					SLR-SI	1 -1
Seat No.					Set	Р
N	M.Sc. (S	•	(CBCS) Exa (MATERIALS cal Physics	S SCIENCE)	h/April-2023	
-		/ednesday, 19-07-2023 /I To 06:00 PM			Max. Marks	s: 80
Instru	2	Question no. 1 and 2Attempt any three quFigure to right indicat	estions from Q	•		
Q.1 /	A) Cho 1)	A point at which a Fu or singularity of the F a) Scalar point c) Non - Singular	nction $f(z)$ is runction.	oot analytic is knowr Singular point None of these	n as a	10
	2)	In Cauchy's Residue a) $2\pi i \sum_{j=1}^{n} a - 1z_j$ c) $2\pi i \sum_{j=1}^{n}$	b)			
	3)	In complex variable the contour c from Z_0 a) Contour integral c) Contour	to Z' .	dz is called a Residue None of these	$_{_}$ of $f(z)$ along	
	4)	What are the eigen value a) Both are 0 c) 0 and -1)? 0 and 1 0 and 2		

If A, B and C are non-zero Hermitian operator which of the following

b)

d)

b) d)

b)

d)

A square matrix, conjugate transpose of which coincide with the matrix

Which of the following is on even function of t?

The degree of $x \frac{d^2y}{dx^2} + \sin \frac{dy}{dx} = 0$ is

AB + BA = C

A + B = C

 $\sin(2t) + 3t$

Not defined

Hermitian

Skew Hermitian

 $t^3 + 6$

2

5)

6)

7)

8)

relations must be false?

itself is called _____.

a) [A, B] = C

c) ABA=C

a) $t^2 - 4t$ c) t^2

a) Unitary

c) Orthogonal

a) 1

A square matrix A is idempotent if ___ b) A' = -Aa) A' = Ad) $A^2 = A^2$ c) $A^2 = A$ State true or false. B) 06 A square matrix is called orthogonal if $A = A^{-1}$. The function $|\bar{z}|^2$ is not analytic at any point. $x\frac{\partial u}{\partial x} + t\frac{\partial u}{\partial t} = 2u$ is an ordinary differential equation 3) The Function y = 0 is always a solution to a linear homogeneous 4) ordinary differential equation. If y(x) is solution to an nth order ODE and contain arbitrary constant, 5) then it must be the general solution to the ODE. 6) In matrix with 9 elements then the possible ordered pair are (3,3) (1,9) (9,1) Answer the following 16 a) Show that any square matrix can be expressed as the sum of two matrices, one symmetric and the other antisymmetric. **b)** Solve $(1 + e^{x/y})dx + e^{x/y}(1 - x/y)dy = 0$ c) Find the poles of $f(z) = \frac{\sin(z-a)}{(z-a)4}$ d) Verify that: $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & 1 \end{bmatrix}$ is orthogonal Q.3 Answer the following. a) Show that the transformation 80 $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular, write down the inverse transformation. **b)** Expand the function in square wave f(x) = 0; $-\pi \le x \le 0$ 80 f(x) = h; $0 \le x \le \pi$ Fourier series Q.4 Answer the following. a) Show that the eigen value of Hermitian matrix are real. 80 **b)** Evaluate the integral $\int_{0}^{2\pi} \frac{d\theta}{5 - 3\cos\theta}$ 80 Q.5 Answer the following. a) Explain Gaussian distribution function with example. 80 **b)** Explain the first order linear differential equation. 80 Answer the following. Q.6 a) Use Residue calculus to evaluate the following integral. 80 $\int_{0}^{2\pi} \frac{1}{5 - 4\sin\theta} \ d\theta$ **b)** Solve $y'' - 2y' + y = 2\cos x$ by use of successive integration. 80

Laplace transform of f(t) is defined for _____.

c) Both +ve & -ve value of t d)

b) -ve value of t

None of these

a) +ve value of t

9)

		SLR-SN-

Q.7 Answ	er the fol	lowing.
----------	------------	---------

a)	Explain the details of Parseval Theorem.	08
b)	Explain Laplace transform of Derivatives.	08

	_	
Seat	Sat	D
No.	Set	F

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023

				Solid State Physics (M		•	
				, 20-07-2023 ::00 PM		Max. Marks	s: 80
Insti	uctio	2)) Atten	os. 1 and. 2 are compulsory. opt any three questions from Questions from Questions from Questions from Questions from Questions.	. No.	3 to Q. No. 7	
Q.1	A)	Fill i 1)		blanks by choosing correct a ing fraction of BCC is 74% 52%	b) d)	68% 58%	10
		2)	Miller a) c)	indices of a plane parallel to X (001) (010)	and b) d)		
		3)	Intrinas a) c)	sic concentration of charge car T T ³	riers b) d)	in a semiconductor varies T ² T ⁻¹	
		4)	What a) b) c) d)	is relative permittivity? Equal to the absolute permittive Ratio of actual permittivity to a Ratio of absolute permittivity to Equal to the actual permittivity	absol o act	•	
		5)	Whic a) c)	h crystal structure has the max BCC FCC	imum b) d)	, •	
		6)	The s a) c)	superconducting state is perfect Diamagnetic Ferromagnetic	t b) d)		
		7)	Belov a) c)	w transition temperature, the Lo Almost constant Decreases exponentially	ndor b) d)	n penetration depth. Increases exponentially None	
		8)	Whic a) c)	h one of the following is an app Position sensing Automatic fuel level indicator	licati b) d)	on for a hall effect sensor? DC transformer All of these	
		9)	Phon a) c)	on is Quantum of Longitudinal wave Transverse wave	b) d)	Elastic wave Electromagnetic wave	
		10)	Why a) b) c)	is water used in automobiles as It is not toxic to the environme It has a high specific heat cap It has a high lubricating prope cool by reducing friction	ent acity	,	

It is available in abundance

d)

	В)	 Write True or False Rectifier rectifies internal resistance. Fermi energy level in the case of a p-type semiconductor is close to the conduction band. Superconductor is ferromagnetic. X-rays are more visible than lasers. For type I superconductors, the surface energy is always positive. Insulators have a negative temperature coefficient of resistance. 	06
Q.2	Ans a) b) c) d)	wer the following What is Meissner's effect? Explain the BCC structure. Type I and type II superconductors. Direct and Indirect bandgap semiconductors.	16
Q.3	Ans a) b)	wer the following What is a superconductor? Write the London equations. Write the Clausius - Mosotti equation.	08 08
Q.4	Ans a) b)	wer the following What is dielectric polarization? Give the expression for orientational polarization. Write about Josephson tunneling.	08 08
Q.5	Ans a) b)	wer the following What is the internal field? Write the expression of the internal field. Explain the geometrical construction of Brillion Zones in 2D.	08 08
Q.6	Ans a) b)	wer the following Write about the behavior of electrons in a periodic potential. What is the Hall effect? Write about the expression for the mobility of the charge carriers.	08 08
Q.7	Ans a) b)	wer the following Write about the thermodynamics of a superconductor. Write about carrier concentration in an intrinsic semiconductor.	08 08

	_	
Seat	Cot	ь
No.	Set	

M.Sc. (Semester - I) (New) (CBCS) Examination: March/April-2023

		•	PHÝSICS (MATEŔI Analog and Digital Elec		<u>•</u>
-			day, 21-07-2023 To 06:00 PM		Max. Marks: 80
Insti	uctic	2)	Question no. 1 and 2 are compu Attempt any three questions fro Figure to right indicate full mark	m Q	· ·
Q.1	A)	Select 1)	ct Correct Alternatives signal is used to demultipe microprocessors. a) RD c) ALE	b)	address/ data bus in 8085 WR INTR
		2)	Decade counter requires a) 3 c) 4	,	mber of flip flops. 5
		3)	Symbolic address in microproce a) Label c) Operand		rs is recorded in the field. Opcode Comment
		4)	Op-Amp is coupled volta a) AC c) ADC		DC
		5)	The decrease in the frequency r Wien bridge oscillator. a) Lead c) Lead-Lag		Lag
		6)	The NOR gate output will be hig a) 00 c) 10	gh if b) d)	•
		7)	The output of a particular Op-arrate is a) 90 V/μs c) 1.5 V/μs	b)	ncreases 8V in 12μ s. The slew $0.67~V/\mu s$ None of these
		8)	The no-change conditions occur a) J=1, K=1 c) J=1, K=0	b)	en in JK flip flop. J=0, K=0 J=0, K=1
		9)	The output impedance of Op an feedback. a) Negative c) Negative + Positive	b)	Positive None on these
		10)	The gates are mainly use a) NOR c) EX-OR	ed fo b) d)	or checking parity of data. NAND EX-NOR

	B)	Fill in the blanks /State True or False.	06
		 In JK flip flop race around condition arises due to 	
		A demultiplexer is used to perform conversion.	
		3) In the oscillator circuit the total phase shift of the loop gain must be	
		4) Negative feedback is used in oscillator circuits. (True/False)	
		5) The sawtooth waveform has a rise time many times than the fall time. (True/False)	
		6) An ideal operational amplifier has infinite input impedance. (True/False)	
Q.2		empt following.	16
	a) b)	RS Flip flop. Addressing modes of 8085 microprocessor.	
	c)	Op Amp as Comparator	
	d)	Adjustable voltage regulators.	
	,		
Q.3	a)	Write an ALP with flow diagram for addition of two 8 bit numbers using 8085 Microprocessor Immediate addressing mode.	10
	b)	Reduce the following logical expressions using Boolean laws:	06
	D)	$(\overline{AB} + AB)(\overline{ABC} + ABC)$	00
		Draw logic diagram of reduced expression.	
~ 4	-1	What is abit as sisten Draw and sombin lanis discusses of DIDO abit as sisten	40
Q.4	a) b)	What is shift register? Draw and explain logic diagram of PIPO shift register. Draw and explain 8:1 multiplexer using AND gate.	10 06
	IJ,	Draw and explain 6.1 maniplexer doing 7.140 gate.	00
Q.5	a)	Describe Non-inverting configuration of 3 input Op Amp as a summing.	10
	L۵	Scaling and averaging amplifier.	00
	b)	Elucidate effect of negative feedback on output resistance of Op Amp.	06
Q.6	a)	Describe functional block diagram of Intel 8085 microprocessor.	10
	b)	Demultiplexing of AD0- AD7 signals.	06
Q.7	a)	What is Oscillator? Describe phase shift oscillator, obtain an expression for	10
		frequency of oscillation.	
	b)	Design a phase shift oscillator for $f_0=1$ KHz, using IC741. (Supply voltage = ± 15 V)	06

Seat No.		Set	Р
M.S	Sc. (Se	emester - I) (New) (CBCS) Examination: March/April-2023 PHYSICS (MATERIALS SCIENCE) Classical Mechanics (MSC03108)	
•		aturday, 22-07-2023 Max. Marks. M To 06:00 PM	: 80
Instruct		 Question Nos.1 and 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7. Figure to right indicate full marks. 	
Q.1 A)	Cho 1)	The energy of a particle of mass M and E its momentum is p , then the relation between E and P is	10
		a) $E = \frac{P}{2M}$ b) $E = \sqrt{2PM}$ c) $P = \sqrt{2 ME}$ d) $P = \frac{2M}{E}$	
	2)	The path of the particle is when it is moving under the constant conservative force field. a) Cycloid b) Hyperbolic c) Parabolic d) straight line	
	3)	The reduced mass $\mu =$ a) $(m_1 + m_2)/m_1m_2$ b) $m_1m_2/(m_1 - m_2)$ c) $m_1m_2/(m_1 + m_2)$ d) $(m_1 - m_2)/m_1m_2$	
	4)	In equations of motion $\dot{P}_j =$ a) $-\partial H/\partial P_j$ b) $\partial H/\partial P_j$ c) $\partial H/\partial q_j$ d) $-\partial H/\partial q_j$	
	5)	If eccentricity $\epsilon=1$, then the shape of the orbit, which is formed due to motion under central force field will be a) Ellipse b) Circle c) Hyperbola d) Parabola	
	6)	$ [u, vw] = \underline{\hspace{1cm}} . \\ a) [u, v]w + v[u, w] \qquad \qquad b) [u, w]v + [w, u]v \\ c) [u, v]w + [v, w]u \qquad \qquad d) [u, v]w + v[w, u] $	
	7)	The generating function $F_1(q, Q, t)$ generates transformations. a) Exchange b) Identity c) None d) infinite	
	8)	The Phase space is dimensional space. a) 3N b) 2N c) 6N d) N	
	9)	The Poisson bracket of $[u, p_j] = \underline{\qquad}$. a) $-\partial u/\partial p_j$ b) $\partial u/\partial q_j$ c) $+\partial u/\partial p_j$ d) $-\partial u/\partial q_j$	

		 10) The point transformation is the transformations of a) Phase space b) configuration space c) both a & b d) point space 	
	B)	 State True or False: The Poisson bracket of [u,c] = u where c is constant. The areal velocity of the particle in a central force field is zero. The Poisson bracket of the function with itself is zero. Newtonian mechanics is based on the concept of Force. In Phase space, the system is having a unique path. Lagrangian is based on the function L=T+V 	06
Q.2	Ans a) b)	wer the following. Write note on Rutherford's scattering. The particle describes a circular orbit given by $r = 2a \cos \theta$ under the influence of an attractive central force. Show that the force varies as inverse 5 th power of the distance.	16
	c) d)	State the variational principle and derive Hamilton's canonical equations using the variational principle. Explain the work-energy theorem in brief.	
Q.3	Ans a)	wer the following. What is meant by real and pseudo forces? Give an example of each. Show that the angular acceleration is the same in fixed and rotating frames.	10
	b)	State and explain the laws of conservation of linear momentum & angular momentum of a single particle system.	06
Q.4	Ans a)	What are the main features of the motion of a particle under the action of central force? Show that the area swept per unit time i.e. dA/dt remains constant in such a motion.	10
	b)	Distinguish between the configuration space and phase space.	06
Q.5	Ans a)	wer the following. What is Poisson Bracket? List its properties. Explain Jacobi's identity with its proof.	10
	b)	Show that the transformation $Q = 2q^{1/2} e^a \cos p$ and $P = (2q)^{1/2} e^{-a} \sin p$ is canonical.	06
Q.6	Ansa)	swer the following. Explain the term differential scattering cross section and derive the formula for the same. Write a note on Hamilton's - Jacobi Theory.	10
Q.7	,	swer the following.	
4. 1	a)	Show that the generating function $F = \sum q_k Q_k$ produces exchange Transformation.	10
	b)	Explain the different shapes of orbits formed due to motion under a central force field.	06

	Seat No.	Set	Р
--	-------------	-----	---

M.Sc. (Semester - II) (New) (CBCS) Examination: March/April-2023

	141.0	c. (Si	511163	PHYSICS (M.	ATERIALS	SCIENCE)	icii/Aprii-2023	
Dav	& Dat	te: We	ednesc	Quantum Me day, 19-07-2023	ecnanics (i	WSC03201)	Max. Marks	: 80
-				2:00 PM			man mane	. 00
Instr	uctio	2) Atter	os. 1 and. 2 are cor npt any three quest re to right indicate f	ions from Q.	No. 3 to Q. No.	7	
Q.1	A)	Fill i		blanks by choosir be a complex function unity infinity				10
		2)	Mom a) c)	entum of particle by Inversely proporti in phase		relation is directly proport out of phase		
		3)		energy spectrum of lature of infinite sequence exponentially incr infinite sequence exponentially dec	of discrete el easing of equidistan	nergy levels	I rigid box has	
		4)		eigen value of the e $^2/8ma^2$). The quan (311)		s of the state are		
		5)	Pote is a) c)	ntial energy of a pa $m\omega^2 x^2$ $mr\omega^2$		onic oscillator hat $(1/2)m\omega^2x^2$ $(1/2)mv^2$	aving mass m	
		6)	The a) c)	eigen value of spin ±2 ± 1	matrices are b) d)	 0 ∞		
		7)	The (a)	commutation relatio 0 ∞	n between L b) d)	2 and L _x i.e. [L ² , 1 2	Lx] =	
		8)	The (a) c)	outer product of bra state energy	and ket fund b) d)	ction is called unitary identity	operator.	
		9)	In op a) c)	verator equation H ψ H E	$= E\psi$ the eighth (b) (b)	gen function is $_$ ψ H & E	·	

		10)	a)	$L_x + iL_y$ $iL_z - L_y$		ned as	b) d)						
	B)	Fill ii 1) 2) 3) 4) 5)	The pair of Einst nature Probe The The equations	Heisenber of variable ein photo re of mattability de magnitud lowest en l to	erg's unce es. (True/ pelectric a eer. (True/ nsity is alve e of total eergy of au	ind Compt	tive. (omer c osc	fects True ntum illato	are the	e evide	ence of	wave	06
Q.2	Ans a) b) c) d)	Find to box of Explain What	the lo of leng ain Pa is Wl	th 2 Å? G uli spin m	Given: <i>m</i> = natrices. nd? Elabo	electron co = 9.11 × 1 rate.							16
Q.3	Ans a) b)	Discuinfinit Discu	iss eig e pote iss wa	ential wel ave-functi	l.	en functio gen functio		-					08 08
Q.4	Ans a) b)	Elabo	orate t		tainty rela ket notatio								80 80
Q.5	Ans a) b)	Write wave	the ir	ion?	·	roperties o	of wa	ve fui	nction.	What	is admi	issible	08 08
Q.6	Ans a) b)	Expla exam	iin in o ples.			riational aı ², J _x , J _y ar				s with s	simple		08 08
Q.7	Ans a) b)	What Intera	are e	pictures.		n? Explain					enberg	and	08 08

Seat	
No. Set	Р

	IVI.50	c. (5e	emester - II) (New) (CBCS) E PHYSICS (MATERIA Electrodynamics (•	
•			nday, 23-07-2023 I To 02:00 PM	Max. Marks	: 80
nstr	uctio	2) Q. Nos. 1 and. 2 are compulsory.) Attempt any three questions from) Figure to right indicate full marks.	Q. No. 3 to Q. No. 7	
Q.1	A)	Fill i	in the blanks by choosing correct Indicates that a) Non-existance of magnetic of the boundary of the blanks by choosing correct the blanks by cho	dipole monopole opole	10
		2)	In vacuum divegence of electric fi a) zero c) one	ield over a surface is b) charge enclosed by surface d) none of above	
		3)	Faradays law shows that a chang a) electric field c) lorentz force	ging magnetic field gives rise to b) magnetic force d) none of above is correct	
		4)	In free space the value of E, the e time the value of H, the ma a) 277 c) 477	electric field vector at any instant is agnetic field vector. b) 577 d) 377	
		5)	The normal component of magne surface a) discontinuous c) different	etic field, above and below the b) continuous d) independent of charges	
		6)	The electric field inside a conduct a) Greater than zero c) Zero	tor is b) Less than zero d) none of these	
		7)	The energy in magnetic field is pr a) Square of magnetic field c) Square of electric field	roportional to b) Square root of magnetic field d) Square root of electric field	
		8)	The radiation from an oscillating ea) Transverse electric c) Positive	electric dipole is generally b) Zero d) Transverse magnetic	
		9)	The vector potential is, due to a) Charge density c) Charge	b) Surface charge d) Current density	
		10)	Two particles with identical charg a) Radiation c) Retardation	es and mass collide, there is b) No radiation d) None of these	

	B)	Fill in the blanks OR Write true/false 1) The parallel component of electric field, above and below the	06
		surface 2) The angular distribution of radiation for accelerating particle is direction.	
		 3) As in electrostatics then E = 4) In a monochromatic plane wave in free space, E and B at any 	
		 instant The Lorentz force under electric and magnetic field is given by For normal incidence of EM wave at interface of two media having refractive indices n₁ = n₂ then 	
Q.2	Ans a) b) c) d)	wer the following Write the Maxwell's equations in integral form. Define and explain Biot-Savart law. State and prove Gauss's law. Prove that magnetic force do no work on particle.	16
Q.3	Ans a)	wer the following Show that vector potential for dipole is $A = -\frac{\mu_0}{2} \mathrm{m} \times \hat{r}$	10
	b)	Show that vector potential for dipole is $A_{dip} = \frac{\mu_0}{4\pi} \frac{m \times \hat{r}}{r^2}$. Derive and show that the electric field is the gradient of a scalar potential.	06
Q.4	,	wer the following Solve for static magnetic field. Discuss magneto static boundary conditions in detail.	10 06
Q.5	Ans a) b)	wer the following State and prove Poyntings theorem. Explain skin effect and skin depth.	08 08
Q.6	Ans a)	wer the following Obtain the Fresnel's relation for the polarization perpendicular to the plane of incidence.	08
	b)	Obtain plane wave equation of electromagnetic field in vacuum.	08
Q.7	Ans a) b)	wer the following What is radiation from half wave antenna and explain it. Explain the concept of radiation damping.	08 08

Seat No.	Set	Р
.,,,		

M.Sc. (Semester - II) (New) (CBCS) Examination: March/April-2023

				PHYSICS (MATER Statistical Physic			
•				y, 25-07-2023)2:00 PM	,	Max. Marks	s: 80
Insti	uctio	2) Atte	estion 1and 2 are compulso empt any Three from Q.3 to ure to right indicate full marl	Q.7.		
Q.1	A)	Cho 1)	In w	correct alternative. Thich thermodynamics processystem and its surrounding isothermal isobaric		nere is no flow of heat between isochoric adiabatic	10
		2)	In a a) c)		b)	·	
		3)	It no bod a) c)		self flo b) d)	hot, cold hot, hot	
		4)	The a) c)	equation of state for an ide PV = R/T P/V = R/T		s is represented as PV = nRT PV = RT	
		5)		erial is known as latent heat	b)	itted during a phase change of a specific heat none of the above	
		6)	a)	ropy in thermodynamics is a order of system volume of system	b)	pressure of the system	
		7)	The a) c)	value of the universal gas 8.2353 8.5123	consta b) d)	ant is 8.3143 8.2352	
		8)	Pha a) c)	se equilibrium curve termin boiling point triple point	ates a b) d)	at sublimation point critical point	
		9)	Lou a) c)	isville's equation gives the r pressure density	ate of b) d)	change in temperature volume	

		 Which of the following statement is correct for the perfect black body? a) It can transmit entire radiation incidents on it b) It can absorb entire radiation incidents on it c) The emissive power of the black body is less than an ordinary body d) All the above statements are correct for the black body. 	
	B)	 Fill in the blanks or write true/ false. Gibb's free energy determines The relative stability of a system for transformation at constant temperature and pressure. Photon, Phonon, etc. obeys the Fermi Dirac distribution function. In a microcanonical ensemble both energy and mass are conserved. Louisville's equation gives the rate of change in pressure. The unit of mass in the S.I. unit is Entropy is a function. 	06
Q.2	Ans a) b) c) d) e)	Calculate the increase in entropy when 746 gm of water is converted into vapor at 100°C. The latent heat of vaporization of water = 540 Cal/ gm. How the properties of matter change near the triple point. Write a note on grand canonical ensembles. Explain the difference between microstates and macrostates. Write a note on a PT diagram.	16
Q.3	Ans a) b)	Swer the following. State thermodynamic potential and Maxwell's equations. Explain the concept of statistical equilibrium.	10 06
Q.4	Ans a) b)	swer the following. Explain the 2nd order phase transition phenomenon with on example. Derive Ehrenfest equations.	08 08
Q.5	Ans a) b)	Swer the following. Give the condition for B E condensation. By using the Vander Waals equation at reduced states calculate the values of critical constants.	10 06
Q.6	Ans a) b)	wer the following. What is the Gibbs paradox and how it is resolved? Write a note on black body radiations.	10 06
Q.7	Ans a) b)	swer the following. Derive Clausius Clapeyron equation. Obtain Plank's law for black body radiation.	10 06

Seat	Sat	D
No.	Set	

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 PHYSICS (MATERIALS SCIENCE) Semiconductor Physics (MSC03301)

		Semiconductor Phys	sics	(MSC03301)	
Time: 11	:00 Al ons:	onday, 10-07-2023 M To 02:00 PM 1) Q. No. 1 & 2 are compulsory. 2) Attempt any three questions fr 3) Figures to the right indicate ful			80
Q.1 A)		ose correct alternatives.		and level in	10
	1)	P-type semiconductor the Ferma) Near the conduction bandc) at the center	b)		
	2)	In semiconductors the motion of influence of the is called a) electric field		ift.	
		c) gravitational field	,	None of these	
	3)	In intrinsic semiconductor the F a) Near the conduction band c) At the center	b)		
	4)	The depletion region is created a) Ionization c) Recombination	b)	 Diffusion All of these	
	5)	 Molecular Beam Epitaxy is a a) Physical vapor deposition b) Chemical vapor deposition c) Chemical bath deposition d) Hydrothermal deposition 	F	process.	
	6)	The equilibrium number of electromperature is a) 10 ¹⁰ EHP/m ³ c) 10 ¹⁰ EHP/cm ³	b)		
	7)	What is the role of seed crystal a) Nucleation center c) Solvent	in cry b) d)	=	
	8)	The shape of E-K diagram of the is a) Horizontal c) Parabolic	e con b) d)	duction band and valance band Vertical Elliptical	

		9)		e conductivity of a sample onon vibration is called		excess carriers created by	
			•	Thermal conductivity Photoconductivity	 b) d)	Electrical conductivity None of these	
		10)	has	· }	`	273° C), an intrinsic semiconduct	or
			,	A few free electrons No holes or free electron	b) ns d)	Many Holes Many free electrons	
Q.1	B)	Fill i 1) 2) 3) 4) 5) 6)	if σ the Liquin In Content Electric	current density J in a coruid-phase epitaxy (LPE) uccornalski crystal growth semiconductor, the eneruduction band is about 1e	lation be iducting uses i process gy gap b V. (True, uced by	to grow crystals on a substrates, the material is heated up to between the valence band and (False) Thermal energy. (True/False)	06 te
Q.2	Ans a) b) c) d)	Opti Effe Hyd	cal a ctive rothe	ollowing. bsorption mass of an electron ermal process vel pinning			16
Q.3	a)	exar	mple			alloy composition with suitable	10
0.4	b)			e effective mass of an ele		. to un a late I compile an allow a visible	06
Q.4	a)	exar	mple			type of Luminescence with	10
	b)	light on th	of <i>h</i>	v=1.5eV. The absorption	coefficie	minated with monochromatic nt I0 ⁴ cm ⁻¹ . The power incident ergy absorbed by the sample	06
Q.5	a)			MS structure with band dia	agram. E	Explain current flow mechanism	10
	b)	Sho	w the icon ΦΜ	e equilibrium energy band ductor where < Φ S and > Φ S	l diagran	n for a metal to an p-type	06
Q.6	a) b)			crystal growth by Czoch Chemical vapor deposit w			10 06
Q.7	a) b)			e crystal growth by Molecu vapor phase epitaxy.	ılar Bear	m Epitaxy.	10 06

								OLI (O	
Seat No.								Se	t P
N	M.Sc	:. (Se			(MATERI	ALS	SCIENCE)		23
•			esday, 1 To 02:0	1-07-2023 00 PM				Max. Ma	arks: 80
Instru	uctio	2)) Attemp	s. 1 and. 2 are ot any three q to right indica	uestions fro	m Q. I	No. 3 to Q. N	lo. 7	
Q.1	A)	Choo 1)	In the 1	rect alternat $L-S$ coupling lent p —electr	g scheme, th				10
			a) ³ c)	lent p -electr 3 S, 1 P, 3 P, 1 D 1 S, 3 S, 3 P, 3 D	, ³ D	b) d)	¹ S, ³ S, ¹ P, ¹ I ¹ S, ³ S, ¹ P, ³ I	D P, ¹ D, ³ D	
		2)	•	ed due to spi	•		•	erms of cm ⁻¹ whicl the atomic numbe	
			a) 2 c) 2	Z^4 Z^{-4}		b) d)	Z^3 Z^{-1}		
		3)	NOT ed a) η b) η c) η	tal number of qual to that or p — electrons p — electrons p — electrons p — electrons	f the total nu in Ne (Ator in Fe atom in Cl ⁻ ion (A	ımber nic No tomic	of . 10) no. of Cl is 1	,	5
		4)	Hund's by the a		S coupling t	he gr		$4s^0$. By employing f ${\sf Mn}^{2+}$ is characte	
		5)	a) (the vibration $\delta \omega/2$	al energy of	a mol b) d)	ecule is ħω ħω/3	_	
		6)	a) ´	and order for t 1 2.5	he O₂ moled	cule is b) d)	 2 0		
		7)	ic		_			e case of Orthohe 2^1S_0 1^1S_0	lium
		8)	electro a) 2	tal number of ns from 3^2P_{3}				g the transition of	

- 9) The spectroscopic symbol for the ground state of A1 (Z = 13) is ${}^{2}P_{1/2}$ Under the action of a strong magnetic field (when L-S coupling can be neglected) the ground state energy level will split into _____. 3 levels b) 4 levels 6 levels 5 levels c) d) 10) The fine structure of atomic spectral lines arises from . Electron spin-orbit coupling Interaction between electron and nucleus b) c) Nuclear spin
- B) Fill in the blanks or Write true /false.

Stark effect

06

- According to Moseley's law, the frequency of a spectral line in an X-ray spectrum varies as a square of the atomic number of the element.
 - (True/False)
- The shortest wavelength observed in the Paschen series of hydrogen spectra is 8201 Å.
- 3) The spectral term separation ΔT is expressed in terms of cm⁻¹ which is caused due to spin orbit interaction and is related to the atomic number Z by Z⁻⁴. (True/False)
- 4) The Lande's g-factor for ⁷G₁ is ½. (True/False)
- 5) There are 9 bands observed in the IR spectrum of water due to fundamental vibrations. (True/ False)
- 6) The Raman shift is expressed in cm⁻¹. (True/False)

Q.2 Answer the following questions.

d)

16

- a) Deduce the ground state term symbol for sodium (Z = 11). Why sodium exhibit doublets of yellow color. With neat labelled diagram explain the Zeeman effect for sodium atom when it is placed in weak magnetic field.
- b) Using Hund's rules, find the ground-state term symbol for
 - 1) fluorine (Z = 9)
 - 2) titanium (Z = 22)
 - 3) Nickel (Z = 28)
 - 4) magnesium (Z=12)
- c) What is Stark effect? discuss the weak-field Stark effect in hydrogen for $H\alpha$ line.
- d) From the following data, find the energy required to dissociate a KCI molecule into a K atom and a CI atom. The first ionization potential of K is 4.34 eV; the electron affinity of CI is 3.82 eV; the equilibrium separation of KC1 is 2.79 Å. (Hint: Show that the mutual potential energy of K⁺ and CI⁻ is (14.40/R) eV if *R* is given in Angstroms).

$$\left(\frac{e^2}{4\pi\varepsilon_0} = 1.44 \times 10^{-9} eV. m\right)$$

Q.3 Answer the following

a) 1) Discuss the basic foundation behind the magnetic spin resonance spectroscopy Techniques?

80

- 2) Differentiate between nuclear magnetic resonance and electron paramagnetic resonance spectroscopic techniques.
- 3) Show how many signals you will see in the electron spin resonance spectrum of H-atom considering nuclear hyperfine interaction. Sketch the predicted spectrum in first derivative form and label it properly.
- 4) If the observed chemical shift of a proton is 200 Hz from tetramethyl silane (CH₃)₄Si and instrument frequency is 60 MHz, what is the chemical shift in terms of δ ? Express it in τ value.

- Explain Raman effect and origin of Raman spectroscopy with the help of energy level diagram. Why anti-Stokes lines are less intense than Stokes line.
 - 2) In a linear molecule the Raman shift of the first Stokes/anti-Stokes line from the exciting one is 6B cm⁻¹ whereas separation between adjacent lines is 4B cm⁻¹. why?
 - With which type of spectroscopy would one observe the pure rotational spectrum of H₂? If the bond length of H₂ is 0.07417 nm, what would be the spacing of the first three lines in the spectrum?

Q.4 Answer the following

- a) 1) In a multielectron atom, consider two identical particles (electrons, noninteracting). Let ψ_{α} and ψ_{β} be the eigenfunctions corresponding to the states α and β , in which the two particles can be found. Considering total eigenfunctions, show that the two particles can not be in a state with the same set of quantum numbers.
 - 2) Evaluate the Lange' g factor for the 3P_1 state in 2p3s configuration of 6C . On the application of a magnetic field B = 0.1 tesla, calculate the Zeeman splitting of the state ΔE in joules. ($\mu_b = 9.2740 \times 10^{-24} J/T$)
 - Nitrogen (Z = 7) has three electrons in the 2p level (in addition to two electrons each in the 1s and 2s levels),
 - i) Consistent with the Pauli principle, what is the maximum possible value of the total *Ms* of all seven electrons?
 - ii) List the quantum numbers of the three 2p electrons that result in the largest total Ms.
 - iii) If the electrons in the 2p level occupy states that maximize Ms, what would be the maximum possible value for the total M_L ?
 - iv) What would be the maximum possible total M_L if the three 2p electrons were in states that did not maximize Ms?
- b) Distinguish conceptually between the splitting of fine structured spectral lines under the action of external weak (< 0.1 T) and high (> 1 T) magnetic field strength. An atom with the states ${}^2G_{9/2}$ and ${}^2H_{11/2}$ is placed in a weak (< 0.1 T) magnetic field. Draw the energy levels and indicate the possible allowed transitions between the two states with π and σ components.

Q.5 Answer the following.

- a) 1) Discuss the vibrational-rotational spectra of a diatomic molecule by showing P, Q and R branches with proper selection rules,
 - 2) Designate proper branches (P, Q and R) for the following type of vibrations of a heteronuclear diatomic molecule
 - i) Symmetric stretching mode in which dipole vibrate parallelly along the bond length.
 - ii) Bending mode in which dipole vibrate perpendicularly along the bond length,
 - 3) Explain why vibrational-rotational spectra cannot be obtained for homonuclear.diatomic molecules having identical nuclei?
- b) Certain atom with two valence electrons is subjected to very strong magnetic field strength of the order of > 10 T. Draw the energy levels and indicate the possible allowed transitions between ³S₁ ← ³P_{0,1,2} transitions in that atom. Justify the phenomenon of Paschen-Back effect by considering magnetic interaction energy i.e. ΔE as well as selection rules.

80

Q.6 Answer the following.

- a) Write down the allowed spectral terms for Germanium (Z = 32) and Oxygen (Z= 8) atoms in their normal and first excited state and by applying selection rules explain the emission spectra of Germanium (Z = 32) and Oxygen (Z= 8) (Consider Pauli's Exclusion Principle).
- **b)** Find the most probable radius for the electron of a hydrogen (Z =1) atom in the 1s states. Given, $P_{1,0}(r) = \frac{4r^2}{a_0^3} e^{\frac{-2r}{a_0}}$. Calculate the average orbital radius of a 1s electron in the hydrogen atom. What is the probability of the electron in the 1s state of the hydrogen atom being at a radius greater than the Bohr radius a_0 ? (Given, e = 2.71818)

Given:
$$\int_0^\infty x^m . e^{-ax^n} dx = \frac{1}{n} \frac{\Gamma(\frac{m+1}{n})}{\alpha^{(m+1)/n}}; \Gamma(n) = (n-1)!$$

Q.7 Answer the following.

- a) Based on molecular orbital (MO) concept explain the nature of bond order and stability for O₂, O₂+, O₂- and O₂- molecules. Also, explain the magnetic nature of each molecule. Why valence bond (VB) approach fails to explain the paramagnetic nature for O₂ and B₂ molecules, while molecular orbital approach explains the paramagnetic nature for O₂ and B₂ molecules.
- b) 1) What are non-equivalent and equivalent electrons? Is it possible to have two equivalent electrons in the same atom? Calculate the spectral terms for non-equivalent (s,s) (s,p) and (p,p) electrons and for two equivalent (s²) and (p²) electrons.
 - 2) What do you mean fine structure? With neat labelled diagram discuss the fine structure of doublets for
 - i) ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$ and
 - ii) $^2D_{3/2}$ and $^2D_{5/2}$ states with justification based on magnitude of ΔT_{ls} .
 - 3) Calculate the ESR frequency of an unpaired electron in a magnetic field of 3000 G (0.30 T).

$$(g = 2.00, \mu_B = 9.273 \times 10^{-24} \text{ J/T}, h = 6.626 \times 10^{-34} \text{Js})$$

	 •	
Seat	Set	D
No.	Set	

	M.Sc	c. (Se	emes	PHYSICS (Materials Materials Characterization	s Sci	•			
•				day, 12-07-2023 2:00 PM	JII (I	Max. Marks:	80		
Instr	uctio	2	.) Atte	os. 1 and. 2 are compulsory. npt any three questions from 0 re to right indicate full marks.	Q. No	. 3 to Q. No. 7			
Q.1 A)	Fill 1)		b) Precision and True valuec) Measured value and Precision						
		2)	The	error caused by poor calibratio	n of t	he instrument is called			
			a) c)	 Random error Gross error	b) d)	Systematic error Precision error			
		3)	On we depend a)	which factor does the average lend? Nature of the gas Volume	kinetio b) d)	c energy of gas molecules Temperature Mass			
		4)	Wha a) c)	t is the average velocity of the Infinity Unstable	mole b) d)	cules of an ideal gas? Constant Zero			
		5)		y diffractometers are not used nich of the following? Metals Polymeric materials	to ide b) d)	entify the physical properties Liquids Solids			
		6)		y diffractometers provide pounds present in a solid samp Quantitative Quantitative and qualitative		ormation about the Qualitative Either quantitative or qualitative	Э		
		7)	Whice a) c)	ch of the following parameters Polarity Carrier concentration	can't b) d)	be found with Hall Effect? Conductivity Area of the device			
		8)		e Hall Effect, the electric field is direction. What is the direction X					

		9)	Beer Lambert's law gives the relation between which of the follow a) Reflected radiation and concentration b) Scattered radiation and concentration c) Energy absorption and concentration d) Energy absorption and reflected radiation	ing?				
		10)	In which of the following ways, absorption is related to transmittant a) Absorption is the logarithm of transmittance b) Absorption is the reciprocal of transmittance c) Absorption is the negative logarithm of transmittance d) Absorption is a multiple of transmittance	ice?				
	B)	Write 1) 2) 3) 4) 5)	te true/ false. A system will be error free if we remove all systematic error. Zero error is an indication of instrumental error. The degree of freedom of a triatomic gas is 6. When certain geometric requirements are met, X-rays scattered for a crystalline solid can constructively interfere with each other and produce a diffracted beam. In Hall Effect, the electric field applied is parallel to both current as magnetic field. Absorbance has no unit					
Q.2	Ans a) b) c) d)	Desc State How	the following cribe the methods of temperature measurements. e the postulates of kinetic theory of gases. v are X-rays generated and detected? e and derive Beer Lambert law.	16				
Q.3	Ans a) b)	Expla	the following lain the methods of sample preparation. cribe the necessity of vacuum during the material characterization.	08 08				
Q.4	Ans a) b)	Desc	wer the following Describe the Laue method for single crystal structural analysis. Describe Hall effect in semiconductors. 08					
Q.5	Ans a) b)	Desc Expla	the following cribe the resonance techniques and their necessity. lain the application of UV- Visible absorption spectroscopy in the ermination of band gap of semiconductors.	08 08				
Q.6	Ans a) b)	Expla	the following lain the functioning of a vacuum pump. cribe the factors affecting the intensity in powder XRD.	08 08				
Q.7	Ans a) b)	What	the following at are the defects in semiconductors? Explain how are they measure at is a spectrometer? Explain its working and applications.	08 ed. 08				

Seat	Sat	D
No.	Set	

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023

			PHYSICS (MATERIA Semiconductor Device	-
•			onday, 10-07-2023 /I To 06:00 PM	Max. Marks: 80
Instr	uctio	2	1) Question Nos.1 and 2 are comp2) Attempt any three questions fro3) Figure to right indicate full mark	m Q. No. 3 to Q. No. 7.
Q.1	A)	Cho 1)	ose the correct alternatives fro CMOS is popular due to a) Low noise immunity b) High power consumption c) Low power consumption d) High power dissipation	m the options. 10
		2)	,	r device MOSFET BJT
		3)	The condition $h\upsilon > E_g$ causes a) Absorption b) c) Reflection d)	Transmission
		4)	carriers. a) Depletion b)	annel MOSFET causes of Enhancement Induction
		5)	CCD memory device to store ch	negative potential
		6)	The output of LASER is a) Polychromatic c) Dispersed	b) non – coherentd) Monochromatic
		7)	Energy required to move electro metal is called as a) Barrier c) Depletion	n from Fermi level to outside the b) work function d) dielectric constant
		8)	The switching ON behavior of Son a) Regenerative c) Blocking	CR is based on b) Breakdown d) Etching

		•	tage must be nable unijunction to	ransistor. b)	ate voltage is 0. 0.3 0.5	3 V to switch on	
		10) Sum of α_1 a) zero c) half	and α_2 must be _		SCR to become unity infinity	e ON.	
	B)	 VLSI use Forward b Minimum Light emis The barrie work func 	False/Fill gaps. CCDs for memory clocking state in Socurrent above white sion is not possible the fight of M - Stable domains in the stable domains in the conductor of	CR is due ch SCR t le in Si d contact is ctor	pecomes ON is ue to its the difference l 	nolding. Detween metal	06 uits.
Q.2	a) b)	wer the followi LED CMOS devices Digital IC DIACs					16
Q.3	a) b)	inversion mode	structure with empes with band diagraphical type MOSFE	ams.	accumulation,	depletion &	10 06
Q.4	a) b)	Describe p-i-n o	diode with doping	profile ar	d electric field c	listribution.	10 06
Q.5	a) b)	i) space cha ii) Quenched iii) Delayed d	Gun Oscillator mod rge accumulation domain mode omain mode. iodic oscillating be		n- GaAs Gunn	diode.	10 06
Q.6	a)	•	perating principle	•		nultilayer	10
	b)	What is Semico	ith band diagrams anductor Laser dio ssion of light in Ga	de? Disc	uss the mechan	ism of	06
Q.7	a)	What is solar co	ell? Derive an exp	ression fo	or open circuit v	oltage and short	10
	b)		m efficiency and r	esponse	speed of solar c	ell.	06

No. Set F	Seat Set F
-----------	------------

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023

		(00	N	PHYSICS (MATERIA uclear and Particle Phy		•
•			dnesd	ay, 12-07-2023 :00 PM	/3103	Max. Marks: 80
Instr	uctio	2)	Atten	os. 1 and. 2 are compulsory. opt any three questions from e to right indicate full marks.	Q. No	. 3 to Q. No. 7
Q.1	A)	Choo 1)		e correct alternative. atio will be, Where, R 0.8 1.25	is the b) d)	mean nuclear radius. 0.4 8
		2)	Nucle a) c)	ear forces between the nucle Central force Purely Coulombic forces	b)	e Non-central forces Cohesive forces
		3)	single a) b)	is the correct sequence of separticle shell model? 2, 6, 10, 14, 18, 32 2, 8, 18, 32, 50, 86 2, 8, 20, 50, 82, 126 2, 8, 20, 40, 82, 126	hell clo	osure according to extreme
		4)	In a ty a) b) c) d)	particle is parent, n is incident parti	n, is da cle, is o article,	ughter and n being outgoing daughter and photon is out-going is parent and photon is out-going
		5)	All the a) b) c) d)	e nucleii's available in nature Spherical shape and are sy Some are spherical, some All are ellipsoid shape No definite shape	mmetr	ic
		6)	Nuclei a) b) c) d)	sharply at the boundary They are dense at the cent at the boundary	a certa er and form a	in distance and then falls off then distribution falls sharply the centre as well as at the
		7)		neight of potential barrier factures is 27.87 MeV 27.87 GeV	ed by a b) d)	an alpha-particle inside the 27.87 KeV 27.87 eV

		8)	a) p	st two nucleo o-p n-n	n system exists	in na b) d)	ature is of n-p Does not exist	
		9)	Averag kinetic a)	e energy requ	uired to produce	e an i	chamber producing ion-pairs. on pair is 35 eV. What is the the ionisation chamber. 3.5 MeV 35 GeV	
		10)	[Given: where a)		$s m_n = 1.008668$		of nucleus is proton mass m _p =1.007825 u, 21.4 MeV 36 MeV	
	B)	Fill in 1) 2) 3) 4) 5) 6)	Nuclea Nucleo Leptons fundam Baryon anti-qua Electro In radio	r density is con-nucleon for sare the only sental forces on consist of the consist of the capture is capture is consist of the capture is captured.	of nature. oree quark and one of the mode	epend rticle Mesons s of l		06
Q.2	Ans a) b) c) d)	A sar carbo count Explaineat see Exp	on due to es/min, whin the we schemate in the gamma de the Mes	an ancient wo o ¹⁴ C present in what is the ag working and basic figure to ma amma decay and process.	in it. If freshly content in it. If freshly converse in it. If freshly the particular in it. If freshly content it. If freshly content it. If freshly content it. If freshly it. If freshly content it. If freshly content it. If freshly content it. If freshly it. If freshly it. If freshly content it. If freshly content it. If freshly content it. If freshly content it. If freshly it.	ut wo [Give sem mpor rsion	e gives 5 count/min/g of coden piece gives 16 en Half-life of ¹⁴ C=5760 years] iconductor detector. Drawment of the counter. and internal pair conversion it along with their quark	16
Q.3	a)	Calcu MeV. [Give mass MeV/	n M() =2 m _n =1.0 c ²]	value of prot 20.007344 u, 008665 u, pro	M() =20.99765 oton mass m _p =	1 u, N 1.007	y (S_p) for (S_n) for in units of $M() = 21.999574 \text{ u}$, neutron (825 u, where 1 u = 931.5	08
	b)	relations	on for m tants in	ost stable nu	clei. al formula: Volu		amily of isobars, obtain the erm, Surface term, Coulomb	80
Q.4	Ans a) b)	Using depth arour Find (Give	for a no d 8.5 M the Q-va n M() =2	gas model an ucleus. Assur eV, calculate alue and the t 22.99097 u, M	ning average bi the kinetic ene hreshold for the 1()= 19.999981	inding rgy o e follo u, M	ons, estimate the potential g energy per nucleon to be f the nucleons in the nucleus. wing nuclear reaction. () = 4.002603 u, neutron (2825 u, where 1 u = 931.5	08
		MeV/		• •	·			

Q.5 Answer the following

- a) Write down the Schrodinger equation for deuteron (use simplest finite square well potential), i.e. n-p system with an attractive potential V(r) between them. Obtain the complete solution and draw the wavefunction inside and outside the potential well.
 - 08

80

- **b)** From Gamma ray selection rule classify the following multipole transitions.
 - i) $(1/2)^- \rightarrow (7/2)^-$
 - ii) $4^+ \rightarrow 2^+$
 - iii) $1^- \rightarrow 2^+$
 - iv) $(1/2)^- \rightarrow 3/2^+$

Q.6 Answer the following

- a) Starting with the equation of Fermi-Golden's rule, derive the Fermi expression of beta-decay.
- b) Show that the energy of the triplet state (S=1) is not equal to the energy of the singlet state (S=0) for deuteron bound state.

Q.7 Answer the following

- a) Classify different types of accelerators. Explain basic principle and describe in detail working of linear accelerator. Draw a neat schematic diagram to show each component.
- b) With a suitable example explain what is nuclear fission and fusion reactions. Estimate the power released in Kilo-Watt-Day for the thermal neutron induced fission reaction of to and. [Given M() =235.043922 u, M()=146.922780 u, M() = 88.926400 u. neutron mass m_n= 1.008665 u, proton mass m_p= 1.007825 u, m_e= 0.00055 u where 1 u = 931.5 MeV/c²]

	_	
Seat	Sat	D
No.	Set	

	IVI.3	C. (Se	mesi	PHYSICS (MATER	•	S SCIENCE)	
				Physics of Nano Ma		<u>=</u>	
•				4-07-2023 3:00 PM		Max. Marks	: 80
Inst	ructio	2) Atter	stion no. 1 and 2 are comp npt any three questions from the complex of the comple	om Q.		
Q.1	A)	Mult i 1)	The b	Earth's crust	aturally b) d)	/ occurring element found in Smoke Coal	10
		2)	a) E	resolving power of a TEM Electrons Specimens	is der b) d)	ived from Power Ocular system	
		3)	indus a) A c) S	stries. AFM	surfac b) d)	e composition of the materials in TEM SEM	
		4)	b) E	_ is used in electron micr Electron beams Electron beams & magnet Magnetic fields .ight waves	•		
		5)	a) Nb) Vc) N	ee of scattering in TEM is Number and mass of atom Vavelength of electron be Number of atoms that lie in Mass of atoms that lie in th	ns that eam us n the e	lie in the electron path sed electron path	
		6)	a) (lerenes, the graphene sh Octagonal Hexagonal	eets a b) d)	re linked with rings. Trigonal Decagonal	
		7)	b) E	is used for measuring <-ray diffraction Brunauer-Emmett-Teller n Electrophoresis Spectrometry		rface area of the nanoparticles.	
		8)	a) S	is a technique to sepa acterization. Spectrometry Centrifugation	b) d)	anoparticles by size during Electrophoresis None of the above	

		9)	,	Quar	perate lik ntum we ntum wir			ctron b) d)	Quar	stor. ntum c ntum r					
		10)			gsten wir	EM cons		f b) d)	 Iron f Gold	ilame wire	nt				
	B)	Fill in 1) 2) 3) 4) 5) 6)	Qu ent	ectron is ar ar antum tity. e elect	Microsc an instr e used in dots ar	ope can gument for lasers. The theoret SEM are a Line of	give a r imag tically reflec	ging s desc	urface ibed a	s at th	ne ato ero-dir	mensi	onal	3 .	06
Q.2	a)	Postul Image	tum lates fori	confin s of the matior	ement e e Drude	Model lectron m	nicros	cope							16
Q.3	a)	Explai	ibe ¡ in th	princip e diffe	ole and o	pperation etween fi ssion.			ed the	ermior	nic em	issior	n and f	ield-	10 06
Q.4	a)	nanop	ibe t artic	the Mo cles.	olecular	Beam Ep	•		•		•		of		10
	•	·				of electro	on trai	nspor	t in se	micon	ducto	rs.			06
Q.5	a)	buckn	is Fu	ullerer terfulle	ne? Deserene.	cribe the									10
	b)	Why c	loes	the b	and gap	of nanor	materi	ials in	creas	e with	size r	educt	ion?		06
Q.6	a)		is lu	ımines	cence?	Discuss d process				ninesc	ence.				10 06
Q.7	a)		an a	ccoun	t of core	-shell in Nanotub	•	um de	ot.						10 06

			3LK-3N-1	Ō
Seat No.			Set F	P
М.		•	mester - IV) (New) (CBCS) Examination: March/April-2023 PHYSICS (MATERIALS SCIENCE) ed Techniques of Materials Characterization (MSC03406)	
Time:	03:0	00 PN 9 ns: 1	unday, 16-07-2023 M To 06:00 PM 1) Attempt five questions. 2) Q (1) and Q (2) are compulsory. 3) Attempt any three from Q.3 to Q. 7.	80
Q.1 <i>i</i>	A)	Mul (tiple choice questions. types of waves have the long wavelength? a) Radio waves b) X-ray c) Microwaves d) UV	10
		2)	technique is used to determination of surface area. a) SEM b) TEM c) BET d) None of the above	
		3)	NMR is the study of absorption ofby nuclei in a magnetic field? a) Radioactive radiation b) IR radiation c) Radio frequency radiation d) Microwaves	
		4)	In SEM, once an electron beam hits a sample, the sample ejects a) electrons and x-rays b) positrons and gamma rays c) anti-electrons and ultraviolet rays d) neutrinos and radio waves	_•
		5)	The energy of the back scattered electrons in SEM is that of secondary electrons. a) Equal to b) Less than c) Greater than d) None of these	
		6)	Energy of the electromagnetic radiation is decreases with a) Increasing wavelength b) Decreasing wavelength c) Both a) and b) d) None of the above	
		7)	technique is suitable for function group detection. a) FTIR b) UV -VIS Spectroscopy c) XRD d) NMR	
		8)	XPS working is based on the principle of	

b) Lamberts law

d) None of these

a) Photovoltaic effect

c) Photoelectric effect

		 9) is the capability of the optical instrument to distinguish between two adjacent points. a) Magnification b) Resolving power c) Ionization d) Emulsification 						
		10) Fluorescence occurs within a) 10^{-5} s b) 10^{-5} ms c) 10^{-5} μ s d) 10^{-5} ns						
	B)	 Fill in the gaps/ State True False. 1) Electron microscope is much more powerful than 2) Usually quantum structures are 3) Range of Visible light's wavelength is between 4) Radio waves are considered to be the lowest energy form of Electromagnetic radiation. (True/False) 5) Light waves are used in electron microscope. (True/False) 6) Magnification is the capacity to distinguish between two adjacent points. (True/False) 	06					
Q.2	Atte a) b) c) d)	empt the following. Nano Lithographic technique Raman scattering Depth Profiling? Operating mode of AFM	16					
Q.3	Ans a) b)	What do you mean by surface? What are different probes used for surface characterization? What is order of vacuum required to record the XPS spectra and why? Explain principle and working of Selective Area Electron Diffraction (SEAD).						
Q.4	Ans a) b)	Microscope with neat labelled diagram.	10 06					
Q.5	Ans a) b)	Swer the following. Describe qualitative and quantitive analysis of Auger electron spectrum with example. Explain applications of NMR spectroscopy.						
Q.6	Ans a) b)	formed?	10 06					
Q.7	Ans a)	wer the following. Describe classical and quantum approach used to understand Raman Spectroscopy.	10					
	b)	· · · · · · · · · · · · · · · · · · ·	06					