Seat No.					Set P
I	M.S	ic. (S	emester - I) (New) (CB(PHYSICS (SOLI Mathematical P	D STAT	,
			ednesday, 19-07-2023 To 06:00 PM		Max. Marks: 80
Instru	uctio	2	Question no. 1 and 2 are c Attempt any three question Figure to right indicate full	ns from Q	
Q.1	A)	Cho (1)	or singularity of the Function	on.	10 not analytic is known as a Singular point None of these
		2)	In Cauchy's Residue theory a) $2\pi i \sum_{j=1}^{n} a - 1z_j$	em $\oint_{\Gamma} f(z)$	
			c) $2\pi i \sum_{j=1}^{n}$	d)	$2\pi i \sum_{j=1}^n a + 1 z_j$
		3)	In complex variable theory the contour c from Z_0 to Z' . a) Contour integral c) Contour		dz is called a of $f(z)$ along Residue None of these
		4)	What are the eigen value of a) Both are 0 c) 0 and -1	of $\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$ b) d)	
		5)	,	, Hermitiar b)	a operator which of the following AB + BA = C A + B = C
		6)	Which of the following is or a) $t^2 - 4t$ c) t^2	b)	nction of t? $t^3 + 6$ sin(2t) + 3t
		7)	The degree of $x \frac{d^2y}{dx^2} + \sin \frac{dy}{dx}$	$\frac{y}{x} = 0$ is	
			a) 1 c) 3	b) d)	Not defined
		8)	A square matrix, conjugate itself is called a) Unitary c) Orthogonal	e transpos b) d)	se of which coincide with the matrix Hermitian Skew Hermitian

Page **1** of **3**

- 9) Laplace transform of f(t) is defined for _____.
 - a) +ve value of tb) -ve value of t
 - c) Both +ve & -ve value of t d) None of these
- 10) A square matrix A is idempotent if _____
 - b) A' = -Aa) A' = A
 - d) $A^2 = A^2$ c) $A^2 = A$

State true or false. B)

- A square matrix is called orthogonal if $A = A^{-1}$. 1)
- The function $|\bar{z}|^2$ is not analytic at any point. 2)
- $x \frac{\partial u}{\partial x} + t \frac{\partial u}{\partial t} = 2u$ is an ordinary differential equation 3)
- The Function y = 0 is always a solution to a linear homogeneous 4) ordinary differential equation.
- If y(x) is solution to an nth order ODE and contain arbitrary constant, 5) then it must be the general solution to the ODE.
- In matrix with 9 elements then the possible ordered pair are (3,3) (1,9) (9,1) 6)

Answer the following Q.2

- a) Show that any square matrix can be expressed as the sum of two matrices, one symmetric and the other antisymmetric.
- **b)** Solve $(1 + e^{x/y})dx + e^{x/y}(1 x/y)dy = 0$
- **c)** Find the poles of $f(z) = \frac{\sin(z-a)}{(z-a)^4}$
- d) Verify that :

$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
 is orthogonal

Q.3 Answer the following.

- a) Show that the transformation 08 $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular, write down the inverse transformation.
- **b)** Expand the function in square wave f(x) = 0; $-\pi \le x \le 0$ f(x) = h; $0 \le x \le \pi$ Fourier series

Q.4 Answer the following.

a) Show that the eigen value of Hermitian matrix are real. 80 $\sim 2\pi$ **08**

b) Evaluate the integral
$$\int_0^{2\pi} \frac{d\theta}{5 - 3\cos\theta}$$

Q.5 Answer the following.

- a) Explain Gaussian distribution function with example. 08 80
- b) Explain the first order linear differential equation.

Answer the following. Q.6

- a) Use Residue calculus to evaluate the following integral. 08 $\int_0^{2\pi} \frac{1}{5 - 4\sin\theta} \, d\theta$
- **b)** Solve $y'' 2y' + y = 2\cos x$ by use of successive integration. 08

80

Q.7Answer the following.a)Explain the details of Parseval Theorem.b)Explain Laplace transform of Derivatives.08

Seat No.	t		Set P
	M.S	ic. (S	mester - I) (New) (CBCS) Examination: March/April-2023 PHYSICS (SOLID STATE PHYSICS) Solid State Physics (MSC10102)
•			rsday, 20-07-2023 Max. Marks: 80 To 06:00 PM
Instr	uctio	2	Q. Nos. 1 and. 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7 Figure to right indicate full marks.
Q.1	A)	Fill i 1)	the blanks by choosing correct alternatives given below.10Packing fraction of BCC isa) 74%b) 68%a) 74%b) 68%
		2)	c) 52% d) 58% Miller indices of a plane parallel to X and Z axes are a) (001) b) (100) c) (010) d) (101)
		3)	Intrinsic concentration of charge carriers in a semiconductor varies as a) T b) T^2 c) T^3 d) T^{-1}
		4)	 What is relative permittivity? a) Equal to the absolute permittivity b) Ratio of actual permittivity to absolute permittivity c) Ratio of absolute permittivity to actual permittivity d) Equal to the actual permittivity
		5)	Which crystal structure has the maximum packing fraction? a) BCC b) HCP c) FCC d) both FCC and HCP
		6)	The superconducting state is perfect in nature. a) Diamagnetic b) Paramagnetic c) Ferromagnetic d) None of these
		7)	Below transition temperature, the London penetration depth. a) Almost constant b) Increases exponentially c) Decreases exponentially d) None
		8)	Which one of the following is an application for a hall effect sensor? a) Position sensing b) DC transformer c) Automatic fuel level indicator d) All of these
		9)	Phonon is Quantum ofa) Longitudinal waveb) Elastic wavec) Transverse waved) Electromagnetic wave
		10)	 Why is water used in automobiles as a coolant? a) It is not toxic to the environment b) It has a high specific heat capacity c) It has a high lubricating property which in turn keeps the engine cool by reducing friction d) It is available in abundance

d) It is available in abundance

	B)	 Write True or False Rectifier rectifies internal resistance. Fermi energy level in the case of a p-type semiconductor is close to the conduction band. Superconductor is ferromagnetic. X-rays are more visible than lasers. For type I superconductors, the surface energy is always positive. Insulators have a negative temperature coefficient of resistance. 	06
Q.2	a) b)	swer the following What is Meissner's effect? Explain the BCC structure. Type I and type II superconductors. Direct and Indirect bandgap semiconductors.	16
Q.3	Ans a) b)	swer the following What is a superconductor? Write the London equations. Write the Clausius - Mosotti equation.	08 08
Q.4	Ans a) b)	swer the following What is dielectric polarization? Give the expression for orientational polarization. Write about Josephson tunneling.	08 08
Q.5	Ans a) b)	swer the following What is the internal field? Write the expression of the internal field. Explain the geometrical construction of Brillion Zones in 2D.	08 08
Q.6	Ans a) b)	swer the following Write about the behavior of electrons in a periodic potential. What is the Hall effect? Write about the expression for the mobility of the charge carriers.	08 08
Q.7	Ans a) b)	swer the following Write about the thermodynamics of a superconductor. Write about carrier concentration in an intrinsic semiconductor.	08 08

			SLR-SU-3
Seat No.			Set P
Μ.	.Sc. (S	emester - I) (New) (CBCS) Examination: March PHYSICS (SOLID STATE PHYSICS) Analog and Digital Electronics (MSC10103)	-
		day, 21-07-2023 I To 06:00 PM	Max. Marks: 80
Instruct	2) Question no. 1 and 2 are compulsory.) Attempt any three questions from Q. No. 3 to Q. No. 7.) Figure to right indicate full marks.	
Q.1 A)) Sele 1)	ct Correct Alternatives signal is used to demultiplex address/ data bus in microprocessors.a)RDb)WRc)ALEd)INTR	10 8085
	2)	C) ALEd) INTRDecade counter requires number of flip flops.a) 3b) 5c) 4d) 2	
	3)	Symbolic address in microprocessors is recorded in thea) Labelb) Opcodec) Operandd) Comment	field.
	4)	Op-Amp is coupled voltage type of amplifier.a) ACb) DCc) ADCd) DAC	
	5)	The decrease in the frequency makes the phase-shiftWien bridge oscillator.a) Leadb) Lagc) Lead-Lagd) None of the above	in the
	6)	The NOR gate output will be high if the two inputs are _ a) 00 b) 01 c) 10 d) 11	·
	7)	The output of a particular Op-amp increases $8V$ in $12\mu s$.rate isa) $90 V/\mu s$ b) $0.67 V/\mu s$ c) $1.5 V/\mu s$ d) None of these	The slew
	8)	The no-change conditions occur when in JK flip fla) J=1, K=1b) J=0, K=0c) J=1, K=0d) J=0, K=1	op.
	9)	The output impedance of Op amp is decreases due to _feedback.a) Negativeb) Positivec) Negative + Positived) None on these	
	10)	The gates are mainly used for checking parity ofa) NORb) NANDc) EX-ORd) EX-NOR	data.

Page **1** of **2**

	B)	 In JK flip flop race around condition arises due to 	06
		 A demultiplexer is used to perform conversion. In the oscillator circuit the total phase shift of the loop gain must be 	
		 4) Negative feedback is used in oscillator circuits. (True/False) 5) The sawtooth waveform has a rise time many times than the fall time. (True/False) 	
		 An ideal operational amplifier has infinite input impedance. (True/False) 	
Q.2	a) b) c)	empt following. RS Flip flop. Addressing modes of 8085 microprocessor. Op Amp as Comparator Adjustable voltage regulators.	16
Q.3	a) b)	8085 Microprocessor Immediate addressing mode.	10 06
Q.4	a) b)	5 1 5 5 5	10 06
Q.5	a) b)	Scaling and averaging amplifier.	10 06
Q.6	a) b)	5 1	10 06
Q.7	•	frequency of oscillation. Design a phase shift oscillator for $f_0=1$ KHz, using IC741.	10 06
		(Supply voltage = $\pm 15V$)	

The a) c)	e generating function F ₁ (q, Q Exchange None	,t) ge b) d)	nerates Identity infinite	transformations.
	Phase space is dim 3N 6N	ensio b) d)	nal space. 2N N	
a)	Poisson bracket of [u, p _j] = $-\partial u/\partial p_j$ $+\partial u/\partial p_j$	b)	 ∂u/∂q _j —∂u/∂q _j	
				Page 1 of 2

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023 PHYSICS (SOLID STATE PHYSICS) **Classical Mechanics (MSC10108)**

Day & Date: Saturday, 22-07-2023

Time: 03:00 PM To 06:00 PM

9)

Seat

No.

Instructions: 1) Question Nos.1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternatives from the options.

The energy of a particle of mass M and E its momentum is p, then 1) the relation between *E* and *P* is _____.

a)	$E = \frac{P}{2M}$	b)	$E = \sqrt{2PM}$
	$P = \frac{2M}{\sqrt{2 ME}}$	d)	$P = \frac{2M}{E}$

The path of the particle is _____ when it is moving under the 2) constant conservative force field.

a)	Cycloid	b)	Hyperbolic
C)	Parabolic	d)	straight line

The reduced mass $\mu = ___$ 3) b) $m_1 m_2 / (m_1 - m_2)$ a) $(m_1 + m_2)/m_1m_2$ c) $m_1 m_2 / (m_1 + m_2)$ d) $(m_1 - m_2)/m_1m_2$

4)	In equations of motion $\dot{P}_i = _$	
----	---	--

a)	$-\partial H/\partial P_j$,	b)	$\partial H / \partial P_j$
c)	∂H/∂q _j		d)	$-\partial H/\partial q_j$

If eccentricity $\varepsilon = 1$, then the shape of the orbit, which is formed due 5) to motion under central force field will be _.

a) Ellipse Circle b) c) Hyperbola d) Parabola [u, vw] = .6) a) [u, v]w + v[u, w]b) [u, w]v + [w, u]vc) [u, v]w + [v, w]ud) [u, v]w + v[w, u]The gener 7)

- c) None
- The Phase 8)
 - a) 3N c) 6N

Set

Max. Marks: 80

Ρ

16

- The point transformation is the transformations of _____
 - a) Phase space
- configuration space b)
- c) both a & b
- d) point space

B) State True or False:

- The Poisson bracket of [u,c] = u where c is constant. 1)
- The areal velocity of the particle in a central force field is zero. 2)
- The Poisson bracket of the function with itself is zero. 3)
- Newtonian mechanics is based on the concept of Force. 4)
- 5) In Phase space, the system is having a unique path.
- Lagrangian is based on the function L=T+V 6)

Q.2 Answer the following.

- Write note on Rutherford's scattering. a)
- The particle describes a circular orbit given by $r = 2a \cos \theta$ under the b) influence of an attractive central force. Show that the force varies as inverse 5th power of the distance.
- State the variational principle and derive Hamilton's canonical equations C) using the variational principle.
- Explain the work-energy theorem in brief. d)

Q.3 Answer the following.

- What is meant by real and pseudo forces? Give an example of each. 10 a) Show that the angular acceleration is the same in fixed and rotating frames.
- b) State and explain the laws of conservation of linear momentum & angular 06 momentum of a single particle system.

Q.4 Answer the following.

- What are the main features of the motion of a particle under the action of 10 a) central force? Show that the area swept per unit time i.e. dA/dt remains constant in such a motion.
- Distinguish between the configuration space and phase space. 06 b)

Q.5 Answer the following.

- What is Poisson Bracket? List its properties. Explain Jacobi's identity with 10 a) its proof.
- Show that the transformation $Q = 2q^{1/2} e^a \cos p$ and $P = (2q)^{1/2} e^{-a} \sin p$ is 06 b) canonical.

Q.6 Answer the following.

- Explain the term differential scattering cross section and derive the 10 a) formula for the same. 06
- Write a note on Hamilton's Jacobi Theory. b)

Q.7 Answer the following.

- Show that the generating function $F = \sum q_k Q_k$ produces exchange 10 a) Transformation.
- Explain the different shapes of orbits formed due to motion under a 06 b) central force field.

Seat No.				Set	Ρ
N	M.So	c. (Se	emester - II) (New) (CBCS) Examination: March/A PHYSICS (SOLIDSTATE PHYSICS) Quantum Mechanics (MSC10201)	pril-2023	
•			ednesday, 19-07-2023 To 02:00 PM	Max. Mark	s: 80
Instru	ictio	2) Q. Nos. 1 and. 2 are compulsory.) Attempt any three questions from Q. No. 3 to Q. No. 7) Figure to right indicate full marks.		
Q.1	A)	Fill i 1)	 n the blanks by choosing correct alternative. If Ψ be a complex function, then Ψ*Ψ must vanish at a) unity b) zero c) infinity d) finite value 		10
		2)	Momentum of particle by de-Broglie relation is to its v a) Inversely proportional b) directly proportional c) in phase d) out of phase	vavelength	
		3)	 The energy spectrum of a particle in one-dimensional rigid by the nature of a) infinite sequence of discrete energy levels b) exponentially increasing c) infinite sequence of equidistant energy levels d) exponentially decreasing 	oox has	
		4)	The eigen value of the energy of a particle in a cubical box i $11(h^2/8ma^2)$. The quantum numbers of the state are a) (311) b) (301) c) (222) d) (111)		
		5)	Potential energy of a particle in harmonic oscillator having m is a) $m\omega^2 x^2$ b) $(1/2)m\omega^2 x^2$ c) $mr\omega^2$ d) $(1/2)mv^2$	nass m	
		6)	The eigen value of spin matrices are a) ± 2 b) 0 c) ± 1 d) ∞		
		7)	The commutation relation between L^2 and L_x i.e. $[L^2, Lx] = _a) 0$ b) 1 c) ∞ d) 2		
		8)	The outer product of bra and ket function is called op a) state b) unitary c) energy d) identity	erator.	
		9)	In operator equation $H\psi = E\psi$ the eigen function is a) H b) ψ c) E d) $H \& E$		

- 10) Raising operator is defined as _____
 - a) $L_x + iL_y$ b) $L_x - iL_y$ c) $iL_z - L_y$ d) $iL_x - iL_z$

B) Fill in the blanks or Write true /false

- 1) The Heisenberg's uncertainty principle is applicable to all conjugate pair of variables. (True/False)
- 2) Einstein photoelectric and Compton effects are the evidence of wave nature of matter. (True/False)
- 3) Probability density is always positive. (True/False)
- 4) The magnitude of total angular momentum is ____
- 5) The lowest energy of an harmonic oscillator is obtained by putting *n* equal to _____.
- 6) The energy operator is given by _____.

Q.2 Answer the following

- a) Find the lowest energy of an electron confined to move in a one-dimensional box of length 2 Å? Given: $m = 9.11 \times 10^{-31} kg$, $\hbar = 1.054 \times 10^{-34} J s$
- **b)** Explain Pauli spin matrices.
- c) What is WKB method? Elaborate.
- d) Describe the wave packet.

Q.3 Answer the following

- a) Discuss eigen values and eigen functions for a particle in three-dimensional **08** infinite potential well.
- b) Discuss wave-functions or eigen functions of linear harmonic oscillator and give their physical interpretation.

Q.4 Answer the following

Q.5

Q.6

Q.7

a) b)	Elaborate the uncertainty relation. Explain Dirac's bra-ket notation.	08 08
Ans	swer the following.	
a)	Write the interpretation and properties of wave function. What is admissible wave function?	80
b)	What is Ehrenfest's theorem? Prove it.	80
Ans	swer the following.	
a)	Explain in detail about the variational and WKB methods with simple examples.	08
b)	Write down the matrices for J^2 , J_x , J_y and J_z operators.	80
Ans	swer the following.	
a)	What are equations of motion? Explain the Schrodinger, Heisenberg and Interaction pictures.	08
b)	Describe the box normalization and Dirac Delta function.	08

06

				Electrodynamics (M	SC1	0202)	
				23-07-2023 2:00 PM		Max. Marks	: 80
Instru	ictioi	2)	Atte	los. 1 and. 2 are compulsory. mpt any three questions from Q ire to right indicate full marks.	. No.	. 3 to Q. No. 7	
Q.1	A)	Fill i 1)		blanks by choosing correct a cates that Non-existance of magnetic dip Non-existance of magnetic monopole Existance of electric monopole	ole nopc ole	-	10
		2)	In va a) c)	acuum divegence of electric field zero one	d ove b) d)	charge enclosed by surface	
		3)	Fara a) c)	adays law shows that a changing electric field lorentz force	g ma b) d)	magnetic force	
		4)	In fr a) c)	ee space the value of E, the ele time the value of H, the magi 277 477		•	
		5)		normal component of magnetic ace discontinuous different	field b) d)		
		6)		electric field inside a conductor Greater than zero Zero	b)		
		7)	The a) c)	energy in magnetic field is prop Square of magnetic field Square of electric field	ortio b) d)	Square root of magnetic field	
		8)	The a) c)	radiation from an oscillating ele Transverse electric Positive	ctric b) d)	dipole is generally Zero Transverse magnetic	
		9)	The a) c)	vector potential is, due to Charge density Charge	 b) d)	Surface charge Current density	
		10)	Two a) c)	particles with identical charges Radiation Retardation	and b) d)	mass collide, there is No radiation None of these	

Seat No.

0

	B)	 Fill in the blanks OR Write true/false 1) The parallel component of electric field, above and below the surface 2) The angular distribution of radiation for accelerating particle is direction. 3) As in electrostatics then E = 4) In a monochromatic plane wave in free space, E and B at any instant 5) The Lorentz force under electric and magnetic field is given by 6) For normal incidence of EM wave at interface of two media having refractive indices n₁ = n₂ then 	06
Q.2	Ans a) b) c) d)	wer the following Write the Maxwell's equations in integral form. Define and explain Biot-Savart law. State and prove Gauss's law. Prove that magnetic force do no work on particle.	16
Q.3	Ans a)	wer the following Show that vector potential for dipole is $A_{dip} = \frac{\mu_0}{4\pi} \frac{m \times \hat{r}}{r^2}$.	10
	b)	Derive and show that the electric field is the gradient of a scalar potential.	06
Q.4	Ans a) b)	wer the following Solve for static magnetic field. Discuss magneto static boundary conditions in detail.	10 06
Q.5	Ans a) b)	wer the following State and prove Poyntings theorem. Explain skin effect and skin depth.	08 08
Q.6	Ans a)	wer the following Obtain the Fresnel's relation for the polarization perpendicular to the plane	08
	b)	of incidence. Obtain plane wave equation of electromagnetic field in vacuum.	08
Q.7	Ans a) b)	wer the following What is radiation from half wave antenna and explain it. Explain the concept of radiation damping.	08 08

Seat No.		Set
М.8	PHÝS	(New) (CBCS) Examination: March/April-2023 SICS (SOLID STATE PHYSICS) Itistical Physics(MSC10206)
•	ate: Tuesday, 25-07-2 :00 AM To 02:00 PM	023 Max. Marks:
Instructi	ons: 1) Question 1an 2) Attempt any T	d 2 are compulsory. Three from Q.3 to Q.7.

3) Figure to right indicate full marks.

Choose correct alternative. Q.1 A)

- 1) In which thermodynamics process, there is no flow of heat between the system and its surroundings?
 - a) isothermal isochoric b)
 - isobaric c) d) adiabatic
- In a micro-canonical ensemble, the system exchange. 2)
- only matter b) only energy a) both energy and matter neither energy nor matter d) C) It never happens that heat by itself flows from _____ body to a _____ 3)

body. a) cold, cold hot, cold b)

cold, hot hot, hot c) d)

4) The equation of state for an ideal gas is represented as .

- a) PV = R/TPV = nRTb) P/V = R/TPV = RTC) d)
- The heat or energy consumed or emitted during a phase change of a 5) material is known as _____.
 - a) latent heat b) specific heat
 - none of the above C) phase heat d)

6) Entropy in thermodynamics is a measure of _____.

- a) order of system pressure of the system b) c)
 - volume of system d) disorder of the system

The value of the universal gas constant is 7)

- a) 8.2353 8.3143 b)
- c) 8.5123 d) 8.2352

Phase equilibrium curve terminates at _ 8)

C)

- a) boiling point sublimation point b)
- triple point critical point d) c)
- Louisville's equation gives the rate of change in 9)
 - a) pressure temperature b)
 - density d) volume

SLR-SU-8

80

101	Which of the following statement is correct for the perfect block be	4.0
10)	Which of the following statement is correct for the perfect black bo	iuy :

- It can transmit entire radiation incidents on it a)
- It can absorb entire radiation incidents on it b)
- The emissive power of the black body is less than an ordinary C) bodv
- d) All the above statements are correct for the black body.

B) Fill in the blanks or write true/ false.

- Gibb's free energy determines The relative stability of a system for 1) transformation at constant temperature and pressure.
- 2) Photon, Phonon, etc. obeys the Fermi Dirac distribution function.
- In a microcanonical ensemble both energy and mass are conserved. 3)
- Louisville's equation gives the rate of change in pressure. 4)
- The unit of mass in the S.I. unit is _____. 5)
- 6) Entropy is a _____ function.

Q.2 Answer the following (any four)

16

06

- Calculate the increase in entropy when 746 gm of water is converted into a) vapor at 100°C. The latent heat of vaporization of water = 540 Cal/ gm.
- How the properties of matter change near the triple point. b)
- Write a note on grand canonical ensembles. C)
- Explain the difference between microstates and macrostates. d)
- Write a note on a PT diagram. e)

Q.3 Answer the following.

a)	State thermodynamic potential and Maxwell's equations.	10
b)	Explain the concept of statistical equilibrium.	06

Q.4 Answer the following.

- Explain the 2nd order phase transition phenomenon with on example. **08** a) 80
- b) Derive Ehrenfest equations.

Q.5 Answer the following.

Give the condition for B E condensation. a) 10 By using the Vander Waals equation at reduced states calculate the values 06 b) of critical constants.

Q.6 Answer the following.

	a)	What is the Gibbs paradox and how it is resolved?	10 06
	b)	Write a note on black body radiations.	00
Q.7		swer the following.	

Derive Clausius Clapeyron equation. 10 a) Obtain Plank's law for black body radiation. b) 06

Seat No.	Set P					
M.Sc. (S	emester - III) (New) (CBCS) Examination: March/April-2023 PHYSICS (SOLID STATE PHYSICS) Semiconductor Physics (MSC10301)					
Time: 11:00 A	Day & Date: Monday, 10-07-2023 Time: 11:00 AM To 02:00 PM Instructions: 1) Q. No. 1 & 2 are compulsory. 2) Attempt any three questions from Q. 3 to 7. 3) Figures to the right indicate full marks.					
Q.1 A) Ch 1)	oose correct alternatives.10P-type semiconductor the Fermi energy level isa) Near the conduction bandb) Near the valance bandc) at the centerd) not available					
2)	In semiconductors the motion of the charge carrier under the influence of the is called as drift. a) electric field b) magnetic field c) gravitational field d) None of these					
3)	In intrinsic semiconductor the Fermi energy level is a) Near the conduction band b) Near the valance band c) At the center d) Not available					
4)	The depletion region is created by a) Ionization b) Diffusion c) Recombination d) All of these					
5)	 Molecular Beam Epitaxy is a process. a) Physical vapor deposition b) Chemical vapor deposition c) Chemical bath deposition d) Hydrothermal deposition 					
6)	The equilibrium number of electron-hole pairs in pure Si at room temperature is a) 10 ¹⁰ EHP/m ³ b) 10 ¹² EHP/cm ³ c) 10 ¹⁰ EHP/cm ³ d) 10 ¹² EHP/m ³					
7)	What is the role of seed crystal in crystal growth? a) Nucleation center b) Catalyst c) Solvent d) Solution					
8)	The shape of E-K diagram of the conduction band and valance band is a) Horizontal b) Vertical c) Parabolic d) Elliptical					

Page **1** of **2**

		9)	 The conductivity of a sample due to excess carriers created by phonon vibration is called 		
			a) Thermal conductivityb) Electrical conductivityc) Photoconductivityd) None of these		
		10)	At the absolute zero temperature (-273° C) , an intrinsic semiconductor has	r	
			a) A few free electrons b) Many Holes c) No holes or free electrons d) Many free electrons		
Q.1	В)	Fill i 1) 2) 3) 4) 5) 6)	in the blanks OR write True /False if σ is the conductivity, the relation between the electric field E and the current density J in a conducting medium is Liquid-phase epitaxy (LPE) uses to grow crystals on a substrate In Czochralski crystal growth process, the material is heated up to In a semiconductor, the energy gap between the valence band and conduction band is about 1eV. (True/False) Electron-hole pairs are produced by Thermal energy. (True/False) Ohm's law is not obeyed by Insulator. (True/False)	06 	
Q.2	Ans a) b) c) d)	Optio Effect Hydr	the following. Ical absorption ctive mass of an electron rothermal process mi level pinning	16	
Q.3	a)		cribes variation of energy bands with alloy composition with suitable mple.	10	
	b)			06	
Q.4	a)		at is Luminescence? Describe different type of Luminescence with mple.	10	
	b)	A 0.5 light on th	•	06	
Q.5	a)	•	lain MS structure with band diagram. Explain current flow mechanism	10	
	b)	Shov semi 1)	•	06	
Q.6	a) b)			10 06	
Q.7	a) b)			10 06	

	М.	Sc. (Semester -	III) (New) (CBCS) Exar
No) .		
Se	eat		

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 PHYSICS (SOLID STATE PHYSICS) Atomic and Molecular Physics (MSC10302)

Day & Date: Tuesday, 11-07-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7
- 3) Figure to right indicate full marks.

Q.1 A) Choose correct alternative. (MCQ)

1) In the L - S coupling scheme, the terms arising from two nonequivalent p -electrons are _____.

a)	³ S, ¹ P, ³ P, ¹ D, ³ D	b)	¹ S, ³ S, ¹ P, ¹ D
c)	¹ S, ³ S, ³ P, ³ D	d)	¹ S, ³ S, ¹ P, ³ P, ¹ D, ³ D

2) The spectral term separation ΔT is expressed in terms of cm⁻¹ which is caused due to spin-orbit interaction is related to the atomic number Z by _____

a)	Z^4	b)	Z^3
c)	Z^{-4}	d)	Z^{-1}

- 3) The total number of 'd' electrons in Fe²⁺ (Atomic No. of Fe is 26) is NOT equal to that of the total number of _____.
 - a) p^{-} electrons in Ne (Atomic No. 10)
 - b) d electrons in Fe atom
 - c) p electrons in Cl⁻ ion (Atomic no. of Cl is 17)
 - d) s electrons of Mg (Atomic no. of Mg is 12)
- 4) The outer electronic configuration of Mn^{2+} is $3d^54s^0$. By employing the Hund's rules of L S coupling the ground state of Mn²⁺ is characterized by the spectroscopic term _____.

a)	⁶ S _{5/2}	b)	² D _{5/2}
c)	² F _{5/2}	d)	⁶ H _{5/2}

5) At 0 K, the vibrational energy of a molecule is_____

a)	0	b)	$\hbar\omega$
c)	ħω/2	d)	ħω/3

6) The bond order for the O₂ molecule is _____
 a) 1
 b) 2
 c) 2.5
 d) 0

 The transition of longer wavelength observed in the case of Orthohelium is _____.

a)	$2^{3}P_{0,1,2} \rightarrow 2^{3}S_{1}$	b)	$2^1P_1 \longrightarrow$	$2^{1}S_{0}$
c)	$3^3 P_{0,1,2} \rightarrow 2^3 S_1$	d)	$3^1P_1 \longrightarrow$	1^1S_0

8) The total number of emission lines observed during the transition of electrons from $3^2 P_{3/2}$ to $3^2 S_{3/2}$ are _____

a)	2		b)	4
c)	6		d)	8

Max. Marks: 80

10

Set |

- 9) The spectroscopic symbol for the ground state of A1 (Z = 13) is ${}^{2}P_{1/2}$ Under the action of a strong magnetic field (when L-S coupling can be neglected) the ground state energy level will split into _____.
 - 3 levels a) b) 4 levels 5 levels C)
 - 6 levels d)
- 10) The fine structure of atomic spectral lines arises from .
 - Electron spin-orbit coupling a)
 - Interaction between electron and nucleus b)
 - c) Nuclear spin
 - Stark effect d)

B) Fill in the blanks or Write true /false.

- According to Moseley's law, the frequency of a spectral line in an X-ray 1) spectrum varies as a square of the atomic number of the element. - (True/False)
- 2) The shortest wavelength observed in the Paschen series of hydrogen spectra is 8201 Å.
- The spectral term separation ΔT is expressed in terms of cm⁻¹ which is 3) caused due to spin orbit interaction and is related to the atomic number Z by Z^{-4} . – (True/False)
- 4) The Lande's g-factor for ${}^{7}G_{1}$ is $\frac{1}{2}$. – (True/False)
- 5) There are 9 bands observed in the IR spectrum of water due to fundamental vibrations. – (True/ False)
- 6) The Raman shift is expressed in cm⁻¹. – (True/False)

Q.2 Answer the following questions.

- Deduce the ground state term symbol for sodium (Z = 11). Why sodium a) exhibit doublets of yellow color. With neat labelled diagram explain the Zeeman effect for sodium atom when it is placed in weak magnetic field.
- Using Hund's rules, find the ground-state term symbol for b)
 - 1) fluorine (Z = 9)
 - 2) titanium (Z = 22)
 - 3) Nickel (Z = 28)
 - 4) magnesium (Z=12)
- What is Stark effect? discuss the weak-field Stark effect in hydrogen for H α c) line.
- From the following data, find the energy required to dissociate a KCI d) molecule into a K atom and a Cl atom. The first ionization potential of K is 4.34 eV; the electron affinity of CI is 3.82 eV; the equilibrium separation of KC1 is 2.79 Å. (Hint: Show that the mutual potential energy of K⁺ and Cl⁻ is — (14.40/R) eV if *R* is given in Angstroms).

$$\left(\frac{e^2}{4\pi\varepsilon_0} = 1.44 \times 10^{-9} eV. m\right)$$

Q.3 Answer the following

- a) 1) Discuss the basic foundation behind the magnetic spin resonance spectroscopy Techniques?
 - 2) Differentiate between nuclear magnetic resonance and electron paramagnetic resonance spectroscopic techniques.
 - 3) Show how many signals you will see in the electron spin resonance spectrum of H-atom considering nuclear hyperfine interaction. Sketch the predicted spectrum in first derivative form and label it properly.
 - If the observed chemical shift of a proton is 200 Hz from tetramethyl 4) silane (CH₃)₄Si and instrument frequency is 60 MHz, what is the chemical shift in terms of δ ? Express it in τ value.

06

16

- b) 1) Explain Raman effect and origin of Raman spectroscopy with the help 08 of energy level diagram. Why anti-Stokes lines are less intense than Stokes line.
 - 2) In a linear molecule the Raman shift of the first Stokes/anti-Stokes line from the exciting one is 6B cm⁻¹ whereas separation between adjacent lines is 4B cm⁻¹. why?
 - 3) With which type of spectroscopy would one observe the pure rotational spectrum of H₂? If the bond length of H₂ is 0.07417 nm, what would be the spacing of the first three lines in the spectrum?

Q.4 Answer the following

- a) 1) In a multielectron atom, consider two identical particles (electrons, noninteracting). Let ψ_{α} and ψ_{β} be the eigenfunctions corresponding to the states α and β , in which the two particles can be found. Considering total eigenfunctions, show that the two particles can not be in a state with the same set of quantum numbers.
 - 2) Evaluate the Lange' *g* factor for the ${}^{3}P_{1}$ state in 2p3s configuration of ${}^{6}C$. On the application of a magnetic field B = 0.1 tesla, calculate the Zeeman splitting of the state ΔE in joules. ($\mu_{b} = 9.2740 \times 10^{-24} J / T$)
 - 3) Nitrogen (Z = 7) has three electrons in the 2p level (in addition to two electrons each in the 1s and 2s levels),
 - i) Consistent with the Pauli principle, what is the maximum possible value of the total *Ms* of all seven electrons?
 - ii) List the quantum numbers of the three 2p electrons that result in the largest total Ms.
 - iii) If the electrons in the 2p level occupy states that maximize Ms, what would be the maximum possible value for the total M_L ?
 - iv) What would be the maximum possible total M_L if the three 2p electrons were in states that did not maximize Ms?
- **b)** Distinguish conceptually between the splitting of fine structured spectral lines under the action of external weak (< 0.1 T) and high (> 1 T) magnetic field strength. An atom with the states ${}^{2}G_{9/2}$ and ${}^{2}H_{11/2}$ is placed in a weak (< 0.1 T) magnetic field. Draw the energy levels and indicate the possible allowed transitions between the two states with π and σ components.

Q.5 Answer the following.

- a) 1) Discuss the vibrational-rotational spectra of a diatomic molecule by showing P, Q and R branches with proper selection rules,
 - 2) Designate proper branches (P, Q and R) for the following type of vibrations of a heteronuclear diatomic molecule
 - i) Symmetric stretching mode in which dipole vibrate parallelly along the bond length.
 - ii) Bending mode in which dipole vibrate perpendicularly along the bond length,
 - 3) Explain why vibrational-rotational spectra cannot be obtained for <u>homonuclear diatomic</u> molecules having identical nuclei?
- **b)** Certain atom with two valence electrons is subjected to very strong magnetic field strength of the order of > 10 T. Draw the energy levels and indicate the possible allowed transitions between ${}^{3}S_{1} \leftarrow {}^{3}P_{0,1,2}$ transitions in that atom. Justify the phenomenon of Paschen-Back effect by considering magnetic interaction energy i.e. ΔE as well as selection rules.

Q.6 Answer the following.

- a) Write down the allowed spectral terms for Germanium (Z = 32) and Oxygen (Z= 8) atoms in their normal and first excited state and by applying selection rules explain the emission spectra of Germanium (Z = 32) and Oxygen (Z= 8) (Consider Pauli's Exclusion Principle).
- **b)** Find the most probable radius for the electron of a hydrogen (Z =1) atom in the 1s states. Given, $P_{1,0}(r) = \frac{4r^2}{a_0^3} e^{\frac{-2r}{a_0}}$. Calculate the average orbital radius of a 1s electron in the hydrogen atom. What is the probability of the electron in the 1s state of the hydrogen atom being at a radius greater than the Bohr radius a_0 ? (Given, e = 2.71818)

Given: $\int_0^\infty x^m \cdot e^{-ax^n} dx = \frac{1}{n} \frac{\Gamma(\frac{m+1}{n})}{\alpha^{(m+1)/n}}$; $\Gamma(n) = (n-1)!$

Q.7 Answer the following.

- a) Based on molecular orbital (MO) concept explain the nature of bond order and stability for O₂, O₂⁺, O₂⁻ and O₂⁻⁻ molecules. Also, explain the magnetic nature of each molecule. Why valence bond (VB) approach fails to explain the paramagnetic nature for O₂ and B₂ molecules, while molecular orbital approach explains the paramagnetic nature for O₂ and B₂ molecules.
- b) 1) What are non-equivalent and equivalent electrons? Is it possible to have two equivalent electrons in the same atom? Calculate the spectral terms for non-equivalent (s,s) (s,p) and (p,p) electrons and for two equivalent (s²) and (p²) electrons.
 - 2) What do you mean fine structure? With neat labelled diagram discuss the fine structure of doublets for
 - i) ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$ and
 - ii) ${}^{2}D_{3/2}$ and ${}^{2}D_{5/2}$ states with justification based on magnitude of ΔT_{ls} .
 - 3) Calculate the ESR frequency of an unpaired electron in a magnetic field of 3000 G (0.30 T).

 $(g = 2.00, \mu_B = 9.273 \times 10^{-24} J/T, h = 6.626 \times 10^{-34} Js)$

Seat No.				Set	Ρ			
Μ.	-		OLID STATE P	,				
	Day & Date: Wednesday, 12-07-2023 Max. Marks: 80 Time: 11:00 AM To 02:00 PM							
Instruc	Instructions: 1) Q. Nos. 1 and. 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.							
Q.1 A) Fill i 1)	n the blanks by choos when a molecule abso a) warms up c) vibrates faster		ion then molecule flies around	10			
	2)	X-rays are generated I a) Geiger tube c) Coolidge tube	by b) d)	Goniometer Rotameter				
	3)	Raman lines are a) Weak c) Curved	 b) d)	Strong Blurry				
	4)	For a particular vibration must change. a) Frequency of ration c) Molecule's shap	diation b)	•				
	5)	The shielding effective a) $S = A + C + B$ c) $S = D + R + B$	ness can be calcu b)					
	6)	The Thermogravimetri temperature. a) Mass c) thermal conduct	b)	es the change in with Enthalpy Entropy				
	7)	 b) Impinged x-ray c) Impinged x-ray all 	radiation will remo radiation does not radiation does not	PS) we peripheral electron. remove any of the electron. interact with the material at ove the core shell electron				
	8)	All weather meters tha a) Transducer c) Hygrometers	t measure relative b) d)	e humidity are also known as Sensor All of these				
	9)	LCR meters can be us a) Resistance c) Capacitance	,	 Inductance All of these				

		10)	The a) c)	CMRR of an 50dB 120dB	in-amp will be	e around _ b) d)	100dB 200dB		
	B)	Fill i 1) 2) 3) 4) 5) 6)	As the radia Ruby The and Liqu Four sem Dew	ne applied vo ation from a n y laser works secondary el topography. id used in LC probe metho iconductor.	netal increase on the princip ectrons gene D's are nema od is used to p	es, the mir es. ple of a fou rated in SE ntic. measure th	imum wavelength ur level system. EM are useful for m nermal conductivity measuring the satu	orphology of	06
Q.2	Ans ^r a) b) c) d)	What Write What	is ter the a is se	•	f four probe n s classificatio		er two probe metho ors.	d.	16
Q.3	Ans ^r a) b)	Expla micro	ain in scop is Gr	y. ounding? Dis		-	unnelling electron g in electronic		16
Q.4	Ans a) b)	Expla	ain the		diffusion pum near variable		Il transformer LVD	г.	16
Q.5	Ans a) b)	Discu Scan	iss in ning (Calorimetery			cations of Different	ial	16
Q.6	Ans [.] a) b)	Expla struct	ain the ture. ain the	C C	-		for the analysis of (AFM) with suitabl	-	16
Q.7	Ans a) b)	Expla	ain the	•	lelium-Neonl		uitable diagram. ctroscopy.		16

Seat No.				Set P					
	M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 PHYSICS (SOLID STATE PHYSICS) Semiconductor Devices(MSC10401)								
Time: 03:0	Day & Date: Monday, 10-07-2023 Time: 03:00 PM To 06:00 PM Instructions: 1) Question Nos.1 and 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7. 3) Figure to right indicate full marks. Max. Marks: 80								
Q.1 A)	1) CM0 a) b) c)	the correct alternatives DS is popular due to Low noise immunity High power consumption Low power consumption High power dissipation	·	n the options. 10					
	,		b)	device MOSFET BJT					
	a)	Absorption	b) '	of light semiconductor. Transmission Modulation					
	carri a)	ers. Depletion	b)	annel MOSFET causes of Enhancement Induction					
	CČE a)	otential well is created in p D memory device to store positive potential square negative pulse	cha b)	negative potential					
	a)	output of LASER is Polychromatic Dispersed		b) non – coherentd) Monochromatic					
	meta	rgy required to move elec al is called as Barrier Depletion		h from Fermi level to outside the b) work function d) dielectric constant					
	́a)	switching ON behavior of Regenerative Blocking		CR is based on b) Breakdown d) Etching					

		c) 0.8 d) 0.5	
		10) Sum of α_1 and α_2 must be for SCR to become ON. a) zero b) unity c) half d) infinity	
	В)	 State True or False/Fill gaps. 1) VLSI use CCDs for memory. 2) Forward blocking state in SCR is due to forward biased J1 (3) Minimum current above which SCR becomes ON is holding 4) Light emission is not possible in Si due to its 5) The barrier height of M – S contact is the difference betwee work function of semiconductor 6) The drift of stable domains in TEDs is attainable in logodomains 	g. en metal
2	a) b)	wer the following. LED CMOS devices Digital IC DIACs	
3	a) b)	Describe MOS structure with emphasis on accumulation, depletion inversion modes with band diagrams. Elucidate Depletion type MOSFET.	on &
4	a) b)	Describe p-i-n diode with doping profile and electric field distribut	tion.
5	a) b)	 Explain GaAs Gun Oscillator modes with, i) space charge accumulation ii) Quenched domain mode iii) Delayed domain mode. Explain the periodic oscillating behavior of n- GaAs Gunn diode. 	
6	a) b)	Describe the operating principle of photodiode based on multilay hetrojunction with band diagrams and IV characteristics. What is Semiconductor Laser diode? Discuss the mechanism of stimulated emission of light in GaAs laser diode.	

Anode voltage must be _____ V, if gate voltage is 0.3 V to switch on 9) programmable unijunction transistor.

a) 1.0 b) 0.3

Q.:

- Q.: 10 06 Q. 10 06
- Q.

- Q. 10
 - 06
- What is solar cell? Derive an expression for open circuit voltage and short Q.7 a) 10 circuit current.
 - Explain quantum efficiency and response speed of solar cell. b) 06

06

SLR-SU-15

16

		Nuclear and Particle Physics (MSC10402)	
		ednesday, 12-07-2023 Max. Marks: 80 I To 06:00 PM	
nstructio	2) Q. Nos. 1 and. 2 are compulsory.) Attempt any three questions from Q. No. 3 to Q. No. 7) Figure to right indicate full marks.	
2.1 A)	Cho 1)	ose the correct alternative.10The ratio will be, Where, R is the mean nuclear radius.a) 0.8b) 0.4c) 1.25d) 8	
	2)	Nuclear forces between the nucleons are a) Central force b) Non-central forces c) Purely Coulombic forces d) Cohesive forces	
	3)	 What is the correct sequence of shell closure according to extreme single particle shell model? a) 2, 6, 10, 14, 18, 32 b) 2, 8, 18, 32, 50, 86 c) 2, 8, 20, 50, 82, 126 d) 2, 8, 20, 40, 82, 126 	
	4)	 In a typical nomenclature of nuclear reaction, a) is parent, is incident photon, is daughter and n being outgoing particle b) is parent, n is incident particle, is daughter and photon is out-going c) is daughter, n is incident particle, is parent and photon is out-going d) is parent, is daughter, n and both are out-going particles 	
	5)	 All the nucleii's available in nature are a) Spherical shape and are symmetric b) Some are spherical, some ellipsoid shape c) All are ellipsoid shape d) No definite shape 	
	6)	 Nucleons in the nucleus of an atom are a) Uniformly distributed up to a certain distance and then falls off sharply at the boundary b) They are dense at the center and then distribution falls sharply at the boundary c) Distribution is even and uniform at the centre as well as at the 	

- Distribution is even and uniform at the centre as well as at the C) boundary
- Distribution is uneven everywhere d)
- The height of potential barrier faced by an alpha-particle inside the 7) nucleus is ____ _.
 - 27.87 MeV a) b) 27.87 eV
 - 27.87 GeV d) C)

Seat No.

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 PHYSICS(SOLID STATE PHYSICS)

Q.

16

SLR-SU-16

- Simplest two nucleon system exists in nature is of _____
 - a) p-p b) n-p
 - c) n-n d) Does not exist
- 9) Beta particle is stopped in an ionization chamber producing ion-pairs. Average energy required to produce an ion pair is 35 eV. What is the kinetic energy of beta-particles entering the ionisation chamber.
 - a) 35 MeV b) 3.5 MeV c) 3.5 GeV d) 35 GeV
- 10) The average binding energy per nucleon of nucleus is _____. [Given: neutron mass m_n = 1.008665 u, proton mass m_p =1.007825 u, where 1 u = 931.5 MeV/c²]
 - a) 5.60 MeV b) 21.4 MeV
 - c) 8.5 MeV d) 36 MeV

B) Fill in the blanks OR Write true/ false.

- 1) Nuclear density is constant for all nuclei.
- 2) Nucleon-nucleon forces are spin dependent forces.
- 3) Leptons are the only elementary particles that experiences all four fundamental forces of nature.
- Baryons consist of three quark and Mesons consist of one quark and anti-quark.
- 5) Electron capture is one of the modes of beta decay process.
- 6) In radioactivity, after one half-life, activity of a radioactive substance reduces to half.

Q.2 Answer the following

- a) A sample of an ancient wooden sculpture piece gives 5 count/min/g of carbon due to ¹⁴C present in it. If freshly cut wooden piece gives 16 counts/min, what is the age of sculpture? [Given Half-life of ¹⁴C=5760 years]
- **b)** Explain the working and basic principle of semiconductor detector. Draw neat schematic figure to mention each component of the counter.
- c) Explain the gamma decay, internal conversion and internal pair conversion of gamma decay process.
- d) Draw the Meson octate, identify the particles in it along with their quark structures, charges and spins.

Q.3 Answer the following

a) Calculate the value of proton separation energy (S_p) for (S_n) for in units of MeV.

[Given M() =20.007344 u, M() =20.997651 u, M() =21.999574 u, neutron mass m_n =1.008665 u, proton mass m_p = 1.007825 u, where 1 u = 931.5 MeV/c²]

b) Using semi-empirical mass formula, for given family of isobars, obtain the relation for most stable nuclei.
 [constants in semi-empirical formula: Volume term, Surface term, Coulomb term, asymmetry term, pairing term]

Q.4 Answer the following

- a) Using Fermi gas model and its basic assumptions, estimate the potential depth for a nucleus. Assuming average binding energy per nucleon to be around 8.5 MeV, calculate the kinetic energy of the nucleons in the nucleus.
- b) Find the Q-value and the threshold for the following nuclear reaction. [Given M() =22.99097 u, M()= 19.999981 u, M() = 4.002603 u, neutron mass $m_n = 1.008665$ u, proton mass $m_p = 1.007825$ u, where 1 u = 931.5 MeV/c²]

08

Q.5 Answer the following

- a) Write down the Schrodinger equation for deuteron (use simplest finite square well potential), i.e. n-p system with an attractive potential V(r) between them. Obtain the complete solution and draw the wavefunction inside and outside the potential well.
- b) From Gamma ray selection rule classify the following multipole transitions. 08
 - i) $(1/2)^- \rightarrow (7/2)^-$
 - ii) $4^+ \rightarrow 2^+$
 - iii) $1^- \rightarrow 2^+$
 - iv) $(1/2)^- \rightarrow 3/2^+$

Q.6 Answer the following

- a) Starting with the equation of Fermi-Golden's rule, derive the Fermi
 10 expression of beta-decay.
- b) Show that the energy of the triplet state (S=1) is not equal to the energy of the singlet state (S=0) for deuteron bound state.

Q.7 Answer the following

- a) Classify different types of accelerators. Explain basic principle and describe 10 in detail working of linear accelerator. Draw a neat schematic diagram to show each component.
- b) With a suitable example explain what is nuclear fission and fusion reactions.
 06 Estimate the power released in Kilo-Watt-Day for the thermal neutron induced fission reaction of to and.

[Given M() =235.043922 u, M()=146.922780 u, M() = 88.926400 u. neutron mass m_n = 1.008665 u, proton mass m_p = 1.007825 u, m_e = 0.00055 u where 1 u = 931.5 MeV/c²]

Page	1	of	2
------	---	----	---

Seat	
No.	

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 PHYSICS (SOLID STATE PHYSICS) Thin Film Physics and Technology (MSC10403)

Day & Date: Friday, 14-07-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Question no. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Chose correct alternative.

- Chemical vapor deposition is a method used to obtain which of the 1) following substance?
 - a) Semiconductor

c) Silicon oxy nitride

- b) Non conducting polymers
- c) Crystalline semiconductor d) Conducting compound

Which technology is used to get cheap resistor and capacitor? 2)

- a) Thin film b) Thin and Thick film c) Thick film
 - none of the mentioned d)
- _ can be doped with P or B to reduce resistivity. 3) a) Silicon dioxide
 - Silicon nitride b)
 - Polysilicon d)
- metal is not used in metallization. 4)
 - a) Aluminium Chromium b)
 - c) Sodium d) Nickel
- To ensure the formation of condensation nuclei, the evaporation rate 5) must be sufficiently____.
 - b) a) low high
 - c) no any relation low as well as high d)
- PECVD is used for the deposition of _____ thin film. 6)
 - a) metal dielectric b)
 - c) plasma d) conducting
- 7) Spray pyrolysis is an example of_ _ phase synthesis.
 - a) solid b) liquid
 - d) plasma c) gas
- In RF sputtering, the frequency of is used for RF power supply 8) equipment.
 - a) 13.56 Hz b) 13.56 K Hz
 - c) 13.56 MHz 13.56 GHz d)
- Electrodeposition is a _____ phase chemical method of synthesis of 9) nanostructured material.
 - a) solid b) liquid
 - c) gas d) plasma

Set

Max. Marks: 80

	B)	10) State	is d plas a) c)	gnetron sputterii elivered across sma. high, high low, low e or false.	a pres	sure (b)		reate high w	•	06
	_,	1) 2) 3) 4) 5) 6)	LAS eva Spr Ene Thir sub Poly In th	SER evaporation porated by usin ay pyrolysis is c ergies of the ord n film growth in strate is called r ysilicon serves a hin film transisto ally of Cds or C	g focused hemical depo er of co which small n nucleation. Tr as oxide layer r, glass subs	b osition orresp nuclei rue / l r mate strate	eam. n technic bond to are forn False erial in N	que. True / physical ac ned over th /IOS device	[/] False dsorption. ne surface of es. True / False	
	a) b) c)	Write a Explain Write a	a not n die a not	Ilowing. te on Miller indice electric deposition te on laser ablat nciple of sputter	on. ion.					16
•	Ans a) b)	Explair spray p	n ho pyro	llowing. w synthesis of r lysis? What are lysilicon deposit	e its advantag				rocess of	10 06
	a)	Discus with its	s br s me	l lowing. iefly about elect chanism. te on Metallizati	·	techr	nique of	deposition	of thin films	10 06
5		What of types of	do yo of pr	l lowing. ou understand b ecursors materi diagram, explair	als used in C	VD p	rocess.		te various	08 08
5	a)	Descri are its	be n adv	Ilowing. nagnetron sputte antages? electric propertie	C		ne depos	sition of thi	n film. What	10 06
•	Ans a) b)	Descri advant	be la tage	Ilowing. aser evaporation s? onduction prope		-	-	in film. Wh	at are its	10 06

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

Seat No.		Set F	C
M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 PHYSICS (SOLID STATE PHYSICS) Material Characterization Techniques (MSC10406)			
		nday, 16-07-2023 Max. Marks: 8 To 06:00 PM	30
Instructions: 1) Question no. 1 and 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7. 3) Figure to right indicate full marks.			
Q.1 A) Cho 1)	Ose the correct alternatives.1Oil immersion objective lens has an NA value of b) 0.851a) 0.65b) 0.85c) 1.33d) 1.00	10
	2)	In fluorescence microscopy, which of the following performs the function of removing all light except the blue light? a) Exciter filter b) Barrier filter c) Dichroic mirror d) Mercury arc lamp	
	3)	Zeeman interaction corresponds to the interaction of a nuclearmoment with magnetic field of the order ofa) 2-10 teslab) 1-10 teslab) 1-20 teslad) 1-100 tesla	
	4)	The resolving power of TEM is derived froma) Electronsb) specimensc) Powerd) ocular system	
	5)	The AFM uses a to scan the surface of a molecule.a) X-ray filmb) Nanosized tipc) Non-metal tipd) Nanodrop	
	6)	 Which of the following is an Auger transition starting from a hole in Is levels which would be filled up from the 2p level? a) KLM transition b) KLL transition c) LMN transition d) LLM transition 	
	7)	What causes the splitting of energy levels in a magnetic field?a) Hund's Ruleb) Zeeman Effectc) van der Waals interactionsd) Aufbau Principle	
	8)	 Total Magnification is obtained by a) Magnifying power of the objective lens b) Magnifying power of eyepiece c) Magnifying power of condenser lens d) Magnifying power of both the objective lens and eyepiece 	
	9)	Which of the following is the detection limit of Auger ElectronSpectroscopy?a) 0.1% monolayerb) 0.5% monolayerc) 1% monolayerd) 2% monolayer	

~ ·

16

16

16

16

16

16

- 10) The relaxation time along the direction of static magnetic field B_0 is_____.
 - a) Longitudinal relaxation time T₁
 - b) Longitudinal relaxation time T₂
 - c) Transverse relaxation time T₁
 - d) Transverse relaxation time T_2

B) Write true or false.

- 1) EPR spectroscopy infrared wavelength of the radiation is not used.
- 2) Wavelength of light is a function of Resolving power of a microscope.
- 3) Discrete electrons can be observed in electron ionization of an atom in electron-electron interaction.
- 4) Negative Staining is examining for virus particles, protein molecules and bacterial flagella.
- 5) The Nuclear spin Hamiltonian is separated into two important groups.
- 6) Vacuum is needed inside the X-Ray Photoelectron spectrometer.

Q.2 Answer the following.

- a) Write a note on difference between SEM and TEM.
- **b)** Discuss advantages and disadvantages of Scanning Tunneling Microscope.
- c) Write a note on Resolution and Magnification.
- d) Explain elastic and inelastic scattering.

Q.3 Answer the following.

- a) Explain principle, instrumentation and working of AFM (Atomic force Microscope).
- **b)** Draw the schematic diagram of AES and explain the working of each part of the microscope?

Q.4 Answer the following.

- a) Explain Phase Contrast microscopy in detail.
- **b**) Explain Magic Angle Spinning (MAS).

Q.5 Answer the following.

- a) Explain Principle of Diffraction of light in detail.
- b) Write a note on contact and non-contact modes in Atomic Force Microscope (AFM).

Q.6 Answer the following.

- a) Draw schematic of SEM and explain working of each part.
- **b)** Explain Raman Spectroscopy with the help of classical and quantum approach.

Q.7 Answer the following.

- a) Discuss Differential Interference Contrast (DIC) microscopy in detail.
- b) Explain principle and working of NMR Spectroscopy and write its applications.