SLR-SR-1

Seat

No.

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Real Analysis (MSC16101)

Day \& Date: Wednesday, 19-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative.

1) Set of real numbers is \qquad .
a) Countable
b) Uncountable
c) Both a and b
d) neither a) nor b)
2) $\quad \mathrm{A}$ set A is said to be countable if there exists a function $f: A \rightarrow N$ such that \qquad .
a) f is bijective.
b) f is surjective
c) f is identity function
d) None of the
3) A convergent sequence has only \qquad limit(s).
a) One
b) Two
c) Three
d) none of these
4) A sequence $\left\{(-1)^{n}, n \in N\right\}$ is \qquad .
a) unbonded
b) convergent
c) divergent
d) bounded
5) A sequence of real numbers is Cauchy iff \qquad .
a) it is bounded
b) it is convergent
c) it is positive term sequence
d) it is convergent but not bounded
6) Series is convergent if its sequence of partial sum is \qquad .
a) convergent
b) divergent
c) bounded
d) unbounded
7) The closed set includes all of its \qquad points.
a) limit
b) interior
c) member
d) none of these
8) A point c is said to be extremum point of function f, if \qquad .
a) $f^{\prime}(c)=0$
b) $\quad f(c)=0$
c) $f^{\prime}(c) \neq 0$
d) none of these
9) The function $f(x)=|x|$ is \qquad .
a) continuous
b) discontinuous
c) differentiable
d) none of these
10) If sequence is bounded and decreasing, then it \qquad .
a) converges to its supremum
b) converges to its infimum
c) divergent sequence
d) None of these
B) Fill in the blanks.
11) The set of all limit points of a set is called \qquad set.
12) Finite union of open set is \qquad .
13) A set is open if and only if its compliment is \qquad .
14) Arbitrary intersection of closed sets always \qquad .
15) Every bounded sequence has \qquad .
16) The minimum value of the function $f(x)=x^{2}$ is \qquad .
Q. 2 Answer the following 16
a) Define and illustrate:
i) Closed Set
ii) Open Set
b) Prove that: Convergent sequence is bounded.
c) State the following:
i) Taylor's theorem
ii) Heine-Borel theorem.
iii) Bolzano-Weierstrass theorem for set
iv) Bolzano-Weierstrass theorem for sequence
d) Prove that: Finite intersection of closed sets is closed.

Q. 3 Answer the following

a) Check whether $f(x)=x^{2}$ is Reimann integrable over $(0,1)$. If so, find the integral.
b) Prove that: Set of rational number is countable.

Q. 4 Answer the following

a) Define convergent sequence. Prove that every monotonic non-decreasing
08
bounded above sequence is convergent.
b) Describe Lagrange's method of undetermined multipliers.
Q. 5 Answer the following.
a) Define Cauchy sequence. Prove that Cauchy sequence is convergent. 08
b) Test the convergence of
i) $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
ii) $\int_{0}^{1} \frac{1}{1-x} d x$

Q. 6 Answer the following.

a) Define any four tests for convergent.
08
b) Prove that the series $\frac{1}{n^{p}}$ diverges for $p \leq 1$ and converges for $p>1$

Q. 7 Answer the following.

a) Define countable set. Prove that countable union of countable sets is countable.
b) State Taylor's theorem. Find the power series expansion for the following 08 functions:
i) $f(x)=\cos x$
ii) $f(x)=\tan x$

SLR-SR-2

Seat

No.

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Linear Algebra \& Liner Models (MSC16102)

Day \& Date: Thursday, 20-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) The smallest sub-space containing finite set of vectors (S) is \qquad .
a) Superclass of S
b) Span of S
c) Subset of S
d) Basis of S
2) What is the dimension of the vector space R^{2} over the field R ?
a) 1
b) Infinite
c) 2
d) 4
3) If number of column is less than number of rows, then the matrix is called as \qquad .
a) Horizontal matrix
b) Vertical matrix
c) Row matrix
d) Column matrix
4) If A is symmetric matrix, then which of the following are symmetric matrices?
a) A '
b) $\mathrm{A}+\mathrm{I}$
c) $A+0$
d) All of these
5) If A is a 4×4 matrix with rank 3 , then determinant of A is \qquad .
a) 0
b) 1
c) 4
d) 6
6) Rank of matrix A is \qquad .
a) Number of independent rows in A
b) Dimension of the row space of A
c) Dimension of the column space of A
d) All of the above
7) Which of the following property does not hold for matrix multiplication?
a) Commutative
b) Associative
c) Distributive
d) All of these
8) For non-homogenous system of equations $A x=b$ with k unknowns, unique solution exists if \qquad .
a) $\operatorname{Rank}[A: b]>\operatorname{rank}(A)$
b) $\quad \operatorname{Rank}[A: b]=\operatorname{rank}(A)=k$
c) $\operatorname{Rank}[A: b]=\operatorname{rank}(A)<k$
d) All of the above
9) \qquad is equal to the maximum number of linearly independent row vectors in a matrix.
a) Row matrix
b) Row rank of a matrix
c) Linear matrix
d) Term matrix
10) For a Gauss-Markov model $Y=X \beta+\varepsilon$,
a) $\quad \operatorname{Cov}\left(\varepsilon_{i} \varepsilon_{j}\right)=0$, if $i \neq j$
b) $\operatorname{Cov}\left(\varepsilon_{\mathrm{i}} \varepsilon_{\mathrm{j}}\right)<0$, if $\mathrm{i} \neq \mathrm{j}$
c) $\quad \operatorname{Cov}\left(\varepsilon_{\mathrm{i}} \varepsilon_{\mathrm{j}}\right)>0$, if $\mathrm{i} \neq \mathrm{j}$
d) None of these
B) Fill in the blanks
11) The rank of identity matrix of order 4 is \qquad .
12) Multiplication of a matrix with a scalar constant is called \qquad .
13) If all the elements below the diagonal are zero, then such matrix is called as \qquad .
14) The eigen values of 2×2 matrix A are 2 and 7 , then $|\mathrm{A}|=$ \qquad .
15) \qquad is equal to the maximum number of linearly independent column vectors in a matrix.
16) If A is non-singular matrix of order 4, then its rank is \qquad .
Q. 2 Answer the following
a) Write a note on basis of a vector space.
b) Define diagonal matrix. Show that product of two diagonal matrices is a again a diagonal matrix.
c) Write a note on trace of a matrix.
d) Define additive inverse of a vector. Show that additive inverse of any vector in a vector space is unique.

Q. 3 Answer the following

a) Determine whether $S=\left\{(x, y, z) \in R^{3} / z=0\right\}$ is a vector space under regular 08 addition and scalar multiplication.
b) Show that the rank of a product of two matrices cannot exceed the rank of either matrix.

Q. 4 Answer the following

a) Define rank of a matrix. Also find the rank of following matrix:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]
$$

b) If A and B are two matrices of order $n \times n$, then prove that
$\rho(A B) \geq \rho(A)+\rho(B)-n$

Q. 5 Answer the following

a) Describe system of equations in detail.
b) Define G-inverse of a matrix. Show that G is a g-inverse of matrix A, if and only if $A G A=A$.

Q. 6 Answer the following

a) State and prove necessary and sufficient condition for estimability of linear
b) Prove: If G is g-inverse of A, then $G_{1}=G A G$ is also a g-inverse of A.

Q. 7 Answer the following

a) Find G-inverse of the below matrix:
b) Describe row space and column space of a matrix. Based on these spaces, 08 define row rank and column rank of the matrix.

Seat

No.
Set
P

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023 STATISTICS Distribution Theory (MSC16103)

Day \& Date: Friday, 21-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any Three questions from Q. 3 to Q. 7
3) Figures to the right indicate full marks.
Q. 1 A) Choose Correct Alternative.

1) A random variable X is symmetric about point α then \qquad .
a) $f(\alpha+x)=f(\alpha-x)$
b) $f(\alpha+x)=f(x-\alpha)$
c) $f(\alpha+x)=-f(\alpha+x)$
d) none of these
2) Let X and Y are independent random variables with $N(0,1)$. The distribution of $(Y / X)^{2}$ is \qquad .
a) Normal
b) χ^{2}
c) F
d) t
3) Let X and Y be two independent Poisson random variates with means 1 and 2 respectively then variance of $(2 X+3 K)$ is \qquad .
a) 5
b) 8
c) 16
d) 22
4) The PGF of Poisson distribution with mean λ is given by \qquad .
a) $e^{-\lambda(1-s)}$
b) $e^{-\lambda(s-1)}$
c) $e^{\lambda\left(e^{s}-1\right)}$
d) $e^{\lambda\left(e^{s}+1\right)}$
5) Let (X, Y) bivariate normal $B V N(1,2,16,25,3 / 4)$, then $E(Y / X=7)$ is \qquad .
a) 1
b) 2
C) 4
d) $91 / 16$
6) The mean of first order statistic in $U(0,1)$ distribution is \qquad .
a) $1 / n$
b) $1 /(n+1)$
c) $1 /(n-1)$
d) $n /\left(n^{2}-1\right)$
7) If X and Y are two independent random variables then \qquad .
a) $E(X Y)=E(X) E(Y)$
b) $\operatorname{Cov}(Y, F)=0$
c) $\rho(Y, F)=0$
d) all the above
8) Which of the following is not a scale family?
a) $U(0,1)$
b) $U(0, \theta)$
c) $N\left(0, \sigma^{2}\right)$
d) $\operatorname{Exp}(\theta)$
9) If the distribution function of two-dimensional random variates X and Y is denoted by $F(x, y)$, then \qquad .
a) $-1 \leq F(x, y) \leq 1$
b) $0 \leq F(x, y) \leq 1$
c) $-\infty \leq F(x, y) \leq \infty$
d) $0 \leq F(x, y) \leq \infty$
10) If $M_{X}(t)$ denotes MGF of random variable X. If $Z=a X$ then $M_{z}(t)$ is \qquad .
a) $a M_{X}(t)$
b) $a M_{X}(a t)$
c) $M_{X}(a t)$
d) $a M_{X}(t / a)$
B) Fill in the blanks:
11) If Z is standard normal variate, then mean of Z^{2} is \qquad .
12) The $p d f$ of random variable X is $f(x)=2 x, 0<x<1$ then $P(X=0.5)$ is \qquad .
13) Let X be distributed as $\operatorname{Exp}($ Mean $\theta)$. Then distribution of $Y=X / \theta$ is \qquad -
14) Let $f(x, y)=4 x y, 0 \leq x \leq 1,0 \leq y \leq 1$ be the joint $p d f$ of (X, T). Then marginal distribution of X is \qquad .
15) Negative binomial distribution $N B(x: r, p)$ for $r=1$ reduces to __distribution.
16) The variance of continuous uniform distribution over $(0, b)$ is \qquad .

Q. 2 Answer the following.

1) Define location family. Give one example of the same.
2) Let X has $N(0,1)$ distribution. Obtain the $p d f$ of $Y=|X|$.
3) Define convolution of distribution functions and give one example.
4) Derive the pdf of largest order statistic based on random sample of size n from a continuous distribution.
Q. 3 Answer the following.
a) Let (X, Y) be a discrete bivariate random vector. Define
i) Joint p.m.f of (X, Y)
ii) Marginal p.m.f. of X and marginal p.m.f. of Y
iii) Independence of X and Y
iv) Covariance (X, Y)
b) Define probability generating function (PGF) of a random variable. Let X has $B(n, p)$ distribution. Obtain the PGF of X. Hence obtain its mean and variance.

Q. 4 Answer the following.

a) Define power series distribution. Show that Geometric distribution is power series distribution. Obtain MGF of geometric distribution using MGF of power series distribution.
b) Let X is a non-negative random variable with $\operatorname{pmf} P(X=x)=P_{x}$, $x=1,2, \ldots$ then show that $E(X)=\sum_{x=1}^{\infty} P[X \geq x]$

Q. 5 Answer the following.

a) Define multinomial distribution. Obtain the MGF of multinomial distribution 08
with k cells. Hence show that $p m f$ of $i^{\text {th }}$ component X_{i} is $B\left(n, p_{i}\right)$.
b) If X is symmetric about α then prove that $E(X)=a$ and Median $(X)=a$. 08

Q. 6 Answer the following.

a) State and prove Jensen's inequality
b) Let X and Y are jointly distributed with pdf
$f(x, y)=\left\{\begin{array}{c}k(x+2 y), 0<x<2,0<y<1 \\ 0, \text { otherwise }\end{array}\right.$
Find marginal distributions of X and Y.

Q. 7 Answer the following

a) Let (X, Y) has $B V N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, p\right)$. Obtain the marginal distributions of Y. 08
b) If $X_{1}, X_{2}, \ldots, X_{n}$ are random observations from exponential distribution with 08 mean θ. Obtain the pdf of $r^{\text {th }}$ order statistic $X_{(r)}$.

SLR-SR-4

Set

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023 STATISTICS Estimation Theory (MSC16104)

Max. Marks: 80
Day \& Date: Saturday, 22-07-2023
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative.

1) Let $X_{1}, X 2, \ldots, X_{n}$ be iid from $B(1, \theta)$. Then \bar{X} is \qquad .
a) sufficient statistic
b) unbiased estimator
c) complete sufficient statistic
d) all the above
2) An estimator $\hat{\theta}$ is said to be unbiased estimator of θ if \qquad .
a) $E[\hat{\theta}]=\theta$
b) $\hat{\theta}=E[\theta]$
c) $[E(\hat{\theta})]^{2}=\theta$
d) $E[\hat{\theta}]=\theta^{2}$
3) If T_{n} is an estimator of θ, then Cramer-Rao inequality provides a lower bound on
a) $E\left(T_{n}\right)$
b) $\operatorname{Var}\left(T_{n}\right)$
c) $\operatorname{Max}\left(T_{n}\right)$
d) $\operatorname{Min}\left(T_{n}\right)$
4) Let $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from $U(0, \theta), \theta>0$. The MLE of θ is \qquad .
a) \bar{X}
b) $\quad X_{(1)}$
c) $\quad X_{(n)}$
d) sample median
5) A sufficient statistic contains all the information which is contained in \qquad .
a) population
b) sample
c) parameter
d) none of the above
6) Conditional distribution of random variable θ given $X=x$ is called \qquad .
a) Posterior distribution
b) Prior distribution
c) Loss function
d) Bayes risk
7) Let $T(X)$ is a complete sufficient statistic and $A(X)$ is ancillary statistic, then which one of the following statements is correct?
a) $\quad T(X)$ and $A(X)$ are distributionally dependent
b) $\quad T(X)$ and $A(X)$ are functionally dependent
c) $\quad T(X)$ and $A(X)$ are statistically independent
d) none of the above
8) Bayes estimator of a parameter under squared error loss function is \qquad .
a) posterior mean
b) posterior median
c) posterior mode
d) posterior variance
9) Which of the following statements is / are correct?
10) UMVUE is always unique if it exists.
11) UMVUE is provided by C-R lower bound only

Select the correct answer using the code given below:
a) Both 1 and 2
b) Neither 1 nor 2
c) 2 only
d) 1 only
10) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $N\left(\mu, \sigma^{2}\right)$ and $\hat{\mu}$ and $\hat{\sigma}^{2}$ are the MLE of μ and σ^{2} respectively. Consider the following statements:
a) $\hat{\mu}$ is an unbiased estimator of μ
b) $\hat{\sigma}^{2}$ is an unbiased estimator of σ^{2}

Which of the above statements is / are correct?
a) 1 only
b) 2 only
c) both 1 and 2
d) neither 1 nor 2
B) Fill in the blanks.

1) Let $\left(X_{1}, X_{2}\right)$ denote a random sample of size 2 from $B(2, \theta), 0<\theta<1$ distribution. The sufficient statistic for θ is given by
2) Let $\overline{X_{1}, X_{2}}$ is a random sample of size 2 from $N\left(0, \sigma^{2}\right)$. Moment estimator of σ^{2} is \qquad .
3) The estimate of $\lambda \overline{\text { for the exponential distribution }}$ $f(x, \lambda)=\lambda e^{-\lambda x}, 0 \leq x<\infty$ by method of moments is \qquad .
4) Bhattacharya bound is the generalization of the \qquad .
5) Let T_{n} be an unbiased estimator of θ. Then $3 T_{n}+4$ is estimator of $3 \theta+4$
6) Let $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from $U(0, \theta)$ distribution then is unbiased estimator of θ is \qquad .

Q. 2 Answer the following.

a) Let random variable X has Poisson (θ) distribution. Show that distribution of X is complete.
b) State and prove Basu's theorem
c) Define maximum likelihood estimator (MLE). State any two small sample properties of MLE
d) Define power series distribution. Obtain sufficient statistic for power series distribution.

Q. 3 Answer the following.

a) Define sufficient statistic and minimal sufficient statistic. Explain the method of constructing minimal sufficient statistic.
b) Define a one parameter exponential family of distributions. Obtain a minimal sufficient statistic for this family.

Q. 4 Answer the following.

a) Describe the method of scoring for obtaining maximum likelihood estimator of a parametric function.
b) Obtain MLE of (μ, σ^{2}) based on a random sample of size n from $N\left(\mu, \sigma^{2}\right) \quad 08$ distribution

Q. 5 Answer the following

a) State and prove Cramer-Rao inequality with necessary regularity conditions. 08
b) Define Fisher information. Let X be Bernoulli random variable with parameter θ. Obtain Fisher information $I_{X}(\theta)$

Q. 6 Answer the following

a) State and prove Rao-Blackwell theorem. Let $X_{1}, X_{2}, \ldots, X_{n}(n \geq 2)$ be a random sample from $B(1, \theta)$ distribution. Obtain UMVUE of $\psi(\theta)=\theta(1-\theta)$.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid Poisson (λ) random variables. Show that
$T=\bar{X}^{2}-\bar{X}$ is biased estimator of λ^{2}. Find its bias and hence unbiased estimator of λ^{2}.

Q. 7 Answer the following

a) Explain the following with one illustration each.

1) Conjugate Family
2) Conjugate Priors
3) Non-informative Priors
4) Bayes estimator
b) Suppose an observation is taken on random variable X which yielded a value 2 . The density of X is

$$
f(x / \theta)=\left\{\begin{array}{c}
(1 / \theta), \quad 0<x<\theta \\
0, \text { otherwise }
\end{array}\right.
$$

Suppose that, prior distribution of θ has density

$$
\pi(\theta)=\left\{\begin{array}{l}
\left(3 / \theta^{4}\right), \quad \theta>1 \\
0, \text { otherwise }
\end{array}\right.
$$

For squared error loss function, show that Bayes estimate of θ is $8 / 3$

SLR-SR-5

Seat

No.

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Statistical Computing (MSC16108)

Day \& Date: Sunday, 23-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and. 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) Rate of convergence to correct root is very high for \qquad method.
a) Newton-Raphson
b) Bisection
c) Euler's
d) Regula - Falsi
2) To generate single random number from bivariate Poisson, we need independent univariate Poisson.
a) Three
b) Two
c) One
d) Four
3) When applying Simpson's $1 / 3^{\text {rd }}$ rule the number of sub-intervals should be \qquad .
a) odd
b) even
c) prime
d) multiple of five
4) If $U \sim U(0,1)$ then $X=2+U$ follows \qquad distribution.
a) Gamma
b) $\quad U(2,3)$
c) $\quad U(3,2)$
d) $U(0,1)$
5) If $X \sim \operatorname{Gamma}(\mathrm{n})$ then $Y=2 X$ follows Chi-square distribution with
\qquad
a) n
b) $\mathrm{n}-1$
c) $2 n$
d) $n+1$
6) Which of the following method is used for generating random numbers from a statistical distribution?
a) Acceptance-Rejection
b) Inverse transformation
c) Monte Carlo simulation
d) All the above
7) Simpson's $1 / 3^{\text {rd }}$ rule is obtained by taking $n=$ \qquad in Newton's general formula for numerical integration.
a) 0
b) 2
c) 1
d) -1
8) ___ is generalization of geometric distribution.
a) Negative Binomial
b) Bivariate Poisson
c) Gamma
d) None of these
9) Random numbers from normal distribution can be generated using \qquad .
a) CLT method
b) Box - Muller method
c) Chi-square method
d) all the above
10) In false position method we choose the two points x_{0} and x_{1} such that $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$ are \qquad .
a) Opposite sign
b) same sign
c) Zero
d) None of these
B) Fill in the blanks
11) If $U \sim U(0,1)$ then $X=-0.51 n(1-U)$ follows \qquad .
12) Convolution theorem gives distribution of \qquad random variates.
13) ___ in 1979 introduced the bootstrap method.
14) To generate bootstrap sample \qquad sampling method is used.
15) In EM algorithm 'E' stands for \qquad -.
16) EM algorithm is used to obtain \qquad .
Q. 2 Answer the following

a) What is convolution of random variable? Obtain formula for convolution of
continuous random variable.16
b) Write an algorithm for generating random numbers from $N\left(\mu, \sigma^{2}\right)$ using BoxMuller transformation
c) Describe bisection method of finding solution to the equation $f(x)=0$
d) Write a short note on Markov Chain Monte Carlo methods.
Q. 3 Answer the following
a) Let $\mathrm{X} \sim \mathrm{U}(0,1)$ and $\mathrm{Y} \sim \mathrm{U}(0,1)$. Define $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$, obtain the distribution of
b) Z using convolution theorem.
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the displaced exponential
distribution with pdf $e^{-(x-\theta)} I_{(\theta, \infty)}(x)$. Show that, the jackknife estimator is
unbiased estimator of θ.
Q. 4 Answer the following
a) State and prove the result for generating random numbers from Binomial distribution.
b) What is Acceptance - Rejection method? Illustrate with an example.

Q. 5 Answer the following
a) Obtain an EM algorithm for estimating parameters for mixed normal model.
b) State and prove the result for generating random numbers from $\chi_{2 n}^{2}$

Q. 6 Answer the following	16
a) Write in detail numerical methods for single and double integration.	16
b) Describe linear congruential method of random number generation.	

Q. 7 Answer the following
a) What are bias reduction techniques? Explain Jack - Knife estimation.
b) Write algorithms for generating random numbers from bivariate exponential and bivariate Poisson distribution.

M.Sc. (Semester - II) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Probability Theory (MSC16201)

Day \& Date: Wednesday, 19-07-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) If $\left\{A_{n}\right\}$ is decreasing sequence of sets, then the sequence $\left\{A_{n}^{c}\right\}$ is \qquad .
a) Decreasing
b) Increasing
c) Need more information
d) None of these
2) Monotonic sequence of sets \qquad .
a) Always converges
b) Converges, only if it is bounded above
c) Converges, only if it is bounded below
d) Converges, only if it is bounded
3) Which of the following is the weakest mode of convergence?
a) convergence in $r^{\text {th }}$ mean
b) convergence in probability
c) convergence in distribution
d) convergence in almost sure
4) Which of the following is a Borel set?
a) $(0, x), x$ is a real number
b) $\{x\}$
c) $[x, x+1]$
d) All of these
5) Expectation of a simple non-negative random variable satisfies \qquad
a) Linearity property
b) Scale preserving property
c) Non-negativity property
d) All of these
6) Probability measure is continuous from \qquad .
a) Above
b) Below
c) Both (a) and (b)
d) Either above or below
7) If F_{1} and F_{2} are two fields defined on subsets of Ω, then which of the following is/are always a field?
a) $F_{1} \cup F_{2}$
b) $\quad F_{1} \cap F_{2}$
c) both (a) and (b)
d) neither (a) nor (b)
8) A simple function can take \qquad values.
a) Finitely many
b) Infinitely many
c) Uncountably many
d) None of these
9) Distribution function of a random variable is always \qquad .
a) Non-negative
b) right continuous
c) Monotone non-decreasing
d) All of the above
10) If events A, B and C are mutually independent, then which of the following is not correct?
a) A and B are pairwise independent
b) A and C are pairwise independent
c) B^{c} and C are independent
d) All are correct
B) Fill in the blanks.

06

1) Lebesgue measure of a singleton set $\{\mathrm{k}\}$ is \qquad .
2) Expectation of a random variable X exists, if and only if \qquad exists.
3) If $F($.$) is a distribution function for some random variable, then$ $\lim _{n \rightarrow \infty} F(x)=$ \qquad
4) Convergence in distribution is also called as \qquad .
5) If Ω contains 2 elements, then the largest field of subsets of Ω contains \qquad sets
6) The σ - field generated by the intervals of the type $(-\infty, x), x \in R$ is called \qquad .
Q. 2 Answer the following
a) Define the characteristic function of a r.v. and find the same for exponential distribution.
b) Write a note on Lebesgue-Stieltje's measure.
c) Discuss σ-field induced by r.v. X.
d) Prove or disprove: Mapping preserves all set relations.

Q. 3 Answer the following.

a) Prove that probability measure is a continuous measure.
b) Discuss limit superior and limit inferior of a sequence of sets. Find the same for sequence $\{A n\}$, where $A n=\left(0,3+\frac{(-1)^{n}}{n}\right), n \in N$

Q. 4 Answer the following.

a) State and prove Fatou's lemma.
b) Define convergence in probability and convergence in distribution. Also prove that convergence in probability implies convergence in distribution.
Q. 5 Answer the following.
a) State and prove Yule-Slutsky results. 08
b) Prove that any random variable can be expresses as a limit of sequence of simple random variables.

Q. 6 Answer the following.

a) Define, explain and illustrate the concept of limit superior and limit inferior of a sequence of sets.
b) State and prove monotone convergence theorem.

Q. 7 Answer the following.

a) Prove or disprove: Convergence in distribution implies convergence inprobability.
b) Define characteristic function of a random variable. Prove any three properties of characteristic function.

M.Sc. (Semester - II) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Stochastic Processes (MSC16202)

Day \& Date: Sunday, 23-07-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and. 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct options. 10

1) If $\{N(t)\}$ is a Poisson process with parameter λ, then $\operatorname{var}(N(t))=$ \qquad .
a) λ
b) λt
c) t
d) λ^{2}
2) A matrix can be a TPM, if \qquad .
a) It is a square matrix
b) If it contains all non-negative entries
c) If each row sum is one
d) All of these
3) If the probability of ultimate first return $F_{i i}<1$, then the state i is \qquad .
a) persistent state
b) Transient state
c) Aperiodic state
d) None of these
4) If states i and j are communicating states, then \qquad .
a) state i leads to state j
b) state j leads to state i
c) either (a) or (b)
d) both (a) and (b)
5) Which of the following is always true?
a) column sum of TPM is always one
b) Recurrent state is also called as persistent state
c) Every absorbing state is transient
d) All of these
6) Which of the following are class properties?
a) Persistency
b) Periodicity
c) Transientness
d) all of these
7) For a symmetric random walk, probability ' p ' of positive jump is \qquad .
a) 0.25
b) 0.5
c) 1
d) 0
8) State space of stochastic process can be \qquad .
a) Discrete
b) Continuous
c) \quad Neither(a) nor (b)
d) Both(a) and (b)
9) For a null recurrent state ' 1 ', the mean recurrent time is \qquad .
a) $<\infty$
b) ∞
c) 0
d) 1
10) The collection of all possible states of a stochastic process is called as \qquad .
a) State Space
b) Time Space
c) Chain space
d) all of these
B) Fill in the blanks
11) A Markov chain is completely specified by \qquad and \qquad -.
12) For a TPM of a irreducible Markov chain, the row sum is \qquad .
13) A branching process is an example of \qquad state, \qquad time space stochastic process.
14) Persistent state is also called as \qquad .
15) The probability of escape from a closed class is \qquad .
16) A non-null recurrent aperiodic state is called as \qquad .

Q. 2 Answer the following

a) Write a short note on Mean recurrent time of a state.
b) Define and explain Markov property.
c) State and illustrate:

1) State space
2) Stochastic Process
3) TPM
d) State and prove Chapman-Kolmogorov equations.

Q. 3 Answer the following

a) Classify the states of random walk model. 08
b) Discuss the classification of stochastic processes according to state space 08 and index set.

Q. 4 Answer the following

a) Let $\left\{X_{n}, n \geq 0\right\}$ be a Markov chain with state space S
$P=\left[\begin{array}{ccc}0.6 & 0 & 0.4 \\ 0 & 0.6 & 0.4 \\ 0.4 & 0 & 0.6\end{array}\right]$ and initial distribution (0.5,0.5,0).

Compute
i) $P\left(X_{2}=1, X_{0}=1\right)$
ii) $E\left(X_{2}\right)$
b) Describe birth and death process and obtain its Kolmogorov differential 08
equations.
Q. 5 Answer the following
a) Discuss Gambler's ruin problem in detail. 08
b) Show that recurrence is a class property. 08

Q. 6 Answer the following

a) Prove that a state j of a Markov chain is recurrent if and only if $\sum p_{j j}{ }^{(n)}=\infty \quad 08$
b) State and prove class property of periodicity. 08
Q. 7 Answer the following
a) Establish the equivalence between two definitions of Poisson process. 08
b) Define branching process. Derive expression for the mean of the population 08 size at $n^{\text {th }}$ generation.

M.Sc. (Semester - II) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Theory of Testing of Hypotheses (MSC16203)

Day \& Date: Tuesday, 25-07-2023
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) For testing a simple hypothesis against simple alternative, which of the following values of α and β is not correct?
a) $\alpha=0.05, \quad \beta=0.80$
b) $\quad \alpha=0.01, \quad \beta=0.70$
c) $\alpha=0.05, \quad \beta=0.98$
d) $\quad \alpha=0.05, \quad \beta=0.5$

Max. Marks: 80
2) In order to obtain a most powerful test, we \qquad .
a) minimize the level of significance
b) minimize the power
c) minimize the level of significance and fix the power
d) fix the level of significance and maximize the power
3) Let X has a $B(n, p)$ distribution. Then a simple hypothesis will be \qquad .
a) $H_{0}: p=1 / 2$
b) $H_{0}: p \leq 1 / 2$
c) $\quad H_{0}: p \geq 1 / 2$
d) $\quad H_{0}: p \neq 1 / 2$
4) Family of Cauchy $(1, \theta)$ distribution \qquad .
a) has MLR property
b) belong to one parameter exponential family
c) has mean θ
d) does not have MLR property
5) If λ is the likelihood ratio test statistic, which one of the following has got its asymptotic distribution as χ^{2} distribution?
a) $\log _{e}\left(1 / \lambda^{2}\right)$
b) $\log _{e}(1 / \lambda)$
c) $\log _{e}\left(\lambda^{2}\right)$
d) $\log _{e}(\lambda)$
6) Based on single observation X from $U(0,1)$ distribution for testing $H_{0}: \theta=1$ against $H_{1}: \theta \neq 1$ \qquad .
a) no UMP test exist
b) UMP test exist
c) UMPU test exist which is not UMP
d) every test that exist is biased
7) If $\emptyset(x) \equiv \alpha, \forall x \in X$ then \qquad .
a) $\varnothing(x)$ is MP test.
b) $\varnothing(x)$ is not a valid test function
c) power of $\emptyset(x)$ is α
d) $\varnothing(x)$ is biased test

SLR-SR-9

8) Test with Neyman-Structure is \qquad .
a) similar test
b) subset of similar test
c) not a subset of similar test
d) none of these
9) For an $(r \times c)$ contingency table the number of degrees of freedom equals \qquad .
a) $r c$
b) $r+c$
c) $(r-1)+(c-1)$
d) $(r-1)(c-1)$
10) Which of the following tests is analogous of χ^{2} test of goodness of fit?
a) Mann-Whitney U test
b) Kolmogorov-Smirnov test
c) Wilcoxon signed-rank test
d) median test
B) Fill in the blanks.
11) Area of critical region depends on size of \qquad error.
12) If there are 10 symbols of two types, equal in number, the minimum possible number of runs is \qquad .
13) The distribution of statistic used in sign test is \qquad .
14) Probability of rejecting the false hypothesis is \qquad .
15) The statistic H in Kruskal-Wallis test is approximately distributed as \qquad .
16) When ranking combined data in Wilcoxon signed-rank test, the data that receives rank of 1 is the \qquad value.
Q. 2 Answer the following.
a) Define simple hypothesis and composite hypothesis. Give on example for each.
b) Define MLR property of a family of distributions. Give an example of a distribution which does not have MLR property.
c) Explain the run test to test randomness.
d) Explain the likelihood ratio (LR) test for testing hypothesis.

Q. 3 Answer the following

a) State Neyman Pearson lemma. Show that power of MP test given by N-P lemma is at least its size.
b) A sample of size one is taken from Poisson distribution with parameter λ. To 08 test the hypothesis
$H_{0}: \lambda=1$ against $H_{1}: \lambda=2$, consider the test

$$
\emptyset(x)=\left\{\begin{array}{c}
1, \text { if } x>3 \\
0, \text { otherwise }
\end{array}\right.
$$

Find the probability of type I error and power of the test.

Q. 4 Answer the following

a) Define most powerful (MP) test. Show that MP test need not be unique 08 using suitable example.
b) To test $H_{0}: \theta=1$ against $H_{1}: \theta=0$ for a single observation from the
distribution $f(x, \theta)=(2 \theta x+1-\theta), 0<x<1$ is used. Find MP test of level
α and its power.

Q. 5 Answer the following

a) Show that for a family having MLR property, there exists UMP test for 08
testing one sided hypothesis against one sided alternative.
b) Let $X_{1}, X_{2}, \ldots . X_{n}$ be a random sample of size n from $N(\theta, 1)$. Obtain UMP 08 level α test for testing $H_{0}: \theta \leq \theta_{0}$ against $H_{1}: \theta>\theta_{0}$.

Q. 6 Answer the following.

a) Describe a chi-square test for goodness of fit. 08
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from $U(0, \theta)$. Obtain 08 shortest length confidence interval for θ.

Q. 7 Answer the following.

a) Describe Kolmogorov-Smirnov test.
b) Let $X_{1}, X_{2}, \ldots . X_{n}$ be a random sample of size n from $N\left(\mu, \sigma^{2}\right)$. Develop LRT for $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ against $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$, where both μ and σ^{2} are unknown.

Seat
 No.

Set

M.Sc. (Semester - II) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Sampling Theory (MSC16206)

Day \& Date: Thursday, 27-07-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative:

1) In simple random sampling with replacement, the same sampling unit may be included in the sample \qquad .
a) only once
b) only twice
c) more than once
d) none of these
2) If a population contains periodic type of variation then most suitable type of sampling is \qquad .
a) Cluster sampling
b) Systematic sampling
c) Stratified sampling
d) Simple random sampling
3) If heterogeneous population can be easily divided into subpopulations with relatively small variability between the subpopulations, then appropriate sampling design is \qquad .
a) Stratified
b) Two-stage
c) Systematic
d) Cluster
4) In systematic sample of size n from a population of size $N=n k$, where k is given, the probability that a specified unit is included in the sample is \qquad .
a) $1 / \mathrm{N}$
b) $1 / k$
c) n / N
d) $1 / n$
5) What is the effect of increasing sample size on sampling error?
a) it reduces sampling error
b) it increases sampling error
c) it has no effect on sampling error
d) none of the above
6) Hansen-Hurwitz technique is used to deal with \qquad .
a) sampling errors
b) non-sampling errors
c) non-response errors
d) none of the above
7) Which of the following estimators is generally biased?
a) Ratio estimator
b) Difference estimator
c) Hansen-Hurwitz estimator
d) Horvitz-Thompson estimator
8) If 100 students are selected out of 500 , and 25 students are then selected from the selected 100 students. The procedure adopted is \qquad .
a) Stratified
b) Cluster
c) Systematic
d) Two-stage
9) The error committed in presenting data are categorized as \qquad .
a) sampling error
b) non-sampling error
c) margin of error
d) none of these
10) Ratio estimator \hat{R} is unbiased if \qquad .
a) $\rho(\widehat{R}, \bar{x})<0$
b) $\quad \rho(\widehat{R}, \bar{x})>0$
c) $\rho(\widehat{R}, \bar{x})=1$
d) $\rho(\widehat{R}, \bar{x})=0$
B) Fill in the blanks.
11) If n units are selected in a sample from N population units then sampling fraction is \qquad .
12) Variance of proportional allocation is always \qquad that of optimum allocation.
13) A large city is subdivided into 150 non-overlapping blocks. Five blocks are selected at random and completely enumerated. This procedure is known as \qquad _.
14) Stratified sampling is more precise than systematic sampling if serial correlation coefficients are \qquad .
15) In systematic sampling with $\overline{k=N} / n$, then k is called \qquad .
16) If a larger units have more probability of their inclusion in the sample, the sampling is known as \qquad .

Q. 2 Answer the following.

a) Describe simple random sampling without replacement (SRSWOR). Give a procedure to select such samples.
b) Define linear regression estimator for population mean. Is it unbiased?
c) Describe the cumulative total method for drawing PPSWR samples.
d) What is double sampling? Explain any one practical situation where double sampling is appropriate.

Q. 3 Answer the following.

$\begin{array}{lll}\text { a) What are the basic principles of sample survey? Give advantages of } & 08 \\ \text { sampling method over census method. } & \\ \text { b) In SRSWR, suggest an unbiased estimator of the population mean and } \\ \text { derive its sampling variance. } & 08\end{array}$

Q. 4 Answer the following

a) Describe stratified random sampling. Explain various sample allocation 08 criteria in stratified sampling.
b) Explain the concept of systematic sampling. Derive the sampling variance of

08 unbiased estimator of population mean under the linear systematic sampling.

Q. 5 Answer the following.

$\begin{array}{lll}\text { a) Define Horvitz-Thompson estimator for population total. Show that it is } & \mathbf{0 8} \\ \text { unbiased. Obtain its variance. } & \\ \text { b) } & \text { Define Des Raj's ordered estimator for population mean on the basis of a } \\ \text { sample of size } 2 \text { and show that it is unbiased. }\end{array}$

SLR-SR-10

Q. 6 Answer the following.

a) Explain cluster sampling and clearly specify the advantages of the scheme.

08 When this method is better than SRSWOR?
b) Define PPSWR sampling design. Obtain an unbiased estimator of the 08 population mean and its variance when a PPSWR sample of size n is drawn from a population of size N .

Q. 7 Answer the following.

a) Explain ratio method of estimation. Assuming SRSWOR, derive 08 approximate expression for bias of ratio estimator.
b) What is the problem of non-response? Discuss Hansen-Hurwitz techniques 08 of tackling this problem giving all the details.

Seat

No.

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Asymptotic Inference (MSC16301)

Day \& Date: Monday, 10-07-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative

1) An estimator T_{n} of parameter θ is strongly consistent for θ means
a) $\lim _{n \rightarrow \infty} P_{\theta}\left\{\left|T_{n}-\theta\right|>\varepsilon\right\}=1$
b) $\lim _{n \rightarrow \infty} P_{\theta}\left\{\left|T_{n}-\theta\right|>\varepsilon\right\}=0$
c) $P_{\theta}\left\{\lim _{n \rightarrow \infty} T_{n}=\theta\right\}=1$, for all $\theta \in \Theta$
d) None of these
2) Consider the statements:
X) Joint consistency implies marginal consistency.
Y) Weak consistency implies strong consistency.

Consider the statements:
a) Only X
b) Only Y
c) both X and Y
d) neither X nor Y
3) In case of $N\left(\mu, \sigma^{2}\right), \mu \in R, \sigma^{2}>0$, the MLE of σ^{2} is \qquad .
a) unbiased and consistent
b) unbiased but not consistent
c) asymptotically unbiased and not consistent
d) asymptotically unbiased and consistent
4) For an estimator to be CAN \qquad .
a) unbiasedness of estimator is necessary
b) consistency of estimator is necessary
c) both a) and b)
d) neither a) nor b)
5) Sample distribution function at a given point is \qquad for the population function at the same point.
a) consistent
b) CAN
c) both a) and b)
d) neither a) nor b)
6) In a random sample of size n from Poisson (λ) distribution, MLE of λ was reported to be 2. The variance of the asymptotic normal distribution of case of $\sqrt{n}\left(e^{-\bar{X}_{n}}-e^{-\lambda}\right)$ is estimated by \qquad .
a) $4 e^{-4}$
b) $2 e^{-4}$
c) $2 e^{-2}$
d) e^{-4}

SLR-SR-12

7) Based on random sample of size n from $N(\theta, 1)$, asymptotic distribution of $n \bar{X}_{n}^{2}$ is \qquad .
a) $\chi_{n}^{2}, \theta \in R$
b) $\chi_{1}^{2}, \theta=0$
c) $\chi_{1}^{2}, \theta \neq 0$
d) $N\left(\theta^{2}, 1\right), \theta \in R$
8) A sequence of estimators T_{n} is said to be BAN for θ if \qquad .
a) T_{n} is consistent for θ
b) T_{n} is CAN for θ
c) Asymptotic $\operatorname{Var}\left(T_{n}\right)=$ CRLB
d) all the above
9) For sufficiently large sample size, the likelihood equation admits \qquad .
a) unique consistent solution
b) two consistent solutions
c) more than two consistent solutions
d) no consistent solution
10) In LRT, under some regularity conditions on $f(x, \theta)$, the random variable $-2 \log \lambda(x)$ [where $\lambda(x)$ is likelihood ratio] is asymptotically distributed as \qquad .
a) normal
b) exponential
c) chi-square
d) F-distribution
B) Fill in the blanks.
11) For Cauchy distribution with location θ, the consistent estimator of θ is \qquad .
12) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid from Poisson (θ). CAN estimator of $P_{\theta}(X=1)$ is \qquad .
13) Cramer family is \qquad than exponential family.
14) To investigate the significance difference between variances of several normally distributed populations \qquad test is used.
15) Test based on score functions was proposed by \qquad .
16) The variance stabilizing transformation for binomial population is \qquad .
Q. 2 Answer the following
a) Define weak consistency and strong consistency.
b) Describe Wald's test. State its asymptotic distribution.
c) State Cramer-Huzurbazar results.
d) Based on random sample of size n from $B(1, p)$ obtain variance stabilizing transformation of the estimator.

Q. 3 Answer the following

a) Define consistent estimator. State and prove invariance property of consistent estimator of a real valued parameter θ.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $N(\theta, 1)$, computing the actual probability show that \bar{X}_{n} is consistent estimator of θ.

Q. 4 Answer the following

a) Define one-parameter (θ) family of distributions. For a one parameter exponential family, prove that maximum likelihood estimator leads to a CAN estimator of θ.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $U(\theta, 1), \theta>0$. Show that $2 \bar{X}_{n}$ is CAN for θ but $X_{(n)}$ is not CAN for θ.

SLR-SR-12

Q. 5 Answer the following

a) Define joint and marginal consistency for a vector parameter θ. Show that joint consistency is equivalent to marginal consistency.
b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, X_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right)$. Obtain MLE of 08
$\left(\mu, \sigma^{2}\right)$. Show that it is CAN for $\left(\mu, \sigma^{2}\right)$. Obtain its asymptotic variance covariance matrix.

Q. 6 Answer the following

a) Explain variance stabilizing transformations and illustrate their use in large sample confidence intervals.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $N\left(\mu, \sigma^{2}\right)$ random variables. Find variance stabilizing 08 transformation for S^{2} and obtain $100(1-\alpha) \%$ confidence interval for σ^{2} based on the transformation.

Q. 7 Answer the following

a) Define likelihood ratio test. Derive the asymptotic null distribution of the likelihood ratio statistic.
b) Let $X_{1}, X_{2}, . ., X_{n}$ be iid $N(\theta, 1)$. Let $\Psi(\theta)=\theta^{2}$. Obtain CAN estimator for 08 $\Psi(\theta)$. Discuss its asymptotic distribution at $\theta=0$.

SLR-SR-13

Seat

No.
Set
P

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Multivariate Analysis (MSC16302)

Day \& Date: Tuesday, 11-07-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any Three questions from Q. No. 3 to Q. No. 7
3) Figures to the right indicate full marks.
Q. 1 A) Choose Correct Alternative.

1) If \underline{X} has $N_{p}(\mu, \Sigma)$ distribution then moment generating function of vector \underline{X} is \qquad
a) $\operatorname{Exp}\left(t^{\prime} \mu-\frac{1}{2} t^{\prime} \Sigma t\right)$
b) $\operatorname{Exp}\left(t^{\prime} \mu+\frac{1}{2} t^{\prime} \Sigma t\right)$
c) $\operatorname{Exp}\left(t^{\prime} \mu+\frac{1}{2} t^{\prime} \Sigma^{-1} t\right)$
d) $\operatorname{Exp}\left(t^{\prime} \mu-\frac{1}{2} t^{\prime} \Sigma^{-1} t\right)$
2) In factor analysis, if there are k variables and m factors, then \qquad .
a) $k<m$
b) $m=k$
c) $m<k$
d) None of these
3) Let A has $W_{p}(n, \Sigma)$ distribution then $E\left(A^{-1}\right)=$ \qquad .
a) $\frac{1}{p-1} \Sigma^{-1}$
b) $\frac{1}{n-1} \Sigma^{-1}$
c) Σ^{-1}
d) $\frac{1}{n-p-1} \Sigma^{-1}$
4) Le A has $W_{p}(n, \Sigma)$ distribution and h be any vector distribution of $\frac{h^{\prime} \Sigma^{-1} h}{h^{\prime} \mathrm{A}^{-1} h}$ is
a) χ_{n}^{2}
b) χ_{p}^{2}
c) χ_{n-p}^{2}
d) χ_{n-p+1}^{2}
5) Let vector \underline{Y} has $N_{p}(\mu, \Sigma)$ distribution. For a constant matrix $A_{q \mathrm{X} p}$ and vector $b_{q \times 1}$ the distribution of $\underline{X}=A \underline{Y}+b$ is \qquad .
a) $\quad N_{p}\left(A_{\mu}, A \Sigma A^{\prime}\right)$
b) $\quad N_{q}\left(A \mu, A \Sigma A^{\prime}\right)$
c) $\quad N_{q}\left(A \mu+b, A \Sigma A^{\prime}\right)$
d) $\quad N_{q}\left(A \mu+b, A \Sigma A^{\prime}\right)$
6) Factor analysis can be used in which of the following circumstances?
a) To identify underlying dimensions, or factors, that explains the correlations among a set of variables.
b) To identify a new, smaller set of uncorrelated variables to replace the original set of correlated variables in subsequent multivariate analysis.
c) To identify a smaller set of salient variables from a larger set for use in subsequent multivariate analysis.
d) All are correct circumstances.
7) Let $\underline{X}_{1}, \underline{X}_{2}, \ldots, \underline{X}_{n}$ be a random sample of size n from $N_{p}(\mu, \Sigma)$ distribution. Then MLE of μ is for population mean vector.
a) unbiased but not sufficient
b) biased and sufficient
c) unbiased and sufficient
d) biased and not sufficient

SLR-SR-13

8) Which of the following statistical techniques uses two or more independent, metric variables to classify observations into categories of a nominal, dependent variable?
a) Factor analysis
b) Multivariate analysis of variance
c) Cluster analysis
d) Discriminant analysis
9) The goal of discriminant analysis is to predict a \qquad .
a) Numerical variable
b) Categorical variable
c) Variable measured on interval scale
d) All of these
10) Which of the following statistical techniques identifies homogenous subgroups?
a) Factor analysis
b) Multivariate analysis of variance
c) Cluster analysis
d) Discriminant analysis
B) Fill in the blanks
11) As the distance between two populations decreases, misclassification error \qquad _.
12) Agglomerative clustering uses \qquad approach for clustering.
13) Generalized variance is \qquad of variance-covariance matrix.
14) A graphical representation of clustering can be done using \qquad .
15) The maximum variation is explained by \qquad principal component.
16) The diagonal elements of variance-covariance matrix are \qquad .
Q. 2 Answer the following.
a) Show that two p -variate normal vectors \underline{X}_{1} and \underline{X}_{2} are independent if and only if $\operatorname{cov}\left(\underline{\underline{X}}_{1}, \underline{\underline{X}}\right)=0$.
b) Write a note on singular and non-singular multivariate normal distribution.
c) Obtain characteristic function of multivariate normal distribution.
d) Find maximum likelihood estimator for μ based on a random sample from multivariate normal distribution $N_{P}(\underline{\mu}, \Sigma)$

Q. 3 Answer the following.

a) Derive the density of multivariate normal distribution.
b) Derive expressions for principle components. Show that total variation explained by principal components is same as total variation in original variables.

Q. 4 Answer the following.

a) If $\underline{X} \sim \mathrm{~N}_{\mathrm{p}}\left(\underline{\mu}, \sum\right)$, and random vector \underline{X} be partitioned into two sub - vectors
as $X_{(1)}$ and $X_{(2)}$. Then with usual notations obtain the conditional distribution of $X_{(2)}$ given $X_{(1)}$
b) Based on random sample of size n from $N_{p}(\underline{\mu}, \Sigma)$ distribution, obtain a LRT for testing $H_{0}: \underline{\mu}=\underline{\mu}_{0}$ against $H_{1}: \underline{\mu}=\underline{\mu}_{1}$.

SLR-SR-13

Q. 5 Answer the following.

a) Describe the problem of classification. Derive Fisher's best linear

08 discriminant function.
b) What is meant by discriminant analysis? Obtain the classification rule 08 for the case of two populations with densities $N_{p}\left(\underline{\mu_{1}}, \Sigma\right)$ and $N_{p}\left(\underline{\mu_{2}}, \Sigma\right)$.

Q. 6 Answer the following.

a) Discuss hierarchical and non-hierarchical clustering. Discuss k-means 08 clustering in detail.
b) Define:

1) Distance matrix
2) Single linkage
3) Complete linkage
4) Average linkage

Q. 7 Answer the following

a) Describe agglomerative clustering in detail. Illustrate with the help of 08 example using single linkage method.
b) Describe Wishart distribution. State and prove additive property of Wishart 08 distribution.

SLR-SR-14

Seat

No.

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Planning and Analysis of Industrial Experiments (MSC16303)

Day \& Date: Wednesday, 12-07-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) In two-way classification model $Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j} ; i=1,2, \ldots$ $v . j=1,2 \ldots . n_{i}$ and assumptions on errors are followed; the error degrees of freedom are \qquad .
a) $(n-1)(v-1)$
b) $(v-1)(b-1)$
c) $(\mathrm{n}-\mathrm{v})(\mathrm{b}-\mathrm{v})$
d) $(v-n)(v-b)$
2) In a 2^{3} factorial experiment with, the contrast due to main effect A is \qquad .
a) $[(a)+(a b)+(a c)+(a b c)-(1)-(b)-(c)-(b c)]$
b) $[(a)+(a b)-(a c)+(a b c)-(1)+(b)-(c)+(b c)]$
c) $[(\mathrm{a})+(\mathrm{ab})+(\mathrm{ac})-(\mathrm{abc})-(1)+(\mathrm{b})+(\mathrm{c})-(\mathrm{bc})]$
d) $[(\mathrm{a})+(\mathrm{ab})+(\mathrm{ac})+(\mathrm{abc})-(1)-(\mathrm{b})-(\mathrm{c})+(\mathrm{bc})]$
3) In a symmetric BIBD (v, b, r, k, λ) \qquad .
a) $r=v, b=k$
b) $\quad v=b, r=k$
c) $\quad v=1, b=2$
d) $v=2, b=1$
4) Which of the following is one-way ANOCOVA model with single covariate?
a) $\quad Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\gamma z_{i j}+\epsilon_{i j}$
b) $\quad Y_{i j}=\mu+\alpha_{i} * \beta_{j}+z_{i j}+\epsilon_{i j}$
c) $\quad Y_{i j}=\mu+\alpha_{i}+\gamma z_{i j}+\epsilon_{i j}$
d) $Y_{i j}=\mu+\alpha_{i}+\beta_{j}-z_{i j}+\epsilon_{i j}$
5) In a 2^{5} experiment, number of two - factor interaction effects are \qquad .
a) 10
b) 05
c) 31
d) 32
6) In a RBD with 4 treatments and 5 blocks, the error degrees of freedom are \qquad .
a) 20
b) 12
c) 15
d) 16
7) Every balanced design is \qquad .
a) Orthogonal
b) Disconnected
c) Complete
d) Connected
8) In general block design, C matrix is given by \qquad .
a) $R^{\delta}-N K^{-\delta} N^{\prime}$
b) $K^{\delta}-N^{\prime R^{-\delta}} N$
c) $R^{\delta}+N K^{-\delta} N^{\prime}$
d) $R^{\delta} \times\left(N K^{-\delta} N^{\prime}\right)^{-1}$

SLR-SR-14

9) In one - way ANOVA model, the treatment sum of squares is an estimate of \qquad .
a) within treatment variation
b) between treatment variation
c) total variation
d) none of these
10) In a 3^{2} experiment, interaction effect $A B$ has \qquad degrees of freedom.
a) 2
b) 3
c) 4
d) 9
B) Fill in the blanks
11) Replication, \qquad and local control are three basic principles of design of experiments.
12) $\operatorname{In} 2^{3}$ factorial experiment in 3 replicates the error has \qquad degrees of freedom.
13) If all elementary contrasts are estimable then the design is said to be \qquad .
14) In partial confounding \qquad effect is confounded in \qquad replicates.
15) The principle block of a 2^{4} factorial experiment contains the treatments $\{(1) \mathrm{ab}, \mathrm{ac}, \mathrm{bc}, \mathrm{ad}, \mathrm{bd}, \mathrm{cd}, \mathrm{abcd}\}$ then \qquad effect is confounded with block effects.
16) The total number of treatments in 2^{6} experiment are \qquad .
Q. 2 Answer the following
a) Define resolution of a design. Illustrate using one example.
b) Define BIBD (v, b, r, k, λ). Write all parametric relationship.
c) In one-way classification, show that elementary contrasts are estimable.
d) Define balanced design. Show that RBD is a balanced design.

Q. 3 Answer the following

a) Derive the test for testing the hypothesis $H_{0}: \alpha_{1}=\alpha_{2}=\cdots=\alpha_{v}$ against appropriate alternative in the model $Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, i=1,2, \ldots$, $v . j=1,2, \ldots n_{i} . \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)$
b) Obtain the least square estimates of parameters in the following model.

$$
Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j}, i=1,2, \ldots, v . j=1,2, \ldots b . \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Q. 4 Answer the following

a) Derive the necessary and sufficient condition for orthogonality of a connected block design and hence show that RBD is connected as well as orthogonal.
b) Prove that dual of a symmetric BIBD is also a symmetric BIBD.

Q. 5 Answer the following

a) In a connected block design prove that rank $(C)=v-1$ and hence rank of estimation space is $v+b-1$.
b) Derive $1 / 2$ fraction of 2^{5} experiment and write its consequences.

Q. 6 Answer the following

a) Describe tile analysis of 2^{k} full replicated factorial experiments. 08
b) State and prove any four properties of $\operatorname{BIBD}(v, b, r, k, \lambda)$. 08

Q. 7 Answer the following

a) In general block design state and prove the properties of C matrix. 08
b) Derive the test for testing hypothesis of equality of all treatment effects in 08 two-way classification model.

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Regression Analysis (MSC16306)

Day \& Date: Thursday, 13-07-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Question no. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7.
3) Figure to right indicate full marks.
Q. 1 A) Multiple choice questions.

1) In simple linear regression model $Y=\beta_{0}+\beta_{1} X+\epsilon, X$ and Y are respectively \qquad .
a) response variable and regressor variable
b) predictor variable and response variable
c) response variable and predictor variable
d) slope and intercept
2) In a multiple linear regression model with $\mathcal{E} \sim \mathrm{N}\left(0, \sigma^{2} \mathrm{I}\right)$, the distribution of response vector Y is \qquad
a) $\mathrm{N}\left(\mathrm{X} \beta, \mathrm{H} \sigma^{2}\right)$
b) $\quad \mathrm{N}\left(\mathrm{X} \beta,(\mathrm{I}-\mathrm{H}) \sigma^{2}\right)$
d) $\quad N\left(X \beta,\left(X^{\prime} X\right)^{-1} \sigma^{2}\right)$
3) In usual notations, the residual refers to \qquad
a) $\overline{y_{1}}-\widehat{y_{1}}$
b) $y_{i}-\widehat{y_{1}}$
c) $\widehat{y}_{1}-\overline{y_{1}}$
d) $y_{i}-\overline{y_{1}}$
4) Which of the following is true about coefficient of determination $\left(R^{2}\right)$?
a) $0 \leq R^{2} \leq 1$
b) $R^{2}=1$ indicates the best fit of the model.
c) $R^{2}=0.95$ indicates the model is 95% good
d) All the above
5) Forward selection procedure starts with the \qquad predictor variables in the model.
a) Without
b) Some
c) All
d) none of these
6) Autocorrelation is concerned with \qquad .
a) correlation among regressor variables
b) correlation among response and regressor variables
c) correlation among disturbance terms
d) correlation between disturbance term and response variable
7) Cochrane-Orkut method for parameter estimation is used in \qquad .
a) the presence of multicollinearity
b) the presence of autocorrelation
c) nonparametric regression
d) nonlinear regression

SLR-SR-15

8) If a response variable in a GLM follows Poisson distribution, then
\qquad link function is suitable.
a) θ
b) $\log \theta$
c) $-\log \theta$
d) $\log \left(\frac{\theta}{1-\theta}\right)$
9) In a logistic regression model with single covariate, the odd ratio Ψ is related to the regression coefficient β_{1} by \qquad -.
a) $\Psi=e^{\beta_{1}}$
b) $\Psi=\beta_{1}$
c) $\Psi=1 \mathrm{n} \beta_{1}$
d) $\Psi=e^{\beta 0}$
10) Which one of the following measures is used to test goodness of fit in a generalized linear model?
a) Deviance
b) F-ratio
c) t-statistic
d) none of these
B) Fill in the blanks.
11) In a multiple linear regression model with k regressors, the distribution of $\left(S S_{\text {Res }} / \sigma^{2}\right)$ is \qquad
12) The model $Y=\overline{\beta_{0} e^{\beta_{1}} \mathrm{X}} \varepsilon$ can be linearized by using \qquad transformation.
13) The sum of residuals weighted by corresponding fitted value is always equal to \qquad .
14) If eigen values of the matrix $X^{\prime} X$ are 4.2, $0.3,1.0$ and 0.03 . Then condition index is \qquad .
15) In usual notations, $\mathrm{a}(\varnothing)$ for Poisson (λ) family is always equal to \qquad .
16) If response function is curvilinear then initially \qquad polynomial model should be considered.
Q. 2 Answer the following
a) Discuss Box-Cox power transformation.
b) With usual notations, show that $\operatorname{Var}(\hat{Y})=H \sigma^{2}$
c) Discuss examination of correlation matrix method for detection of multicollinearity.
d) What is logistic regression model? Give one situation where such model is appropriate.

Q. 3 Answer the following.

a) Describe multiple linear regression model. Stating the assumptions, obtain 08
mean and variance of least squares estimators of β.
b) Discuss confidence interval for regression coefficient and prediction interval for future observation in the context of multiple regression.

Q. 4 Answer the following.

$\begin{array}{lll}\text { a) Explain the problem of multicollinearity in connection with linear regression } & 08 \\ \text { model. What are its consequences on least squares estimators? } & \\ \text { b) } \begin{array}{ll}\text { Describe backward elimination method of subset selection in linear } & 08 \\ \text { regression. }\end{array}\end{array}$

SLR-SR-15

Q. 5 Answer the following.a) Explain the problem of autocorrelation. Discuss Cochrane-Orcutt method of08parameter estimation.
b) Explain the following plots: 08i) Normal probability plot.ii) Residual against the fitted values.
Q. 6 Answer the following.
a) Give formal structure of GLM. Discuss Nelder-Wedderburn method for 08
parameter estimation in GLM.
b) Explain the non-linear regression model. Discuss linearization parameter 08 estimation method for this model.
Q. 7 Answer the following.
a) Define a one parameter natural exponential family. Show that, member 08 $N\left(\mu, \sigma^{2}\right), \mu \in R, \sigma^{2}>0$ is member of natural exponential family.
b) Define 'Deviance statistic'. Find it when data comes from Poisson distribution 08with mean λ.
M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 STATISTICS
Data Mining (MSC16401)
Day \& Date: Monday, 10-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternatives from the options.

1) Market-basket problem was formulated by \qquad .
a) Agrawal et al.
b) Toda et al.
c) Steve et al.
d) Simon et. AI
2) ___ data are noisy and have many missing attribute values.
a) Discretized
b) Real-world
c) Cleaned
d) Transformed
3) Which of the following is the not a type of clustering?
a) k-means
b) Hierarchical
c) Non-hierarchical
d) Splitting
4) The problem of finding hidden structure in unlabeled data is called \qquad .
a) supervised learning
b) unsupervised learning
c) mixed learning
d) all of these
5) Bayesian classifiers is \qquad .
a) A class of learning algorithm that tries to find an optimum classification of a set of examples using the probabilistic theory
b) Any mechanism employed by a learning system to constrain the search space of a hypothesis
c) An approach to the design of learning algorithms that is inspired by the fact that when people encounter new situations, they often explain them by reference to familiar experiences, adapting the explanations to fit the new situation.
d) None of these
6) In data mining, SVM stands for \qquad .
a) Service Vector Machine
b) Standard Vector Machine
c) Standard Vector Method
d) Support Vector Machine
7) Each neuron is made up of a number of nerve fibres called
a) Molecules
b) Dendrites
c) Atoms
d) Sigmoid

SLR-SR-17

8) The final output of data mining is
a) Data
b) Clean data
c) Information
d) All of these
9) Which of the following tool can be best used for classification?
a) Linear regression
b) Logistic regression
c) polynomial regression
d) All of these
10) Classification of new species to one of the earlier known families of species is \qquad .
a) Supervised learning
b) Unsupervised learning
c) Traditional learning
d) None of these
B) Fill in the blanks.
11) Task of inferring a model from unlabeled training data is called \qquad learning.
12) KNN is an example of \qquad Learning method.
13) Looking for combinations of items purchased together is called \qquad .
14) In data mining, ANN stands for \qquad .
15) In \qquad learning, class labels are provided
16) The part of the entire data, which is used for building the model is called as \qquad .

Q. 2 Answer the following.

a) What is meant by imbalanced data?
b) Differentiate between training data and testing data
c) Discuss, with illustration, the concept of supervised learning.
d) Discuss sensitivity and specificity of a model.
Q. 3 Answer the following.
a) Discuss Bayesian classifier. Also explain why it is called as naive classifier.
b) Discuss k-nearest neighbor classifier in detail.

Q. 4 Answer the following.

a) Discuss logistic regression classifier in detail.
b) Discuss the working mechanism of ANN.
Q. 5 Answer the following. 16
a) Write down the algorithm for decision tree classifier.
b) Write down the algorithm for Bayesian classifier.
Q. 6 Answer the following.
a) Discuss in detail about how the order of features is considered in decision tree with respect to information gain.
b) Discuss the different metrics for Evaluating Classifier Performance.
Q. 7 Answer the following.
a) Describe unsupervised learning. Also explain in detail, market basket analysis.
b) Describe -1) Accuracy of a model
2) Precision of a model

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 STATISTICS Industrial Statistics (MSC16402)

Day \& Date: Wednesday, 12-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and. 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) The performance measure of c and u charts is based on the assumption that the occurrence of nonconformities follows \qquad distribution.
a) Geometric
b) Binomial
c) Poisson
d) Normal
2) Usually 3-sigma limits are called \qquad .
a) warning limits
b) action limits
c) specification limits
d) none of these
3) Quality is inversely proportional to \qquad .
a) variability
b) Cost
c) Method
d) Time
4) 'Vital few and trivial many' is the principle of the \qquad .
a) control chart
b) Ishekawa diagram
c) check sheet
d) Pareto analysis
5) The type II error occurs when \qquad .
a) good lot is rejected
b) a bad lot is accepted
c) the number of defectives are very large
d) the population is worse than the AQL
6) Memory type control charts are developed specifically for detecting ___ shifts efficiently.
a) Moderate
b) Large
c) Small
d) All of these
7) In a demerit system, the unit will cause personal injury or property damage is classified as \qquad defect.
a) class A
b) class B
c) Class C
d) Class D
8) The capacity index $C_{p k}$ involves \qquad parameter(s) to be estimated.
a) Only μ
b) Only σ
c) Both μ and σ
d) None of these
9) For a centered process \qquad .
a) $\quad C_{p}=C_{p k}$
b) $\quad \mathrm{C}_{\mathrm{p}}<\mathrm{C}_{\mathrm{pk}}$
c) $\quad \mathrm{C}_{\mathrm{p}}>\mathrm{C}_{\mathrm{pk}}$
d) None of these
10) Designing a single sampling plan for attributes means \qquad .
a) finding α and β for given n and c values
b) finding n and c for given α and β Values
c) finding n and α for given β and c values
d) finding α and c for given n and β values
B) Fill in the blanks 06
11) The variation due to ___ causes cannot be identified and removed from the process.
12) For a variable sampling plan, the distribution of quality characteristic is assumed to be \qquad .
13) The number of inspected units between two consecutive nonconforming units, including the end nonconforming unit is known as \qquad _.
14) In demerit system, the occurrence of defects in each class is modelled by \qquad distribution.
15) The ASN of a double sampling plan reduces to that of a single sampling plan if probability of making a decision on the basis of first sample is \qquad -
16) An appropriate distribution of run length is \qquad .
Q. 2 Answer the following

a) Distinguish between process control and product control. Discuss the
situations where they are used.16
b) Write a short note on DMAIC Cycle.
c) Explain the use of Pareto chart with suitable example.
d) Explain the terms:
i) Consumer's risk
ii) Producer's risk
Q. 3 Answer the following 16
a) List seven SPC tools and explain in detail any two of off-line tools.
b) Discuss the various steps involved in the construction of \bar{X} and R charts.
Q. 4 Answer the following 16
a) Define single sampling plan for attributes. Give an algorithm to design the single sampling plan. Obtain OC function of the same.
b) Explain variable sampling plan when lower specification is given and standard deviation is known.

Q. 5 Answer the following

a) Discuss the control chart for fraction nonconforming when the sample size is,
i) Fixed
ii) Variable
b) What is an EWMA control chart? In which situation it is preferred to \bar{X} chart? Explain the procedure of obtaining control limits for the same.

Q. 6 Answer the following

a) Stating the underlying assumptions, define process capability indices C_{p} and $C_{p k}$. Derive the relationship between them.
b) What is CUSUM chart? Explain its construction and operation

SLR-SR-18

Q. 7 Answer the following
a) Stating the assumptions, explain the construction and operations of the Hotelling's T^{2} chart to monitor process mean vector.
b) Explain the basic concept of six-sigma methodology. Also explain the benefits of implementing the same.

SLR-SR-19

Seat

No.
Set

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Reliability and Survival Analysis (MSC16403)

Day \& Date: Friday, 14-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Question no. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7.
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative.

1) If $\phi(x)$ is a structure function then dual of $\phi(x)$ is \qquad .
a) $1-\phi(x)$
b) $1-\phi(1-x)$
c) $\phi(1-x)$
d) none of these
2) Suppose $R(t)$ is the reliability of parallel system of two components having reliabilities $R_{1}(t)$ and $R_{2}(t)$ respectively then \qquad -.
a) $R(t)>\operatorname{Max}\left\{R_{1}(t), R_{2}(t)\right\}$
b) $\quad R(t)=\operatorname{Min}\left\{R_{1}(t), R_{2}(t)\right\}$
c) $R(t) \geq \operatorname{Min}\left\{R_{1}(t), R_{2}(t)\right\}$
d) $R(t)<\operatorname{Min}\left\{R_{1}(t), R_{2}(t)\right\}$
3) A vector \underline{X} is called cut vector if \qquad .
a) $0 \leq \phi(\underline{X}) \leq 1$
b) $\quad \phi(\underline{X})=0.5$
c) $\phi(\underline{X})=1$
d) $\quad \phi(\underline{X})=0$
4) The $i^{\text {th }}$ component of a system is irrelevant if \qquad .
a) $\phi\left(1_{i}, \underline{x}\right) \leq \phi\left(0_{i}, \underline{x}\right)$
b) $\quad \phi\left(1_{i}, \underline{x}\right) \geq \phi\left(0_{i}, \underline{x}\right)$
c) $\phi\left(1_{i}, \underline{x}\right)=\phi\left(0_{i}, \underline{x}\right)$
d) none of the above
5) If distribution F is $I F R$ then \qquad is Polya function of order 2.
a) $h(t)$
b) $\quad R(t)$
c) $\log R(t)$
d) $Z(t)$
6) The minimal cut sets of structure ϕ are \qquad for its dual.
a) minimal cut vectors
b) minimal cut sets
c) minimal path sets
d) none of the above
7) A distribution function $F(t)$ said to have new worse than used (NWU) if
a) $\bar{F}(t+x) \geq \bar{F}(t) \bar{F}(x)$
b) $\quad \bar{F}(t+x) \leq \bar{F}(t) \bar{F}(x)$
c) $\bar{F}(t+x)=\bar{F}(t) \bar{F}(x)$
d) none of the above
8) In type I censoring \qquad .
a) the number of failures is fixed
b) duration of an experiment is fixed
c) both time and number of failures is fixed
d) none of these
9) Censoring technique is used for reducing \qquad .
a) time of experiment
b) cost of experiment
c) number of failures
d) none of the above
10) In survival analysis, the data set may contain \qquad .
a) only left censored observations
b) only right censored observations
c) both left and right censored observations
d) none of the above
B) Fill in the blanks.
11) The number of minimal paths in 2-out-of-3 system are \qquad .
12) DFRA property is preserved under \qquad .
13) As the number of components n increases, the reliability of series system \qquad -.
14) The survival function ranges between \qquad .
15) In type I censoring, the number of uncensored observations has distribution.
16) To obtain confidence band for survival function \qquad statistic is used

Q. 2 Answer the following.

a) Define reliability of component. Obtain the reliability of series system of n independent components.
b) Write a short note on Polya function of order 2.
c) Describe each of the following with one illustration:

1) Type-I censoring
2) Type-Il censoring
d) Write a short note on estimation of survival function under uncensored data.

Q. 3 Answer the following.

a) Define mean time to failure (MTTF) and mean residual life (MRL) function.
b) Define star shaped function. Prove that $\mathrm{F} \in \mathrm{IFRA}$ if and only if $-\log R(t)$ is star shaped.

Q. 4 Answer the following.

a) Define IFR and IFRA class of distributions. If $F \in \operatorname{IFR}$ then show that $F \in$ IFRA.
b) If failure time of item has Weibull distribution with distribution function
$F(t)=\left\{\begin{array}{l}1-e^{-(\lambda t)^{\alpha}}, \quad t>0 \\ 0, \text { otherwise }\end{array}\right.$
Examine whether it belongs to IFR or DFR.

Q. 5 Answer the following.

a) Describe the need of censoring experiment. Describe situations where 08 random censoring occurs naturally.
b) Obtain maximum likelihood estimator of the mean of exponential distribution under type I censoring.

Q. 6 Answer the following.

a) Describe actuarial method of estimation of survival function, with suitable 08 illustration.
b) Describe Gehan's test for two sample testing problem in presence of 08 censoring.

SLR-SR-19

Q. 7 Answer the following.

a) For a coherent system with n components prove that:

08

1) $\phi(0)=0$ and $\phi(1)=1$
2) $\prod_{i=1}^{n} X_{i} \leq \phi(X) \leq \coprod_{i=1}^{n} X_{i}$
b) Obtain the nonparametric estimator of survival function based on complete data. Also obtain confidence band for the same using Kolmogorov-Smirnov statistic.

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Optimization Techniques (MSC16404)

Day \& Date: Sunday, 16-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and. 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Select correct alternatives of the following questions.

1) If $i^{\text {th }}$ constraint of LPP is deleted then the optimum solution is also changed then such constraint is called \qquad .
a) Redundant constraint
b) Binding constraint
c) Unbinding constraint
d) none of these
2) Which of the following is not correct with respect to standard form of LPP?
a) All Constraints are "<=" type
b) All Constraints are "=" type
c) All right hand side coefficients " $>=$ " type
d) Objective function may be maximization or minimization
3) Linear programming problem means \qquad -
a) Linear objective function but linear or non linear constraints
b) Linear constraints but linear or non linear objective function
c) All constraints and objective function is linear
d) None of the above
4) At any iteration of the Big-M simplex method, if there exist at least one artificial variable in the basis at zero level and all $z_{j}-c_{j} \geq 0$, the current solution is \qquad .
a) Infeasible
b) Unbounded
c) Non-degenerate optimum basic feasible solution
d) Degenerate optimum basic feasible solution
5) To maintain feasibility of current optimum solution, a range of change in the constants $b_{k}\left(\Delta b_{k}\right)$, is \qquad .
a)

$$
\max \left\{-\frac{x_{B_{i}}}{\beta_{i k}}, \beta_{i k}>0\right\} \leq \Delta b_{k} \leq \min \left\{-\frac{x_{B_{i}}}{\beta_{i k}}, \beta_{i k}<0\right\}
$$

b)

$$
\min \left\{-\frac{x_{B_{i}}}{\beta_{i k}}, \beta_{i k}>0\right\} \leq \Delta b_{k} \leq \max \left\{-\frac{x_{B_{i}}}{\beta_{i k}}, \beta_{i k}<0\right\}
$$

c) $-\infty \leq \Delta b_{k} \leq \min \left\{-\frac{x_{B_{i}}}{\beta_{i k}}, \beta_{i k}<0\right\}$
d)

$$
\max \left\{-\frac{x_{B_{i}}}{\beta_{i k}}, \beta_{i k}>0\right\} \leq \Delta b_{k} \leq \infty
$$

6) Which of the following is not correct?
a) Number of dual constraints equal to number of primal variables
b) Number of dual variables equal to number of primal constraints
c) Primal objective is minimization type then dual objective is maximization type
d) Dual variables are always unrestricted in sign
7) Addition of a constraint in linear programming problem.
a) Always affects on feasible solution space
b) It always changes the current optimum solution
c) It may nor may not affect on solution space
d) It enlarged solution space
8) In mixed integer programming problem.
a) Different objective functions are mixed together
b) All of the decision variables require integer solutions
c) Only few of the decision variables requires integer solutions
d) None of these
9) Consider two-person zero sum game with payoff matrix as \qquad $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
Then saddle point is \qquad .
a) 5
b) 6
c) 7
d) 8
10) If the quadratic form $X^{\top} Q X$ is positive definite, then it is \qquad .
a) Strictly convex
b) Strictly concave
c) Convex
d) Concave
B) Fill in the blanks
11) Artificial variable added in constraints to solve LPP, if \qquad does not exist.
12) If the players select the same strategy each time, then it is referred as \qquad .
13) The quadratic form $X^{\top} Q X$ is negative definite, then it is \qquad .
C) State whether following statements are true or false
14) Branch and bound method used to solve QPP.
15) Degenerate basic feasible solution means at least one basic variable having value zero.
16) Dual constraints corresponding to maximization primal problem are ">=" type \qquad -.
Q. 2 a) Explain graphical method to solve two persons zero sum problem. 04
b) State and prove weak duality theorem.
c) Show that set of all convex combinations of finite number of points of 04 $S \subseteq R^{n}$ is convex set.
d) Define the following terms.
i) Convex polyhedral
ii) Supporting hyperplane
iii) Separating hyperplane

SLR-SR-20

Q. 3 a) Describe dual simplex algorithm to solve linear programming problem. 08
b) What is linear programming problem? Explain advantages and its 08limitations.
Q. 4 a) Solve the following LPP using simplex method 08
Max $Z=2 x_{1}+3 x_{2}$, Subject to, $x_{1}+x_{2} \leq 30, x_{1}-x_{2} \geq 0,0 \leq x_{1} \leq 20,0 \leq x_{2} \leq 12$
b) Describe Beale's method to solve quadratic programming problem. 08
Q. 5 a) Show that game problem can be modelled as LPP. 08
b) Describe use of artificial variable to solve LPP and explain Big-M method in 08 detail.
Q. 6 a) What is quadratic programming problem? Obtain necessary KKT conditions. 08
b) State and prove basic duality theorem. 08
Q. 7 a) Describe Gomory's cutting plane method for mixed IPP. 08
b) Use dual simplex method to solve following LPP. 08
Max Z = $\mathrm{X}_{1}+\mathrm{X}_{2}$Subject to the constraints:
$2 x_{1}+x_{2} \geq 16$,

$$
x_{1}+2 x_{2} \leq 6,
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 STATISTICS
 Time Series Analysis (MSC16407)

Day \& Date: Tuesday, 18-07-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative.

1) Which of the following is additive model of time series?
a) $X_{t}=m_{t} \times s_{t} \times Y_{t}$
b) $X_{t}=m_{t}+s_{t}+Y$
c) $X_{t}=m_{t} \times s_{t}+Y_{t}$
d) $X_{t}=m_{t} \times Y_{t}$
2) The variance of white noise process is \qquad .
a) always zero
b) constant
c) non-constant
d) None of these
3) A weak stationary process is also known as \qquad -.
a) variance stationary
b) second order stationary
c) both A) and B)
d) none of these
4) $\mathrm{AR}(2)$ model can be presented as
a) $X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$
b) $X_{t}=\phi_{1} X_{t-1} \times \phi_{2} X_{t-2}+Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$
c) $X_{t}=\phi_{1} X_{t-1} \times \phi_{2} X_{t-2} \times Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$
d) $X_{t}=\mu \times \phi_{1} X_{t-1}+\phi_{2} X_{t-2}+Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$
5) The ACF of MA (1) process is zero after lag
a) One
b) Two
c) Three
d) Zero
6) The singe exponential smoothing equation is used when \qquad present in the given time series
a) there is trend component
b) there is trend and seasonal component
c) there is only level
d) there is cyclic component
7) Turning point test is used for testing \qquad .
a) trend in the given series
b) seasonality in the given series
c) average value of the given series
d) none of these
8) Holt - Winter smoothing method is used when there is
a) Trend component present only
b) Seasonal component present only
c) Trend and seasonal both present
d) There is level component present only

SLR-SR-21

9)

The linear process $\quad X_{t}=\sum_{j=\infty}^{\infty} \Psi_{j} Z_{t-j} \quad$ is called Moving average process of infinity order if \qquad
a) $\Psi_{j}=1 ; j>0$
b) $\Psi_{j}=0 ; j>0$
c) $\Psi_{j}=0 ; j<0$
d) $\Psi_{j}=1 ; j<0$
10) The process $X_{t}=\phi_{1} X_{t-1}+Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ is causal process if \qquad
a) $\left|\phi_{1}\right|<1$
b) $\left|\phi_{1}\right|>1$
c) $\left|\phi_{1}\right|=1$
d) $\left|\phi_{1}\right|<1.5$
B) Fill in the blanks.

1) A linear filter when applied to stationary input series, produces \qquad series.
2) The ACF of AR (1) process $X_{t}=\phi_{1} X_{t-1}+Z_{t}$ is \qquad .
3) ACF of MA (q) process has insignificant autocorrelations after lag \qquad .
4) If d is non-negative integer, then $\left\{X_{t}\right\}$ is said to be $\operatorname{ARIMA}(p, d, q)$ process if $Y_{t}=(1-B)^{d} X_{t}$ is \qquad process.
5) Differencing method can be used to eliminate \qquad and \qquad component in the given time series if present.
6) The causal representation of $\operatorname{ARMA}(p, q)$ process $\left\{X_{t}\right\}$ is \qquad .
Q. 2 Answer the following.
a) Define weakly stationary and strong stationary process.
b) Describe any one method of estimation and elimination of trend component in time series.
c) Write a short note on double exponential smoothing.
d) Define AR (1) process. Obtain its autocorrelation function.

Q. 3 Answer the following.
 a) Define causal process. Describe the method to obtain Ψ_{j} weights in a given causal process.

b) Define autocovariance function. State and prove its elementary properties.
Q. 4 Answer the following.
a) Discuss the identification of mixed models.
b) Verify whether the process $X_{t}+0.6 X_{t-1}=Z_{t}$ is causal or not. Obtain the autocovariance function of the same process.
Q. 5 Answer the following
a) Define ARMA (1,1) process and hence obtain its autocorrelation function.
b) Discuss ind
b) Discuss in detail ARCH and GARCH volatility models.
Q. 6 Answer the following
a) Determine which of the following processes are causal and/or invertible

1) $X_{t}+0.6 X_{t-1}=Z_{t}+0.04 Z_{t-1}$
2) $X_{t}+1.6 X_{t-1}=Z_{t}-0.4 Z_{t-1}+0.04 Z_{t-1}$
in both process $\left.\left\{Z_{t}\right\} \sim\right) W N\left(0, \sigma^{2}\right)$
b) Describe analysis of Seasonal ARIMA $(p, d, q) \times(P, D, Q)$ process.

SLR-SR-21

Q. 7 Answer the following
a) Define MA (q) process. Obtain PACF of MA (q) process.
b) Discuss the preliminary transformations in the time series analysis.

