 400 V, 6 poles slip ring induction motor.
   D = 40 cm, efficiency = 0.8, power factor = 0.8, flux per pole = 12.4 mWb, current density = 4 A/mm², winding factor = 0.96, rotor voltage at slip ring at standstill about 200 V.
- c) Derive the expression for bar current and end ring current for a three phase induction motor.

Set R



### B.E. (Electrical and Electronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 **ELECTRICAL MACHINE DESIGN**

Day and Date: Thursday, 17-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Assume the suitable data whenever necessary.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|      | I                                         | MCQ/Objective T    | ype Questions        |                          |   |
|------|-------------------------------------------|--------------------|----------------------|--------------------------|---|
| Dura | ation : 30 Minutes                        |                    |                      | Marks: 14                | 1 |
| 1.   | Choose the correct ar                     | nswer:             |                      | (1×14=14)                | ) |
|      | 1) The dimensions of                      | a dc machine pri   | marily depend or     | 1                        |   |
|      | A) KW output                              |                    | B) Work done         | per revolution           |   |
|      | C) Exposed surfac                         | e                  | D) None of the       | above                    |   |
|      | 2) The heat generate mainly by            | d in the transform | er is dissipated to  | o the surroundings       |   |
|      | A) Conduction                             | B) Convection      | C) Radiation         | D) All of the above      |   |
|      | 3) Larger values of ai induction motors o | • .                | can be adopted       | while designing          |   |
|      | A) Larger output                          |                    | B) Larger diam       | eter of rotor            |   |
|      | C) Both A) and B)                         | above              | D) None of the       | above                    |   |
|      | 4) When D is the diar the best power fac  |                    |                      |                          |   |
|      | A) $D = L$                                | B) D = PF          | C) $D = \sqrt{(PL)}$ | D) D = 1.35 P $\sqrt{L}$ |   |

14



| 5)  | The average value range                 | of specific electric | c loading of induc | ction motors is in the |
|-----|-----------------------------------------|----------------------|--------------------|------------------------|
|     | A) 5000 to 45000 a                      | mpere conductor      | s/meter            |                        |
|     | B) 50 to 450 amper                      | e conductors/me      | ter                |                        |
|     | C) 500 to 4500 amp                      |                      |                    |                        |
|     | D) 5 to 50 ampere of                    | conductors/meter     | •                  |                        |
| 6)  | The material used for                   | or making perma      | nent magnet is     |                        |
|     | A) Cast iron                            | B) Soft steel        | C) Hard steel      | D) Silicon steel       |
| 7)  | The power factor of magnetizing current |                      |                    | if the                 |
|     | A) Low, low                             | B) High, high        | C) High, low       | D) Low,high            |
| 8)  | Turbo-alternators ar                    | re of                |                    |                        |
|     | A) Salient                              | B) Non-Salient       | C) Circular        | D) None of the above   |
| 9)  | Iron losses of a mad                    | chine are            |                    |                        |
|     | A) Directly proportion                  | onal to flux densit  | ty                 |                        |
|     | B) Directly proportion                  | onal to the square   | e of flux density  |                        |
|     | C) Inversely proport                    | tional to flux dens  | sity               |                        |
|     | D) Inversely proport                    | tional to the squa   | re of flux density |                        |
| 10) | Which is non-magne                      | etic material ?      |                    |                        |
|     | A) Nickel                               | B) Cobalt            | C) Aluminium       | D) Gadolinium          |
| 11) | In electrical machine magnets is        | es, the material p   | oreferred for pole | shoes of electro-      |
|     | A) Pure iron                            | B) Aluminium         | C) Copper          | D) Lead                |
| 12) | The percentage of s                     | silicon in transfori | mer stampings is   | usually limited to     |
|     | A) 0.4%                                 | B) 1.4%              | C) 4%              | D) 14%                 |
| 13) | In an alternator, whi waveform ?        | ich of the followin  | ng coils will have | EMF closer to sine     |
|     | A) Concentrated wi                      | nding in full pitch  | coils              |                        |
|     | B) Concentrated wi                      | nding in short pite  | ch coils           |                        |
|     | C) Distributed windi                    | ng in full pitch co  | oils               |                        |
|     | D) Distributed windi                    | ng in short pitch    | coils              |                        |
| 14) | In transformers, the generally used for | cylindrical windir   | ng with rectangul  | ar conductors is       |
|     | A) Low voltage wind                     | ding                 | B) High voltage    | winding                |
|     | C) Tertiary voltage                     | winding              | D) Any of the al   | oove                   |
|     |                                         |                      |                    |                        |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (Electrical and Elctronics Engg.) (Part – II) (New) (CGPA) Examination, 2018 ELECTRICAL MACHINE DESIGN

Day and Date: Thursday, 17-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

2) Assume the suitable data whenever necessary.

SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- a) Explain the different magnetic materials used for electrical machines.
- b) Explain various types of windings used in transformer.
- c) Estimate no load current per phase for 6600/400 V, 50 Hz, single phase core type transformer from following data:

Net cross section area of iron =  $130 \text{ cm}^2$ , maximum flux density =  $1.2 \text{ wb/m}^2$ , mean length of flux path = 270 cm, specific iron loss = 2.1 W/kg, specific gravity of iron = 7.5 gm/cc, effect of joints = air gap of 1 mm.

- d) Explain the choice of flux density and choice of current density in designing of transformer.
- e) Derive an output equation of 1 phase shell type transformer.

### 3. Solve **any two**:

 $(6 \times 2 = 12)$ 

- a) Estimate the main dimensions of core for a 100 KVA, 11 KV/415 V, 50 Hz, three phase core transformer. EMF/turn = 5 V, stacking factor = 0.9, a flux density of 1.4 wb/m², current density of 2.6A/Sq. mm, window space factor of 0.3, use three stepped core.
- b) Design cooling arrangement for 250 KVA, 6600/400 V, 50 Hz, three phase delta/star oil immersed natural cooled transformer with the following data:
  - i) Winding temperature rise not be exceed 50°C
  - ii) Total losses at 90°C are 5 KW
  - iii) Tank dimensions  $H \times W \times L = 125 \times 100 \times 50$  (all in cm)
  - iv) Oil level = 1.15 cm.

Sketch the diagram to show the cooling arrangement.

c) Why stepped cores are used in transformer? Explain different core section used for transformer.

### 

#### SECTION - II

### 4. Solve any four:

 $(4 \times 4 = 16)$ 

- a) What are different factors for making the choice of specific loading for an alternator?
- b) Derive an expression for Dispersion coefficient in an induction motor.
- c) An 11 KW, 3-phase, 6 pole, 50 Hz, 220 V, star connected induction motor has 54 stator slots, each containing a 9 conductors. Calculate the value of bar and end ring current. The number of rotor bars is 64. The machine has the efficiency of 0.86 and power factor of 0.82. The rotor MMF = 85% stator MMF. Also find the bar and end ring section if current density is 5A/mm<sup>2</sup>.
- d) Explain the concept of B60 in an induction motor.
- e) Discuss the factors that determine the choice of air gap length in induction motor.

### 5. Solve any two:

 $(6 \times 2 = 12)$ 

- a) Explain procedure to draw circle diagram of 3 φ induction motor.
- b) Determine the no. of stator and rotor slots, no. of rotor conductor and area of 30 KW, 3-phase, 50 Hz, 400 V, 6 poles slip ring induction motor.
   D = 40 cm, efficiency = 0.8, power factor = 0.8, flux per pole = 12.4 mWb, current density = 4 A/mm², winding factor = 0.96, rotor voltage at slip ring at standstill about 200 V.
- c) Derive the expression for bar current and end ring current for a three phase induction motor.

Set S



| Seat | Set | D |
|------|-----|---|
| No.  | Set |   |

| Day and Date: Saturday, 19-5-2018 | Total Marks : 70 |
|-----------------------------------|------------------|
| Time: 2.30 p.m. to 5.30 p.m.      |                  |

- Instructions: 1) All questions are compulsory.
  - 2) Figure to the right indicates maximum marks.
  - 3) Assume the suitable data whenever necessary.
  - 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

| Duratio | on : 30 Minutes                             |                  |                      | Marks: 14 |
|---------|---------------------------------------------|------------------|----------------------|-----------|
| 1. Ch   | oose the correct answer:                    |                  |                      | (1×14=14) |
| 1)      | industries are rui                          | n by family mem  | bers.                |           |
| ŕ       | a) Cottage                                  | b) SSI           |                      |           |
|         | c) Tiny                                     | d) Large sc      | ale industries       |           |
| 2)      | Micro economy deals with                    |                  |                      |           |
|         | a) Whole economy                            | b) Smaller       | unit of economy      |           |
|         | c) Only public sector                       | d) Only priv     | ate sector           |           |
| 3)      | Under perfect competition, price demand and | ce is determined | I by the interaction | of total  |
|         | a) Total supply                             | b) Total cos     | st                   |           |
|         | c) Total utility                            | d) Total pro     | duction              |           |
| 4)      | The short run Average Cost Cu               | ırve is          | shaped.              |           |
|         | a) V b) U                                   | c) L             | d) Any of the        | above     |

| 5)  | ) In function of management the actual performance of sub ordinates is guided towards common goal.                                                                                                           |                  |                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|
|     | <ul><li>a) Staffing</li><li>c) Leadership</li></ul>                                                                                                                                                          | •                | Controlling Directing                                                           |
| 6)  | When a firm's average revenue is a) Super profit c) Sub-normal profit                                                                                                                                        | b)               | al to its average cost, it gets<br>Normal profit<br>None of the above           |
| 7)  | are called as mini indu                                                                                                                                                                                      | stri             | es.                                                                             |
|     | a) SSI b) Cottage                                                                                                                                                                                            | c)               | Tiny d) None of these                                                           |
| 8)  | a) Self-confidence c) Foresightness                                                                                                                                                                          | rene<br>b)<br>d) | eur.<br>Risk takeover<br>All of these                                           |
| 9)  | The main disadvantage of line organical and the second of the level executives have to do b) Structure is rigid c) Communication delays occur d) All of the above                                            |                  |                                                                                 |
| 10) | The most popular type of organisa Constructions is a) Line organization c) Functional organization                                                                                                           | b)               | used for Civil Engineering  Line and staff organisation  Effective organization |
| 11) | Routing prescribes the a) Flow of material in the plant c) Proper utilization of machines                                                                                                                    | •                | •                                                                               |
| 12) | <ul><li>In inventory control, the economic</li><li>a) Optimum lot size</li><li>b) Highest level of inventory</li><li>c) Lot corresponding to break-eve</li><li>d) Capability of a plant to produce</li></ul> | n p              |                                                                                 |
| 13) | The appellate authority for an indu<br>a) Management<br>c) High court/Supreme Court                                                                                                                          | b)               | al dispute is<br>Labour court<br>Board of directors                             |
| 14) | The management of thefo in nature.                                                                                                                                                                           | rm (             | of business organization is totalitarian                                        |
|     | <ul><li>a) Cooperative</li><li>c) Individual proprietorship</li></ul>                                                                                                                                        | ,                | Partnership All of the above                                                    |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) Assume the suitable data whenever necessary.

SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail line and staff organization.
- 2) Explain Partnership Organization.
- 3) Explain make and buy decision.
- 4) Write short notes on economic lot size.
- 5) Explain the Science and Technological Development of Country.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain macro and micro economy in brief.
- 2) Explain the Science and Technological Development of Country.
- 3) Define value engineering and value analysis in brief along with advantages.

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain rules and advantages of industrial safety.
- 2) Explain staffing and controlling in the organization.
- 3) Describe importance of industrial management.
- 4) Write a short note on project planning tools.
- 5) State and explain the qualities of entrepreneur in brief.
- 5. Solve any two: (6×2=12)
  - 1) Write the salient features of Indian Electricity Act, 2003.
  - 2) Explain detail procedure for formation of public limited company.
  - 3) Explain the management information system in detail.

\_\_\_\_\_



| Seat | Sot |   |
|------|-----|---|
| No.  | Set | Q |

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) Assume the suitable data whenever necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

| Duration | on : 30 Minutes                                                                                                                                                                      |                                                          | Marks: 14 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------|
| 1. Cł    | noose the correct answer :                                                                                                                                                           |                                                          | (1×14=14) |
| 1)       | <ul><li>a) are qualities of Entral</li><li>a) Self-confidence</li><li>c) Foresightness</li></ul>                                                                                     | repreneur.<br>b) Risk takeover<br>d) All of these        |           |
| 2)       | <ul> <li>The main disadvantage of line a) Top level executives have to</li> <li>b) Structure is rigid</li> <li>c) Communication delays occur</li> <li>d) All of the above</li> </ul> | o do excessive work                                      |           |
| 3)       | <ul> <li>The most popular type of organ</li> <li>Constructions is</li> <li>a) Line organization</li> <li>c) Functional organization</li> </ul>                                       | b) Line and staff organisation d) Effective organization |           |



| 4)  | Routing prescribes the a) Flow of material in the plant c) Proper utilization of machines                                                                  | <ul><li>b) Proper utilization of man power</li><li>d) Inspection of final product</li></ul> |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 5)  | In inventory control, the economic a) Optimum lot size b) Highest level of inventory c) Lot corresponding to break-eve d) Capability of a plant to produce | en point                                                                                    |
| 6)  | The appellate authority for an indual Amanagement c) High court/Supreme Court                                                                              | b) Labour court                                                                             |
| 7)  | in nature.                                                                                                                                                 | orm of business organization is totalitarian b) Partnership                                 |
|     | <ul><li>a) Cooperative</li><li>c) Individual proprietorship</li></ul>                                                                                      | d) All of the above                                                                         |
| 8)  | industries are run by                                                                                                                                      |                                                                                             |
|     | <ul><li>a) Cottage</li><li>c) Tiny</li></ul>                                                                                                               | <ul><li>b) SSI</li><li>d) Large scale industries</li></ul>                                  |
| 9)  | Micro economy deals with                                                                                                                                   |                                                                                             |
|     | <ul><li>a) Whole economy</li><li>c) Only public sector</li></ul>                                                                                           | <ul><li>b) Smaller unit of economy</li><li>d) Only private sector</li></ul>                 |
| 10) | • • • • •                                                                                                                                                  | s determined by the interaction of total                                                    |
|     | demand and a) Total supply                                                                                                                                 | b) Total cost                                                                               |
|     | c) Total utility                                                                                                                                           | d) Total production                                                                         |
| 11) | The short run Average Cost Curve                                                                                                                           |                                                                                             |
| 12\ | a) V b) U                                                                                                                                                  | c) L d) Any of the above gement the actual performance of sub-                              |
| 12) | ordinates is guided towards comma) Staffing                                                                                                                | on goal.<br>b) Controlling                                                                  |
| 13) | c) Leadership When a firm's average revenue is                                                                                                             | d) Directing equal to its average cost, it gets                                             |
| 10) | <ul><li>a) Super profit</li><li>c) Sub-normal profit</li></ul>                                                                                             | b) Normal profit                                                                            |
| 14) | are called as mini indu                                                                                                                                    |                                                                                             |
|     | a) SSI b) Cottage                                                                                                                                          | c) Tiny d) None of these                                                                    |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) Assume the suitable data whenever necessary.

#### SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail line and staff organization.
- 2) Explain Partnership Organization.
- 3) Explain make and buy decision.
- 4) Write short notes on economic lot size.
- 5) Explain the Science and Technological Development of Country.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain macro and micro economy in brief.
- 2) Explain the Science and Technological Development of Country.
- 3) Define value engineering and value analysis in brief along with advantages.

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain rules and advantages of industrial safety.
- 2) Explain staffing and controlling in the organization.
- 3) Describe importance of industrial management.
- 4) Write a short note on project planning tools.
- 5) State and explain the qualities of entrepreneur in brief.
- 5. Solve any two: (6×2=12)
  - 1) Write the salient features of Indian Electricity Act, 2003.
  - 2) Explain detail procedure for formation of public limited company.
  - 3) Explain the management information system in detail.

\_\_\_\_\_



| Seat | Cat | В |
|------|-----|---|
| No.  | Set | K |

| Day and Date: Saturday,  | 19-5-2018 | Total Marks: 70 |
|--------------------------|-----------|-----------------|
| za, ana zaro i caranaa,, |           | 1010111011011   |

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) Assume the suitable data whenever necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

| Dura | ation : 30 Minu                      | tes                              |                                                | Marks: 14        |  |
|------|--------------------------------------|----------------------------------|------------------------------------------------|------------------|--|
| 1.   | 1. Choose the correct answer:        |                                  |                                                |                  |  |
|      | ,                                    | s guided towards con             | •                                              | •                |  |
|      | 2) When a firm a) Super p c) Sub-nor | rofit                            | is equal to its a<br>b) Normal p<br>d) None of |                  |  |
|      | 3)a) SSI                             | are called as mini in b) Cottage |                                                | d) None of these |  |
|      | a) Self-cor<br>c) Foresig            |                                  | epreneur.<br>b) Risk take<br>d) All of the     |                  |  |



| 5)  | The main disadvantage of line organisation is  a) Top level executives have to do excessive work b) Structure is rigid c) Communication delays occur d) All of the above |      |                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------|
| 6)  | The most popular type of organisa Constructions is                                                                                                                       | tior | used for Civil Engineering                         |
|     | <ul><li>a) Line organization</li><li>c) Functional organization</li></ul>                                                                                                |      | Line and staff organisation Effective organization |
| 7)  | Routing prescribes the a) Flow of material in the plant c) Proper utilization of machines                                                                                | •    | · · · · · · · · · · · · · · · · · · ·              |
| 8)  | In inventory control, the economic a) Optimum lot size b) Highest level of inventory c) Lot corresponding to break-eve d) Capability of a plant to produce               | n p  |                                                    |
| 9)  | The appellate authority for an indu<br>a) Management<br>c) High court/Supreme Court                                                                                      | b)   | Labour court                                       |
| 10) | The management of thefo in nature.                                                                                                                                       | rm   | of business organization is totalitarian           |
|     | <ul><li>a) Cooperative</li><li>c) Individual proprietorship</li></ul>                                                                                                    |      | Partnership All of the above                       |
| 11) | industries are run by                                                                                                                                                    |      |                                                    |
|     | <ul><li>a) Cottage</li><li>c) Tiny</li></ul>                                                                                                                             | •    | SSI<br>Large scale industries                      |
| 12) | Micro economy deals with a) Whole economy c) Only public sector                                                                                                          |      | Smaller unit of economy Only private sector        |
| 13) | Under perfect competition, price is demand and                                                                                                                           | s d  | etermined by the interaction of total              |
|     | a) Total supply c) Total utility                                                                                                                                         | ,    | Total cost<br>Total production                     |
| 14) | The short run Average Cost Curve                                                                                                                                         |      |                                                    |
|     | a) V b) U                                                                                                                                                                | c)   | L d) Any of the above                              |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) Assume the suitable data whenever necessary.

SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail line and staff organization.
- 2) Explain Partnership Organization.
- 3) Explain make and buy decision.
- 4) Write short notes on economic lot size.
- 5) Explain the Science and Technological Development of Country.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain macro and micro economy in brief.
- 2) Explain the Science and Technological Development of Country.
- 3) Define value engineering and value analysis in brief along with advantages.

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain rules and advantages of industrial safety.
- 2) Explain staffing and controlling in the organization.
- 3) Describe importance of industrial management.
- 4) Write a short note on project planning tools.
- 5) State and explain the qualities of entrepreneur in brief.
- 5. Solve any two: (6×2=12)
  - 1) Write the salient features of Indian Electricity Act, 2003.
  - 2) Explain detail procedure for formation of public limited company.
  - 3) Explain the management information system in detail.

\_\_\_\_\_



| Seat |  |
|------|--|
| No.  |  |

### B.E. (Electrical and Electronics Engineering) (Part – II) (New CGPA) Examination, 2018 ENGINEERING ECONOMICS AND INDUSTRIAL MANAGEMENT

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** questions are **compulsory**.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) **Assume** the suitable data **whenever** necessary.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) The most popular type of organisation used for Civil Engineering Constructions is
  - a) Line organization

- b) Line and staff organisation
- c) Functional organization
- d) Effective organization
- 2) Routing prescribes the
  - a) Flow of material in the plant
- b) Proper utilization of man power
- c) Proper utilization of machines d) Inspection of final product
- 3) In inventory control, the economic order quantity is the
  - a) Optimum lot size
  - b) Highest level of inventory
  - c) Lot corresponding to break-even point
  - d) Capability of a plant to produce

| 4)  | The appellate authority for an inca) Management c) High court/Supreme Court                                                              | b) Labour court                                            |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|
| 5)  | in nature.                                                                                                                               | form of business organization is totalitarian              |  |  |
|     | <ul><li>a) Cooperative</li><li>c) Individual proprietorship</li></ul>                                                                    | b) Partnership                                             |  |  |
| - \ |                                                                                                                                          |                                                            |  |  |
| 6)  | industries are run                                                                                                                       |                                                            |  |  |
|     | <ul><li>a) Cottage</li><li>c) Tiny</li></ul>                                                                                             | <ul><li>b) SSI</li><li>d) Large scale industries</li></ul> |  |  |
| 7)  | Micro economy deals with                                                                                                                 | d) Large codic induction                                   |  |  |
| ,,  | a) Whole economy                                                                                                                         | b) Smaller unit of economy                                 |  |  |
|     | <ul><li>a) Whole economy</li><li>c) Only public sector</li></ul>                                                                         | d) Only private sector                                     |  |  |
| 8)  |                                                                                                                                          | is determined by the interaction of total                  |  |  |
|     | ,                                                                                                                                        | b) Total cost                                              |  |  |
|     | c) Total utility                                                                                                                         | d) Total production                                        |  |  |
| 9)  | The short run Average Cost Curv                                                                                                          |                                                            |  |  |
|     | •                                                                                                                                        | c) L d) Any of the above                                   |  |  |
| 10) |                                                                                                                                          | agement the actual performance of sub-                     |  |  |
|     | ordinates is guided towards com a) Staffing                                                                                              | b) Controlling                                             |  |  |
|     | c) Leadership                                                                                                                            | d) Directing                                               |  |  |
| 11) | •                                                                                                                                        | s equal to its average cost, it gets                       |  |  |
| ,   |                                                                                                                                          |                                                            |  |  |
|     | <ul><li>a) Super profit</li><li>c) Sub-normal profit</li></ul>                                                                           | d) None of the above                                       |  |  |
| 12) | are called as mini inc                                                                                                                   | dustries.                                                  |  |  |
|     | a) SSI b) Cottage                                                                                                                        | c) Tiny d) None of these                                   |  |  |
| 13) | are qualities of Entre                                                                                                                   | •                                                          |  |  |
|     | a) Self-confidence                                                                                                                       | b) Risk takeover                                           |  |  |
|     | c) Foresightness                                                                                                                         | d) All of these                                            |  |  |
| 14) | The main disadvantage of line or a) Top level executives have to b) Structure is rigid c) Communication delays occur d) All of the above |                                                            |  |  |
|     |                                                                                                                                          |                                                            |  |  |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) All questions are compulsory.

- 2) Figure to the **right** indicates **maximum** marks.
- 3) Assume the suitable data whenever necessary.

#### SECTION - I

### 2. Solve any four:

 $(4 \times 4 = 16)$ 

- 1) Explain in detail line and staff organization.
- 2) Explain Partnership Organization.
- 3) Explain make and buy decision.
- 4) Write short notes on economic lot size.
- 5) Explain the Science and Technological Development of Country.

### 3. Solve any two:

 $(6 \times 2 = 12)$ 

- 1) Explain macro and micro economy in brief.
- 2) Explain the Science and Technological Development of Country.
- 3) Define value engineering and value analysis in brief along with advantages.

### SECTION - II

4. Solve any four: (4×4=16)

- 1) Explain rules and advantages of industrial safety.
- 2) Explain staffing and controlling in the organization.
- 3) Describe importance of industrial management.
- 4) Write a short note on project planning tools.
- 5) State and explain the qualities of entrepreneur in brief.
- 5. Solve any two: (6×2=12)
  - 1) Write the salient features of Indian Electricity Act, 2003.
  - 2) Explain detail procedure for formation of public limited company.
  - 3) Explain the management information system in detail.

\_\_\_\_\_

| Seat |  |
|------|--|
| No.  |  |

Set P

### B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 Elective – II: ENERGY CONSERVATION AND AUDITING

| Day           | and Date | : Tuesday, 22-5-2018 | Max. Marks : 70 |
|---------------|----------|----------------------|-----------------|
| <del></del> - | 0.00     | . 5.00               |                 |

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                                                                    |                               | Top of Page.                                                               |                                         |  |
|--------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|-----------------------------------------|--|
|                                                                    |                               | MCQ/Objective Ty                                                           | pe Questions                            |  |
| Dur                                                                | atio                          | n : 30 Minutes                                                             | Marks: 14                               |  |
| 1.                                                                 | 1. Choose the correct answer: |                                                                            |                                         |  |
|                                                                    | 1)                            | The judicious and effective use of encompetitive positions this can be the |                                         |  |
|                                                                    |                               | a) Energy conservation                                                     | b) Energy management                    |  |
|                                                                    |                               | c) Energy policy                                                           | d) Energy audit                         |  |
|                                                                    | 2)                            | Which of the following would be of imenergy management programme?          | portance in the success of an           |  |
|                                                                    |                               | a) Communication b) Awareness                                              | c) Motivation d) All of these           |  |
|                                                                    | 3)                            | Which of the following is not consider                                     | ed for external bench marking?          |  |
|                                                                    |                               | a) Scale of operation                                                      | b) Vintage of technology                |  |
|                                                                    |                               | c) Energy price                                                            | d) Quality of raw material and products |  |
| 4) The legal frame work for energy efficiency in India is given by |                               |                                                                            | ency in India is given by               |  |
|                                                                    |                               | a) Electricity Act, 2003                                                   | b) Electricity Conservation Act, 2001   |  |
|                                                                    |                               | c) Electricity Act, 1958                                                   | d) Indian Electricity Act, 1910         |  |
|                                                                    | 5)                            | The ratio of current year's production                                     | to the reference year's production is   |  |
|                                                                    |                               | a) Demand factor                                                           | b) Production factor                    |  |
|                                                                    |                               | c) Utilization factor                                                      | d) Load factor                          |  |

| 6)  | What does the concept of true value of money imply?                                    |                                                       |                 |                                                 |                          |  |
|-----|----------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------|-------------------------------------------------|--------------------------|--|
|     | <ul> <li>a) Present value of money</li> </ul>                                          |                                                       | b)              | b) Future value of money                        |                          |  |
|     | c) Discounting of cas                                                                  | sh flows                                              | d)              | All of these                                    |                          |  |
| 7)  | The major source of                                                                    | electrical power                                      | gei             | neration in Ind                                 | ia is                    |  |
|     | a) Thermal                                                                             | o) Hydel                                              | c)              | Nuclear                                         | d) Wind                  |  |
| 8)  | One unit of Electricity                                                                | is equivalent to                                      |                 |                                                 | Kcal heat units.         |  |
|     | a) 800                                                                                 | o) 860                                                | c)              | 400                                             | d) 680                   |  |
| 9)  | An Energy policy progoal and integrating                                               |                                                       |                 |                                                 |                          |  |
|     | a) Budget                                                                              |                                                       | b)              | Delivery mech                                   | hanism                   |  |
|     | c) Action plan                                                                         |                                                       | d)              | Foundation                                      |                          |  |
| 10) | One tonne of oil equi                                                                  | valent is                                             |                 |                                                 |                          |  |
|     | a) 10,000 Kcal                                                                         | o) 1000 Kcal                                          | c)              | 1000 kg. of oi                                  | il d) 10,000 Mcal        |  |
| 11) | When the current lag caused mainly due to                                              | _                                                     |                 | alternating cur                                 | rent system it is        |  |
|     | a) Resistive load                                                                      |                                                       | b)              | Capacitive loa                                  | ad                       |  |
|     | c) Inductive load                                                                      |                                                       | d)              | None of the a                                   | bove                     |  |
| 12) | The proposed interna                                                                   | ational standard                                      | for             | energy manag                                    | gement is                |  |
|     | a) ISO 9001                                                                            | a) ICO 14000                                          |                 | 100 14001                                       | D 100 -001               |  |
|     | a) 150 9001                                                                            | ) 15O 14000                                           | C)              | 150 14001                                       | d) ISO 5001              |  |
| 13) | Energy intensity is th                                                                 | ,                                                     | ,               |                                                 | d) ISO 5001              |  |
| 13) | ,                                                                                      | e ratio of                                            |                 |                                                 | ,                        |  |
| 13) | Energy intensity is th                                                                 | e ratio of<br>/GDP                                    | b)              | GDP/Fuel co                                     | nsumption                |  |
| ŕ   | Energy intensity is that a) Fuel consumption                                           | e ratio of<br>/GDP<br>sumption                        | b)<br>d)        | GDP/Fuel con                                    | nsumption<br>umption/GDP |  |
| ŕ   | Energy intensity is that a) Fuel consumption c) GDP/Energy cons                        | e ratio of<br>/GDP<br>sumption<br>P rating of a mo    | b)<br>d)<br>tor | GDP/Fuel conestindicates                        | nsumption<br>umption/GDP |  |
| ŕ   | Energy intensity is that a) Fuel consumption c) GDP/Energy constant Name plate KW or H | e ratio of<br>/GDP<br>sumption<br>P rating of a motor | b) d) tor b)    | GDP/Fuel con Energy consuindicates Output KW of | nsumption<br>umption/GDP |  |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 Elective – II: ENERGY CONSERVATION AND AUDITING

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instruction: Attempt any two questions from each Section.

### SECTION - I

### 2. Solve any three questions:

 $(3 \times 4 = 12)$ 

- 1) What is the difference between commercial and non-commercial energy? Give examples.
- 2) Explain the Bachat lamp Yojana Scheme.
- 3) What is meant by Energy bench marking? How it is helpful for energy audit?
- 4) Explain the difference between Energy Conservation and Energy efficiency with a suitable example.

### 3. Solve any two questions:

- 1) List ten strategic measures for meeting the future energy requirements in India.
- 2) Explain the difference between Standards and Labeling.
- 3) Write short note on:
  - a) Thermography
  - b) Smart metering.

### 

### SECTION - II

4. Answer any three questions:

 $(3 \times 4 = 12)$ 

- 1) Explain ways by which employees can be motivated on energy management.
- 2) Explain briefly the operation of ESCO.
- 3) What is the essential difference between CPM and PERT?
- 4) Explain the steps involved in project development cycle.
- 5. Answer any two questions:

- 1) List the duties and responsibilities of an energy manager.
- 2) Explain in detail the project budget planning process.
- 3) Explain what you understand by energy monitoring and targeting.

| Seat |  |
|------|--|
| No.  |  |

Set Q

### B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 Elective – II: ENERGY CONSERVATION AND AUDITING

Day and Date: Tuesday, 22-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

|     |      |                                          | •                   | •        |             |              |           |
|-----|------|------------------------------------------|---------------------|----------|-------------|--------------|-----------|
| Dur | atio | n : 30 Minutes                           |                     |          |             |              | Marks: 14 |
| 1.  | Ch   | oose the correct ans                     | swer:               |          |             |              | (14×1=14) |
|     | 1)   | One unit of Electricit                   | ty is equivalent to |          |             | Kcal heat ur | nits.     |
|     |      | a) 800                                   | b) 860              | c) 400   |             | d) 680       |           |
|     | 2)   | An Energy policy progoal and integrating |                     |          |             |              |           |
|     |      | a) Budget                                |                     | b) Deli  | very mec    | hanism       |           |
|     |      | c) Action plan                           |                     | d) Fou   | ndation     |              |           |
|     | 3)   | One tonne of oil equ                     | iivalent is         |          |             |              |           |
|     |      | a) 10,000 Kcal                           | b) 1000 Kcal        | c) 100   | 0 kg. of o  | il d) 10,000 | Mcal      |
|     | 4)   | When the current lag                     | -                   |          | nating cur  | rent system  | it is     |
|     |      | a) Resistive load                        |                     | b) Cap   | acitive loa | ad           |           |
|     |      | c) Inductive load                        |                     | d) Non   | e of the a  | bove         |           |
|     | 5)   | The proposed intern                      | ational standard    | for ener | gy manag    | gement is    |           |
|     |      | a) ISO 9001                              | b) ISO 14000        | c) ISO   | 14001       | d) ISO 500   | 1         |
|     | 6)   | Energy intensity is the                  | ne ratio of         |          |             |              |           |
|     |      | a) Fuel consumption                      | n/GDP               | b) GDF   | P/Fuel co   | nsumption    |           |
|     |      | c) GDP/Energy con                        | sumption            | d) Ene   | rgy consu   | umption/GDP  | P.T.O.    |
|     |      |                                          |                     |          |             |              |           |

| 7)  | Name plate KW or HP rating of a motor indicates                             |                                         |     |
|-----|-----------------------------------------------------------------------------|-----------------------------------------|-----|
|     | a) Input KW to the motor                                                    | b) Output KW of the motor               |     |
|     | c) Minimum input KW to the motor                                            | d) Maximum input KW to the motor        |     |
| 8)  | The judicious and effective use of en competitive positions this can be the |                                         |     |
|     | a) Energy conservation                                                      | b) Energy management                    |     |
|     | c) Energy policy                                                            | d) Energy audit                         |     |
| 9)  | Which of the following would be of imenergy management programme?           | nportance in the success of an          |     |
|     | a) Communication b) Awareness                                               | c) Motivation d) All of these           |     |
| 10) | Which of the following is not consider                                      | ered for external bench marking?        |     |
|     | a) Scale of operation                                                       | b) Vintage of technology                |     |
|     | c) Energy price                                                             | d) Quality of raw material and produc   | cts |
| 11) | The legal frame work for energy effic                                       | ciency in India is given by             | _   |
|     | a) Electricity Act, 2003                                                    | b) Electricity Conservation Act, 2001   | 1   |
|     | c) Electricity Act, 1958                                                    | d) Indian Electricity Act, 1910         |     |
| 12) | The ratio of current year's production                                      | n to the reference year's production is |     |
|     | a) Demand factor                                                            | b) Production factor                    |     |
|     | c) Utilization factor                                                       | d) Load factor                          |     |
| 13) | What does the concept of true value                                         | of money imply ?                        |     |
|     | a) Present value of money                                                   | b) Future value of money                |     |
|     | c) Discounting of cash flows                                                | d) All of these                         |     |
| 14) | The major source of electrical power                                        | generation in India is                  | _   |
| ,   | •                                                                           | c) Nuclear d) Wind                      | _   |
|     |                                                                             |                                         |     |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 Elective – II: ENERGY CONSERVATION AND AUDITING

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instruction: Attempt any two questions from each Section.

### SECTION - I

### 2. Solve any three questions:

 $(3 \times 4 = 12)$ 

- What is the difference between commercial and non-commercial energy?
   Give examples.
- 2) Explain the Bachat lamp Yojana Scheme.
- 3) What is meant by Energy bench marking? How it is helpful for energy audit?
- 4) Explain the difference between Energy Conservation and Energy efficiency with a suitable example.

### 3. Solve any two questions:

- 1) List ten strategic measures for meeting the future energy requirements in India.
- 2) Explain the difference between Standards and Labeling.
- 3) Write short note on:
  - a) Thermography
  - b) Smart metering.

### 

### SECTION - II

4. Answer any three questions:

 $(3 \times 4 = 12)$ 

- 1) Explain ways by which employees can be motivated on energy management.
- 2) Explain briefly the operation of ESCO.
- 3) What is the essential difference between CPM and PERT?
- 4) Explain the steps involved in project development cycle.
- 5. Answer any two questions:

 $(2 \times 8 = 16)$ 

- 1) List the duties and responsibilities of an energy manager.
- 2) Explain in detail the project budget planning process.
- 3) Explain what you understand by energy monitoring and targeting.

\_\_\_\_

| Seat |  |
|------|--|
| No.  |  |

Set R

### B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 Elective – II: ENERGY CONSERVATION AND AUDITING

Day and Date: Tuesday, 22-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|     |      | •                                   | Top of Page.        |         |               |                |           |
|-----|------|-------------------------------------|---------------------|---------|---------------|----------------|-----------|
|     |      |                                     | MCQ/Objective       | Туре    | Questions     | <b>3</b>       |           |
| Dur | atio | n : 30 Minutes                      |                     |         |               |                | Marks: 14 |
| 1.  | Ch   | noose the correct a                 | answer:             |         |               |                | (14×1=14) |
|     | 1)   | The ratio of curre                  | nt year's product   | ion to  | the referen   | ce year's prod | uction is |
|     |      | a) Demand facto                     | r                   | b)      | Production    | factor         |           |
|     |      | c) Utilization fact                 | or                  | d)      | Load facto    | r              |           |
|     | 2)   | What does the co                    | ncept of true val   | ue of i | money imply   | /?             |           |
|     |      | a) Present value                    | of money            | b)      | Future valu   | ue of money    |           |
|     |      | c) Discounting of                   | cash flows          | d)      | All of these  | )              |           |
|     | 3)   | The major source                    | e of electrical pow | ver ge  | neration in I | ndia is        |           |
|     |      | a) Thermal                          | b) Hydel            | c)      | Nuclear       | d) Wind        |           |
|     | 4)   | One unit of Electr                  | ricity is equivalen | t to _  |               | Kcal heat ı    | units.    |
|     |      | a) 800                              | b) 860              | c)      | 400           | d) 680         |           |
|     | 5)   | An Energy policy goal and integrati | •                   |         |               | • .            |           |
|     |      | a) Budget                           |                     | b)      | Delivery m    | echanism       |           |
|     |      | c) Action plan                      |                     | d)      | Foundation    | า              |           |

| 6)  | One tonne of oil equivalent is                                              |                                         |
|-----|-----------------------------------------------------------------------------|-----------------------------------------|
|     | a) 10,000 Kcal b) 1000 Kcal                                                 | c) 1000 kg. of oil d) 10,000 Mcal       |
| 7)  | When the current lags the voltage in caused mainly due to                   | · · · · · · · · · · · · · · · · · · ·   |
|     | a) Resistive load                                                           | b) Capacitive load                      |
|     | c) Inductive load                                                           | d) None of the above                    |
| 8)  | The proposed international standard                                         | for energy management is                |
|     | a) ISO 9001 b) ISO 14000                                                    | c) ISO 14001 d) ISO 5001                |
| 9)  | Energy intensity is the ratio of                                            |                                         |
|     | a) Fuel consumption/GDP                                                     | b) GDP/Fuel consumption                 |
|     | c) GDP/Energy consumption                                                   | d) Energy consumption/GDP               |
| 10) | Name plate KW or HP rating of a mo                                          | tor indicates                           |
|     | a) Input KW to the motor                                                    | b) Output KW of the motor               |
|     | c) Minimum input KW to the motor                                            | d) Maximum input KW to the motor        |
| 11) | The judicious and effective use of en competitive positions this can be the |                                         |
|     | a) Energy conservation                                                      | b) Energy management                    |
|     | c) Energy policy                                                            | d) Energy audit                         |
| 12) | Which of the following would be of in energy management programme?          | nportance in the success of an          |
|     | a) Communication b) Awareness                                               | c) Motivation d) All of these           |
| 13) | Which of the following is not conside                                       | red for external bench marking?         |
|     | a) Scale of operation                                                       | b) Vintage of technology                |
|     | c) Energy price                                                             | d) Quality of raw material and products |
| 14) | The legal frame work for energy effic                                       | iency in India is given by              |
|     | a) Electricity Act, 2003                                                    | b) Electricity Conservation Act, 2001   |
|     | c) Electricity Act, 1958                                                    | d) Indian Electricity Act, 1910         |
|     |                                                                             |                                         |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 Elective – II: ENERGY CONSERVATION AND AUDITING

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instruction: Attempt any two questions from each Section.

### SECTION - I

### 2. Solve any three questions:

 $(3 \times 4 = 12)$ 

- 1) What is the difference between commercial and non-commercial energy? Give examples.
- 2) Explain the Bachat lamp Yojana Scheme.
- 3) What is meant by Energy bench marking? How it is helpful for energy audit?
- 4) Explain the difference between Energy Conservation and Energy efficiency with a suitable example.

### 3. Solve any two questions:

- 1) List ten strategic measures for meeting the future energy requirements in India.
- 2) Explain the difference between Standards and Labeling.
- 3) Write short note on:
  - a) Thermography
  - b) Smart metering.

### 

### SECTION - II

4. Answer any three questions:

 $(3 \times 4 = 12)$ 

- 1) Explain ways by which employees can be motivated on energy management.
- 2) Explain briefly the operation of ESCO.
- 3) What is the essential difference between CPM and PERT?
- 4) Explain the steps involved in project development cycle.
- 5. Answer any two questions:

- 1) List the duties and responsibilities of an energy manager.
- 2) Explain in detail the project budget planning process.
- 3) Explain what you understand by energy monitoring and targeting.

| <br> | <br> | <br> |
|------|------|------|

| Seat |  |
|------|--|
| No.  |  |

### B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 **Elective - II: ENERGY CONSERVATION AND AUDITING**

Max. Marks: 70 Day and Date: Tuesday, 22-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                                                    | MCQ/Objective                                                                                                                                                                                   | Type Questions                     |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Dur                                                | ration: 30 Minutes                                                                                                                                                                              | Marks: 14                          |  |
| 1.                                                 | Choose the correct answer:                                                                                                                                                                      | (14×1=14)                          |  |
|                                                    | 1) One tonne of oil equivalent is                                                                                                                                                               |                                    |  |
|                                                    | a) 10,000 Kcal b) 1000 Kcal                                                                                                                                                                     | c) 1000 kg. of oil d) 10,000 Mcal  |  |
|                                                    | When the current lags the voltage caused mainly due to                                                                                                                                          | ,                                  |  |
|                                                    | a) Resistive load                                                                                                                                                                               | b) Capacitive load                 |  |
|                                                    | c) Inductive load                                                                                                                                                                               | d) None of the above               |  |
|                                                    | 3) The proposed international standa                                                                                                                                                            | rd for energy management is        |  |
|                                                    | a) ISO 9001 b) ISO 14000                                                                                                                                                                        | c) ISO 14001 d) ISO 5001           |  |
|                                                    | <ul> <li>4) Energy intensity is the ratio of</li> <li>a) Fuel consumption/GDP</li> <li>b) GDP/Fuel consumption</li> <li>c) GDP/Energy consumption</li> <li>d) Energy consumption/GDP</li> </ul> |                                    |  |
| 5) Name plate KW or HP rating of a motor indicates |                                                                                                                                                                                                 |                                    |  |
|                                                    | a) Input KW to the motor                                                                                                                                                                        | b) Output KW of the motor          |  |
|                                                    | c) Minimum input KW to the moto                                                                                                                                                                 | r d) Maximum input KW to the motor |  |

| 6)                                                                 | The judicious and effective use of energy to maximise profit and enhance competitive positions this can be the definition of |                       |         |                 |                                          |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|-----------------|------------------------------------------|
|                                                                    | a) Energy conserv                                                                                                            | ation                 | b)      | Energy mana     | gement                                   |
|                                                                    | c) Energy policy                                                                                                             |                       | d)      | Energy audit    |                                          |
| 7)                                                                 | Which of the following would be of im energy management programme?                                                           |                       | npo     | rtance in the s | uccess of an                             |
|                                                                    | a) Communication                                                                                                             | b) Awareness          | c)      | Motivation      | d) All of these                          |
| 8)                                                                 | Which of the follow                                                                                                          | ring is not conside   | red     | for external be | ench marking?                            |
|                                                                    | a) Scale of operati                                                                                                          | on                    | b)      | Vintage of ted  | chnology                                 |
|                                                                    | c) Energy price                                                                                                              |                       | d)      | Quality of raw  | material and products                    |
| 9) The legal frame work for energy efficiency in India is given by |                                                                                                                              |                       | iven by |                 |                                          |
|                                                                    | a) Electricity Act, 2                                                                                                        | 2003                  | b)      | Electricity Co  | nservation Act, 2001                     |
|                                                                    | c) Electricity Act, 1                                                                                                        | 958                   | d)      | Indian Electri  | city Act, 1910                           |
| 10)                                                                | The ratio of current                                                                                                         | t year's production   | to      | the reference   | year's production is                     |
|                                                                    | a) Demand factor                                                                                                             |                       | b)      | Production fa   | ctor                                     |
|                                                                    | c) Utilization factor                                                                                                        | r                     | d)      | Load factor     |                                          |
| 11)                                                                | What does the con                                                                                                            | cept of true value    | of ı    | money imply?    |                                          |
|                                                                    | a) Present value o                                                                                                           | f money               | b)      | Future value    | of money                                 |
|                                                                    | c) Discounting of c                                                                                                          | cash flows            | d)      | All of these    |                                          |
| 12)                                                                | The major source of                                                                                                          | of electrical power   | ge      | neration in Ind | ia is                                    |
|                                                                    | a) Thermal                                                                                                                   | b) Hydel              | c)      | Nuclear         | d) Wind                                  |
| 13)                                                                | One unit of Electric                                                                                                         | city is equivalent to |         |                 | Kcal heat units.                         |
|                                                                    | a) 800                                                                                                                       | b) 860                | c)      | 400             | d) 680                                   |
| 14)                                                                | An Energy policy p goal and integrating                                                                                      |                       |         |                 | ting performance<br>anization's culture. |
|                                                                    | a) Budget                                                                                                                    |                       | b)      | Delivery mec    | hanism                                   |
|                                                                    | c) Action plan                                                                                                               |                       | d)      | Foundation      |                                          |
|                                                                    |                                                                                                                              |                       |         |                 |                                          |



| Seat |  |
|------|--|
| No.  |  |

## B.E. (E&E) (Part – II) (New CGPA) Examination, 2018 Elective – II: ENERGY CONSERVATION AND AUDITING

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instruction**: Attempt **any two** questions from **each** Section.

### SECTION - I

### 2. Solve any three questions:

 $(3 \times 4 = 12)$ 

- 1) What is the difference between commercial and non-commercial energy? Give examples.
- 2) Explain the Bachat lamp Yojana Scheme.
- 3) What is meant by Energy bench marking? How it is helpful for energy audit?
- 4) Explain the difference between Energy Conservation and Energy efficiency with a suitable example.

### 3. Solve any two questions:

- List ten strategic measures for meeting the future energy requirements in India.
- 2) Explain the difference between Standards and Labeling.
- 3) Write short note on:
  - a) Thermography
  - b) Smart metering.

### 

### SECTION - II

4. Answer any three questions:

 $(3 \times 4 = 12)$ 

- 1) Explain ways by which employees can be motivated on energy management.
- 2) Explain briefly the operation of ESCO.
- 3) What is the essential difference between CPM and PERT?
- 4) Explain the steps involved in project development cycle.
- 5. Answer any two questions:

 $(2 \times 8 = 16)$ 

- 1) List the duties and responsibilities of an energy manager.
- 2) Explain in detail the project budget planning process.
- 3) Explain what you understand by energy monitoring and targeting.

\_\_\_\_



| Seat |     |   |
|------|-----|---|
| No.  | Set | P |

| B.E. (E&E) (Old) (Part -<br>Elective – II : HIGH VOLTAGE                      | – II) Examination, 2018<br>E DC TRANSMISSION (HVDC                                                     | <b>C</b> )       |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|
| Day and Date : Saturday, 12-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.           | •                                                                                                      | л<br>Marks : 100 |
| <b>one</b> mark.                                                              | oulsory. It should be solved in<br>er Book Page No. 3. Each question<br>ejective type questions on Pag | on carries       |
| only. Don't forget<br>of Page.                                                | t to mention, Q.P. Set (P/Q/R/S                                                                        | ) on Top         |
| MCQ/Objective                                                                 | Type Questions                                                                                         |                  |
| Duration: 30 Minutes                                                          |                                                                                                        | Marks: 20        |
| 1. Choose the correct answer:                                                 |                                                                                                        | (20×1=20)        |
| 1) Most frequent type of fault in DC sy                                       | /stem is                                                                                               | ,                |
| <ul> <li>a) Converter internal fault</li> </ul>                               | b) DC line fault                                                                                       |                  |
| c) Commutation failure                                                        | d) Arc back and arc through                                                                            |                  |
| 2) A system is said to be weak if SCR                                         |                                                                                                        |                  |
| a) Less than 3 b) Less than 1                                                 | c) More than 5 d) 3 to 5                                                                               |                  |
| 3) Modern HVDC systems are all                                                | h) C plugg gapyantana                                                                                  |                  |
| <ul><li>a) 3-pulse converters</li><li>c) 24-pluse converters</li></ul>        | <ul><li>b) 6-pluse converters</li><li>d) 12-pulse converters</li></ul>                                 |                  |
| 4) In 12- pulse connections, transform                                        |                                                                                                        |                  |
| a) Delta/Delta (both)                                                         | iers are connected                                                                                     |                  |
| b) Star/Star (both)                                                           |                                                                                                        |                  |
| c) Star/Delta (both)                                                          |                                                                                                        |                  |
| d) One Star/Star and other Star/De                                            | elta                                                                                                   |                  |
| 5) If a angle of advance is 30° and over will be                              | erlap angle is 12°, the extension                                                                      | angle            |
| a) 42° b) (30/2)°                                                             | c) 18° d) 21°                                                                                          |                  |
| 6) A surge diverter is used across the                                        | DC CB to                                                                                               |                  |
| <ul> <li>a) Limit recovery voltage</li> </ul>                                 | <ul><li>b) Limit fault current</li></ul>                                                               |                  |
| c) Absorb the arc energy                                                      | d) All of the above                                                                                    |                  |
| 7) Which of the following is a series co                                      |                                                                                                        |                  |
| a) UPFC b) STATCOM                                                            | ,                                                                                                      |                  |
| Series compensation is primarily re     improve voltage profile               |                                                                                                        |                  |
| <ul><li>a) improve voltage profile</li><li>c) reduce fault currents</li></ul> | <ul><li>b) improve stability</li><li>d) all of the above</li></ul>                                     |                  |
| of reduce ladit currents                                                      | a) all of the above                                                                                    |                  |



| 9)  | Multi terminal systems are               |                        |            |
|-----|------------------------------------------|------------------------|------------|
| •   |                                          | b) Parallel connecte   | ed         |
|     |                                          | d) All of above`       |            |
| 10) | HVDC transmission commercially beg       | gán in the year,       |            |
| ,   |                                          |                        | ) 1970     |
| 11) | HVDC transmission is opted when          | 3, 1331                | .,         |
| ,   | a) Bulk power transfer is needed         |                        |            |
|     | b) Improvement of stability              |                        |            |
|     | c) Long distance and cable transmis      | sion is required       |            |
|     |                                          | sion is required       |            |
| 10\ | d) All of the above                      | sually on the AC eide  | o oro      |
| 12) | Filters used in 12-pulse converters us   |                        |            |
|     |                                          | b) 11th, 13th and hig  |            |
| 10\ | Characteristic of a conventor in the re- | d) only high-pass fil  | iter       |
| 13) | Characteristic of a converter is the re  | _                      |            |
|     |                                          | b) DC output voltag    | e and id   |
|     |                                          | d) None of these       |            |
| 14) | The initial HVDC valves were             |                        |            |
|     |                                          | b) Thyristors          |            |
| \   |                                          | d) None of above       |            |
| 15) | In a monopolar system usually the po     | ole is                 |            |
|     | a) Positive                              |                        |            |
|     | b) Negative                              |                        |            |
|     | c) Positive and negative                 |                        |            |
|     | d) Alternatively positive and negative   |                        |            |
| 16) | Thyristor valves came into operation     |                        |            |
|     |                                          |                        | ) 2000     |
| 17) | 12-pulse converters are used in mode     | ern converters beca    | use of     |
|     | a) Reduced current                       |                        |            |
|     | b) Reduced ripple                        |                        |            |
|     | c) Increased voltage and reduced ha      | ırmonics               |            |
|     | d) Both (b) and (c)                      |                        |            |
| 18) | Power transfer in DC line depends or     | 1                      |            |
|     | a) Sending and receiving end voltage     | es                     |            |
|     | b) Number of pulses in the rectifier     |                        |            |
|     | c) Line resistance                       |                        |            |
|     | d) None of the above                     |                        |            |
| 19) | The common control done in the con-      | verters is             |            |
| ,   | a) Rectifier as both voltage and curre   |                        |            |
|     | b) Inverter as both voltage and curre    |                        |            |
|     | c) Inverter as current controller        |                        |            |
|     | d) Rectifier as voltage controller and   | inverter as current of | controller |
| 20) |                                          |                        |            |
|     | a) IGBT valves                           |                        |            |
|     | b) Light or optically triggered thyristo | r valves               |            |
|     | c) Mercury arc valves                    |                        |            |
|     | d) MOSFET's and GTO valves               |                        |            |
|     | a, ividdi E i dana a i d vaived          |                        |            |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (E&E) (Old) (Part – II) Examination, 2018 Elective – II : HIGH VOLTAGE DC TRANSMISSION (HVDC)

Day and Date: Saturday, 12-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Answer any four questions :

 $(4 \times 5 = 20)$ 

Marks: 80

- a) Write the advantages and disadvantages of HVDC transmission system.
- b) Explain the requirements of firing angle scheme and explain IPC scheme.
- c) What is misfire? Explain its causes and remedies.
- d) Explain EPC scheme in detail.
- e) Explain with neat diagram the different types of DC links.
- f) Draw and explain over current protection.

## 3. Answer any two questions:

 $(10 \times 2 = 20)$ 

- a) Draw and explain typical HVDC converter station in detail.
- b) Compare EHVAC and HVDC transmission with suitable comments.
- c) Explain the over voltage protection of converter in detail.

#### SECTION - II

# 4. Answer any four questions:

- a) Explain the current margin method for protection of MTDC system.
- b) Write short note on AC filters.
- c) Explain the voltage limiting control for MTDC system.



- d) Explain with neat diagram the working of FC-TCR.
- e) Write a short note on SVC.
- f) Explain DC filters.
- 5. Answer **any two** questions:

- a) What are the causes of generation of harmonics and what are the troubles caused by it?
- b) Derive an expression for characteristic harmonics.
- c) Explain the concept of reactive power compensation.



| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |

# B.E. (E&E) (Old) (Part – II) Examination, 2018 Elective – II: HIGH VOLTAGE DC TRANSMISSION (HVDC)

Day and Date: Saturday, 12-5-2018 Max. Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 20

1. Choose the correct answer:

 $(20 \times 1 = 20)$ 

- 1) Thyristor valves came into operation in the year
  - a) 1950
- b) 1954
- c) 1972
- d) 2000
- 2) 12-pulse converters are used in modern converters because of
  - a) Reduced current
  - b) Reduced ripple
  - c) Increased voltage and reduced harmonics
  - d) Both (b) and (c)
- 3) Power transfer in DC line depends on
  - a) Sending and receiving end voltages
  - b) Number of pulses in the rectifier
  - c) Line resistance
  - d) None of the above
- 4) The common control done in the converters is
  - a) Rectifier as both voltage and current controller
  - b) Inverter as both voltage and current controller
  - c) Inverter as current controller
  - d) Rectifier as voltage controller and inverter as current controller
- 5) HVDC-VSC scheme employs
  - a) IGBT valves
  - b) Light or optically triggered thyristor valves
  - c) Mercury arc valves
  - d) MOSFET's and GTO valves
- 6) Most frequent type of fault in DC system is
  - a) Converter internal fault
- b) DC line fault
- c) Commutation failure
- d) Arc back and arc through

| 7)    | A system is said to be weak if SCR is                                             | S     |                   |       |                 |
|-------|-----------------------------------------------------------------------------------|-------|-------------------|-------|-----------------|
| ,     | a) Less than 3 b) Less than 1                                                     |       | More than 5       | d)    | 3 to 5          |
| 8)    | Modern HVDC systems are all                                                       | ·     |                   | •     |                 |
|       | a) 3-pulse converters                                                             |       | 6-pluse conver    |       |                 |
| ۵,    | c) 24-pluse converters                                                            | - /   | 12-pulse conve    | erte  | rs              |
| 9)    | In 12- pulse connections, transforme                                              | rs a  | are connected     |       |                 |
|       | a) Delta/Delta (both)                                                             |       |                   |       |                 |
|       | <ul><li>b) Star/Star (both)</li><li>c) Star/Delta (both)</li></ul>                |       |                   |       |                 |
|       | d) One Star/Star and other Star/Delt                                              | a     |                   |       |                 |
| 10)   | If a angle of advance is 30° and over                                             |       | angle is 12°. th  | e e   | extension angle |
| . • / | will be                                                                           | الماد |                   |       |                 |
|       | a) 42° b) (30/2)°                                                                 | c)    | 18°               | d)    | 21°             |
| 11)   | A surge diverter is used across the D                                             | C     | CB to             |       |                 |
|       | a) Limit recovery voltage                                                         | b)    | Limit fault curre | ent   |                 |
| 40\   | c) Absorb the arc energy                                                          | d)    | All of the above  | e     | - 0             |
| 12)   | Which of the following is a series cor                                            |       |                   |       |                 |
| 10\   | a) UPFC b) STATCOM                                                                |       |                   | u)    | 10731           |
| 13)   | Series compensation is primarily res                                              |       |                   | .,    |                 |
|       | a) improve voltage profile                                                        | ,     | improve stabilit  | -     |                 |
| 1/1)  | c) reduce fault currents Multi terminal systems are                               | u)    | all of the above  | ;     |                 |
| 17)   | a) Series connected                                                               | h)    | Parallel connec   | etec  | 1               |
|       | c) Ring connected                                                                 | ,     | All of above      | ,,,,, | •               |
| 15)   | HVDC transmission commercially be                                                 |       | n in the year,    |       |                 |
| -     | a) 1935 b) 1950                                                                   |       | 1954              | d)    | 1970            |
| 16)   | HVDC transmission is opted when                                                   |       |                   |       |                 |
|       | a) Bulk power transfer is needed                                                  |       |                   |       |                 |
|       | b) Improvement of stability                                                       | oio   | n ic required     |       |                 |
|       | <ul><li>c) Long distance and cable transmis</li><li>d) All of the above</li></ul> | 510   | ii is required    |       |                 |
| 17)   | Filters used in 12-pulse converters u                                             | sua   | ally on the AC si | de    | are             |
| ,     | a) 5 <sup>th</sup> , 7 <sup>th</sup> and high-pass                                |       | 11th, 13th and h  |       |                 |
|       | c) 6 <sup>th</sup> , 12 <sup>th</sup> and high-pass                               | d)    | only high-pass    | filte | er              |
| 18)   | Characteristic of a converter is the re                                           |       |                   |       |                 |
|       | a) AC voltage and ld                                                              | ,     | DC output volta   | age   | and Id          |
| 10)   | c) DC power and ld                                                                | a)    | None of these     |       |                 |
| 19)   | The initial HVDC valves were a) IGATS                                             | h)    | Thyristors        |       |                 |
|       | c) Mercury arc rectifiers                                                         |       | None of above     |       |                 |
| 20)   | In a monopolar system usually the pe                                              |       |                   |       |                 |
| ,     | a) Positive                                                                       |       |                   |       |                 |
|       | b) Negative                                                                       |       |                   |       |                 |
|       | c) Positive and negative                                                          |       |                   |       |                 |
|       | d) Alternatively positive and negative                                            | Э     |                   |       |                 |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (E&E) (Old) (Part – II) Examination, 2018 Elective – II : HIGH VOLTAGE DC TRANSMISSION (HVDC)

Day and Date: Saturday, 12-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Answer any four questions :

 $(4 \times 5 = 20)$ 

Marks: 80

- a) Write the advantages and disadvantages of HVDC transmission system.
- b) Explain the requirements of firing angle scheme and explain IPC scheme.
- c) What is misfire? Explain its causes and remedies.
- d) Explain EPC scheme in detail.
- e) Explain with neat diagram the different types of DC links.
- f) Draw and explain over current protection.

## 3. Answer any two questions:

 $(10 \times 2 = 20)$ 

- a) Draw and explain typical HVDC converter station in detail.
- b) Compare EHVAC and HVDC transmission with suitable comments.
- c) Explain the over voltage protection of converter in detail.

#### SECTION - II

# 4. Answer any four questions:

- a) Explain the current margin method for protection of MTDC system.
- b) Write short note on AC filters.
- c) Explain the voltage limiting control for MTDC system.



- d) Explain with neat diagram the working of FC-TCR.
- e) Write a short note on SVC.
- f) Explain DC filters.
- 5. Answer **any two** questions:

- a) What are the causes of generation of harmonics and what are the troubles caused by it?
- b) Derive an expression for characteristic harmonics.
- c) Explain the concept of reactive power compensation.



| Seat |     |   |
|------|-----|---|
| No.  | Set | R |

# B.E. (E&E) (Old) (Part – II) Examination, 2018 **Elective – II: HIGH VOLTAGE DC TRANSMISSION (HVDC)**

| Day and Date : Saturday | 12-5-2018    | May    | Marks: 10   | $\cap$ |
|-------------------------|--------------|--------|-------------|--------|
| Day and Date . Saturday | ', 12-3-2010 | IVIAX. | IVIAINS. IV | JU     |

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries **one** mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 20  $(20 \times 1 = 20)$ 

- 1. Choose the correct answer:
  - 1) HVDC transmission is opted when
    - a) Bulk power transfer is needed
    - b) Improvement of stability
    - c) Long distance and cable transmission is required
    - d) All of the above
  - 2) Filters used in 12-pulse converters usually on the AC side are
    - a) 5<sup>th</sup>, 7<sup>th</sup> and high-pass
- b) 11th, 13th and high-pass
- c) 6<sup>th</sup>, 12<sup>th</sup> and high-pass
- d) only high-pass filter
- 3) Characteristic of a converter is the relation between
  - a) AC voltage and Id
- b) DC output voltage and ld

c) DC power and ld

- d) None of these
- 4) The initial HVDC valves were
  - a) IGATS

- b) Thyristors
- c) Mercury arc rectifiers
- d) None of above
- 5) In a monopolar system usually the pole is
  - a) Positive
  - b) Negative
  - c) Positive and negative
- d) Alternatively positive and negative 6) Thyristor valves came into operation in the year
  - a) 1950
- b) 1954
- c) 1972
- d) 2000
- 7) 12-pulse converters are used in modern converters because of
  - a) Reduced current
  - b) Reduced ripple
  - c) Increased voltage and reduced harmonics
  - d) Both (b) and (c)



| 8)  | Power transfer in DC line depends o      |      |                   |                   |
|-----|------------------------------------------|------|-------------------|-------------------|
|     | a) Sending and receiving end voltag      | es   |                   |                   |
|     | b) Number of pulses in the rectifier     |      |                   |                   |
|     | c) Line resistance                       |      |                   |                   |
|     | d) None of the above                     |      |                   |                   |
| 9)  | The common control done in the con       | ıveı | ters is           |                   |
| •   | a) Rectifier as both voltage and curr    | ent  | controller        |                   |
|     | b) Inverter as both voltage and curre    | ent  | controller        |                   |
|     | c) Inverter as current controller        |      |                   |                   |
|     | d) Rectifier as voltage controller and   | lin۱ | verter as curren  | t controller      |
| 10) | HVDC-VSC scheme employs                  |      |                   |                   |
| •   | a) IGBT valves                           |      |                   |                   |
|     | b) Light or optically triggered thyristo | or v | alves             |                   |
|     | c) Mercury arc valves                    |      |                   |                   |
|     | d) MOSFÉT's and GTO valves               |      |                   |                   |
| 11) | Most frequent type of fault in DC sys    | ten  | n is              |                   |
|     | a) Converter internal fault              | b)   | DC line fault     |                   |
|     | c) Commutation failure                   | d)   | Arc back and a    | rc through        |
| 12) | A system is said to be weak if SCR is    | S    |                   |                   |
|     | a) Less than 3 b) Less than 1            | c)   | More than 5       | d) 3 to 5         |
| 13) | Modern HVDC systems are all              |      |                   |                   |
|     | a) 3-pulse converters                    | b)   | 6-pluse conver    | ters              |
|     | c) 24-pluse converters                   |      | 12-pulse conve    | erters            |
| 14) | In 12- pulse connections, transforme     | rs a | are connected     |                   |
|     | a) Delta/Delta (both)                    |      |                   |                   |
|     | b) Star/Star (both)                      |      |                   |                   |
|     | c) Star/Delta (both)                     |      |                   |                   |
|     | d) One Star/Star and other Star/Delt     |      |                   |                   |
| 15) | If a angle of advance is 30° and over    | rlap | angle is 12°, th  | e extension angle |
|     | will be                                  |      |                   |                   |
|     | a) 42° b) (30/2)°                        | ,    | 18°               | d) 21°            |
| 16) | A surge diverter is used across the D    |      |                   |                   |
|     | a) Limit recovery voltage                | ,    | Limit fault curre |                   |
| \   | c) Absorb the arc energy                 |      | All of the above  |                   |
| 17) | Which of the following is a series cor   |      |                   |                   |
|     | a) UPFC b) STATCOM                       |      | TCSC              | d) TCPST          |
| 18) | Series compensation is primarily res     |      |                   |                   |
|     | a) improve voltage profile               | b)   | improve stabilit  | :y                |
|     | c) reduce fault currents                 | d)   | all of the above  | )                 |
| 19) | Multi terminal systems are               |      |                   |                   |
| •   | a) Series connected                      | b)   | Parallel connec   | cted              |
|     | c) Ring connected                        | d)   | All of above      |                   |
| 20) | HVDC transmission commercially be        |      | n in the year,    |                   |
| -   | a) 1935 b) 1950                          |      | 1954              | d) 1970           |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (E&E) (Old) (Part – II) Examination, 2018 Elective – II : HIGH VOLTAGE DC TRANSMISSION (HVDC)

Day and Date: Saturday, 12-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Answer any four questions :

 $(4 \times 5 = 20)$ 

Marks: 80

- a) Write the advantages and disadvantages of HVDC transmission system.
- b) Explain the requirements of firing angle scheme and explain IPC scheme.
- c) What is misfire? Explain its causes and remedies.
- d) Explain EPC scheme in detail.
- e) Explain with neat diagram the different types of DC links.
- f) Draw and explain over current protection.

# 3. Answer any two questions:

 $(10 \times 2 = 20)$ 

- a) Draw and explain typical HVDC converter station in detail.
- b) Compare EHVAC and HVDC transmission with suitable comments.
- c) Explain the over voltage protection of converter in detail.

#### SECTION - II

# 4. Answer any four questions:

- a) Explain the current margin method for protection of MTDC system.
- b) Write short note on AC filters.
- c) Explain the voltage limiting control for MTDC system.



- d) Explain with neat diagram the working of FC-TCR.
- e) Write a short note on SVC.
- f) Explain DC filters.
- 5. Answer **any two** questions:

- a) What are the causes of generation of harmonics and what are the troubles caused by it?
- b) Derive an expression for characteristic harmonics.
- c) Explain the concept of reactive power compensation.



| Seat |     |   |
|------|-----|---|
| No.  | Set | S |

| Elective – II : HIGH VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                          |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Day and Date: Saturday, 12-5-2018<br>Time: 2.30 p.m. to 5.30 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                      | Max. Marks : 100                                                                                                                                                           |  |  |  |  |  |
| minutes in Answer one mark. 2) Answer MCQ/Obje                                                                                                                                                                                                                                                                                                                                                                                                                                         | Book Page No. 3. Each question carries ective type questions on Page No. 3 to mention, Q.P. Set (P/Q/R/S) on Top                                                           |  |  |  |  |  |
| MCQ/Objective Type Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |  |  |  |  |  |
| Duration: 30 Minutes  1. Choose the correct answer:  1) A surge diverter is used across the Eap Limit recovery voltage c) Absorb the arc energy 2) Which of the following is a series coral UPFC b) STATCOM 3) Series compensation is primarily resal improve voltage profile c) reduce fault currents 4) Multi terminal systems are a) Series connected c) Ring connected 5) HVDC transmission commercially be                                                                        | b) Limit fault current d) All of the above nnected FACTS device ? c) TCSC d) TCPST orted to b) improve stability d) all of the above b) Parallel connected d) All of above |  |  |  |  |  |
| <ul> <li>a) 1935</li> <li>b) 1950</li> <li>6) HVDC transmission is opted when <ul> <li>a) Bulk power transfer is needed</li> <li>b) Improvement of stability</li> <li>c) Long distance and cable transmis</li> <li>d) All of the above</li> </ul> </li> <li>7) Filters used in 12-pulse converters u <ul> <li>a) 5th, 7th and high-pass</li> <li>c) 6th, 12th and high-pass</li> </ul> </li> <li>8) Characteristic of a converter is the research and statement of the pass</li> </ul> | c) 1954 d) 1970 ssion is required sually on the AC side are b) 11 <sup>th</sup> , 13 <sup>th</sup> and high-pass d) only high-pass filter                                  |  |  |  |  |  |

b) DC output voltage and ldd) None of these

a) AC voltage and Id
c) DC power and Id
9) The initial HVDC valves were
a) IGATS

c) Mercury arc rectifiers

b) Thyristorsd) None of above



| 10)                                                                                      | In a monopolar system usually the pole is a) Positive                                     |                    |      |                  |                   |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------|------|------------------|-------------------|
|                                                                                          | b) Negative                                                                               |                    |      |                  |                   |
|                                                                                          | c) Positive and ne                                                                        |                    | _    |                  |                   |
| 11\                                                                                      | d) Alternatively po                                                                       |                    |      | ho voor          |                   |
| 11)                                                                                      | Thyristor valves ca a) 1950                                                               | b) 1954            | U)   |                  | d) 2000           |
| a) 1950 b) 1954 c) 1972 d<br>12) 12-pulse converters are used in modern converters becau |                                                                                           |                    |      |                  |                   |
| ,                                                                                        | a) Reduced current                                                                        |                    |      |                  |                   |
|                                                                                          | b) Reduced ripple                                                                         |                    |      |                  |                   |
|                                                                                          | c) Increased voltage and reduced harmonics                                                |                    |      |                  |                   |
|                                                                                          | d) Both (b) and (c)                                                                       |                    |      |                  |                   |
| 13)                                                                                      | Power transfer in DC line depends on                                                      |                    |      |                  |                   |
|                                                                                          | a) Sending and receiving end voltages                                                     |                    |      |                  |                   |
|                                                                                          | b) Number of pulses in the rectifier                                                      |                    |      |                  |                   |
|                                                                                          | <ul><li>c) Line resistance</li><li>d) None of the above</li></ul>                         |                    |      |                  |                   |
| 14)                                                                                      | The common control done in the converters is                                              |                    |      |                  |                   |
| ,                                                                                        | a) Rectifier as both voltage and current controller                                       |                    |      |                  |                   |
|                                                                                          | b) Inverter as both voltage and current controller                                        |                    |      |                  |                   |
|                                                                                          | c) Inverter as curre                                                                      |                    |      |                  |                   |
| 4 =\                                                                                     | d) Rectifier as voltage controller and inverter as current controller                     |                    |      |                  |                   |
| 15)                                                                                      | HVDC-VSC scheme employs                                                                   |                    |      |                  |                   |
|                                                                                          | <ul><li>a) IGBT valves</li><li>b) Light or optically triggered thyristor valves</li></ul> |                    |      |                  |                   |
|                                                                                          | c) Mercury arc valves                                                                     |                    |      |                  |                   |
|                                                                                          | d) MOSFET's and GTO valves                                                                |                    |      |                  |                   |
| 16)                                                                                      | Most frequent type of fault in DC system is                                               |                    |      |                  |                   |
| ,                                                                                        | a) Converter interr                                                                       | _                  |      | DC line fault    |                   |
|                                                                                          | c) Commutation fa                                                                         | ailure             | d)   | Arc back and a   | rc through        |
| 17)                                                                                      | A system is said to                                                                       | be weak if SCR is  | S    |                  |                   |
|                                                                                          | a) Less than 3                                                                            | b) Less than 1     | c)   | More than 5      | d) 3 to 5         |
| 18)                                                                                      | Modern HVDC sys                                                                           |                    |      |                  |                   |
|                                                                                          | a) 3-pulse convert                                                                        |                    | b)   | 6-pluse conver   | ters              |
|                                                                                          | c) 24-pluse conve                                                                         |                    | ,    | 12-pulse conve   | erters            |
| 19)                                                                                      | In 12- pulse conne                                                                        |                    | rs a | are connected    |                   |
|                                                                                          | a) Delta/Delta (bot                                                                       |                    |      |                  |                   |
|                                                                                          | b) Star/Star (both)                                                                       |                    |      |                  |                   |
|                                                                                          | c) Star/Delta (both)                                                                      |                    |      |                  |                   |
|                                                                                          | d) One Star/Star a                                                                        |                    |      |                  |                   |
| 20)                                                                                      | If a angle of advan                                                                       | ce is 30° and over | lap  | angle is 12°, th | e extension angle |
|                                                                                          | will be                                                                                   | 1) (00/0)          |      | 100              | 1) 040            |
|                                                                                          | a) 42°                                                                                    | b) (30/2)°         | C)   | 18°              | d) 21°            |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (E&E) (Old) (Part – II) Examination, 2018 Elective – II : HIGH VOLTAGE DC TRANSMISSION (HVDC)

Day and Date: Saturday, 12-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

### 2. Answer any four questions:

 $(4 \times 5 = 20)$ 

Marks: 80

- a) Write the advantages and disadvantages of HVDC transmission system.
- b) Explain the requirements of firing angle scheme and explain IPC scheme.
- c) What is misfire? Explain its causes and remedies.
- d) Explain EPC scheme in detail.
- e) Explain with neat diagram the different types of DC links.
- f) Draw and explain over current protection.

## 3. Answer any two questions:

 $(10 \times 2 = 20)$ 

- a) Draw and explain typical HVDC converter station in detail.
- b) Compare EHVAC and HVDC transmission with suitable comments.
- c) Explain the over voltage protection of converter in detail.

SECTION - II

# 4. Answer any four questions :

- a) Explain the current margin method for protection of MTDC system.
- b) Write short note on AC filters.
- c) Explain the voltage limiting control for MTDC system.



- d) Explain with neat diagram the working of FC-TCR.
- e) Write a short note on SVC.
- f) Explain DC filters.
- 5. Answer **any two** questions:

- a) What are the causes of generation of harmonics and what are the troubles caused by it?
- b) Derive an expression for characteristic harmonics.
- c) Explain the concept of reactive power compensation.