Seat No.			Set	Ρ
	Γ	A.Sc.	(Sem-I) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS Probability Distributions (MSC22101)	
Day & Time:	Dat 03:0	e: Mo 00 PM	nday, 19-07-2023 Max. Marks To 06:00 PM	s: 80
Instru	ictio	ns: 1) 2) 3)	Question no. 1 and 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7. Figure to right indicate full marks.	
Q.1	A)	Choc 1)	See the correct alternative:In a hospital, sex of newly born baby is recorded as male or female isa real-life situation where distribution is used.a) Binomialb) Discrete Uniformc) Bernoullid) None of these	10
		2)	A distribution in which the probability at each successive draw variesisa) Hypergeometricb) Geometricc) Binomiald) Discrete uniform	
		3)	If X and Y are independent random variables then a) $Cov(X,Y) = 0$ b) $Corr(X,Y) = 0$ c) $E(XY) = E(X)E(Y)$ d) All the above	
		4)	We get standard normal distribution from normal distribution if a) $\mu = 1, \sigma = 0$ b) $\mu = 0, \sigma = 1$ c) $\mu = 0, \sigma = 0$ d) $\mu = 1, \sigma = 1$	
		5)	Let $\underline{X} = (X_1, X_2,, X_k)$ be a multinomial random variable with parameters $n, p_1, p_2,, P_k$, $\sum_{i=1}^k p_i = 1$ Then marginal distribution of X_1 is a) $B(n, 1 - p_1)$ b) $B(n, P1)$ c) $B(n - 1, n_1)$ d) not binomial	
		6)	Which one of the following distributions has memory less property?a) Normalb) Binomialc) Exponentiald) Uniform	
		7)	If random variable X has standard exponential distribution thena) $E(X) = 2 Var(X)$ b) $E(X) = Var(X)$ c) $Var(X) = 2E(X)$ d) none of these	
		8)	If $X > 0$ thena) $E[\log X] \le \log[E(X)]$ b) $E[\log X] \ge \log[E(X)]$ c) $E[\log X] = \log[E(X)]$ d) None of these	
		9)	If $\mu'_1 = 2$, $\mu'_2 = 8$ and $\mu_3 = 3$ then value of μ'_3 a) 15	

SLR-SW-1 Set P

10) Let X has B(n, p) distribution then PGF of X is _____

a) $(p+qS)^n$ b) $(q+pS)^{\overline{n}}$

c) $(q - pS)^n$ d) $(p - qS)^n$

B) Fill in the blanks.

- 1) If a random variable *X* has mean 3 and standard deviation 4 then the variance of variable Y = 2X + 5 is _____.
- **2)** If Z is standard normal variate then variance of Z^2 is _____.
- 3) The *pdf* of random variable *X* is $f(x) = 2x, 0 \le x \le 1$ then P(X = 0.5) is _____
- 4) Let X and Y be two *iid* random variables with $pdf f(x) = 2e^{-2x}, x \ge 0$. The distribution of Z = X - Y is _____
- 5) Let *X* has a continuous distribution with *cdf F* (*X*), then the distribution of Y = F(x) is _____
- 6) If *X* has uniform U(0,1) distribution, then the distribution of the r^{th} order statistic is _____.

Q.2 Answer the following

- a) What do you mean by (i) a Bernoulli trial (ii) binomial experiment? Give an illustration of each.
- **b)** Define symmetric random variable. Give one example of symmetric random variable.
- c) Define power series distribution. Show that Geometric distribution is power series distribution.
- **d)** Define Poisson distribution giving an example and find its mean.

Q.3 Answer the following.

- a) Define cumulative distribution function (cdf) of a random variable and state and prove its important properties.
- **b)** Define location family of distributions. Examine which of the following are in location family.
 - 1) $X \sim N(\theta, 1)$
 - 2) $X \sim Exp(\theta, 1)$

Q.4 Answer the following.

- a) Define moment generating function (MGF) of a random variable *X*. Explain how it is used to obtain moments of a random variable *X*.
- **b)** Define multinomial distribution. Obtain its MGF. Hence or otherwise obtain its variance-covariance matrix.

Q.5 Answer the following.

- a) State and prove Markov's inequality.
- **b)** Let X be U(0,1) distribution. Find the distribution of
 - 1) Y = 1 X
 - $2) \qquad Y = -2\log X$

16

Q.6 Answer the following.

Let X is a non-negative random variable with $pmf P(X = x) = P_x$, x = 1, 2, ...

- $E(X) = \sum_{x=1}^{\infty} P[X \ge x]$ a) then show that
- **b)** The joint probability distribution of (X, Y) is given by. ((x+y)/21,x = 1, 2, 3, y = 1, 2*P(*:

$$(x,y) = \{0, othrwise\}$$

- 1) Find marginal probability mass functions of *X* and *Y*.
- 2) Conditional distribution of X given Y = 2

Q.7 Answer the following.

- Define order statistics. Derive the distributions of smallest and largest order a) statistics based on random sample of size n from a continuous distribution.
- **b)** Let (X, Y) has $BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Obtain the conditional distribution of X given Y = y.

c)	asymptotic variance	d)	Fisher information
A st a) b) c) d)	tatistic $T(X)$ for θ is said to b $T(X)$ is independent of θ $T(X)$ is dependent on θ The distribution of $T(X)$ is in The distribution of $T(X)$ is in	be and indep deper	cillary if endent of θ ads on θ
Whi fam a) c)	ich of the following is not a r ily of distributions? Bernoulli $(1, \theta)$ Normal $(\theta, 1)$	nemb b) d)	er of one-parameter exponential Cauchy $(1, \theta)$ Poisson (θ)
Whi a) c)	ich of the following statemer MLE always exists MLE is always unbiased	nts is b) d)	correct MLE is always unique None of the above is true.
$\frac{\int f T_n}{\partial \log \theta}$	$\frac{1}{2}$ is a function of	ased o	on random sample of size <i>n</i> , then
a) c)	θ only both T_n and θ	b) d)	T_n only none of the above
Let a) b) c) d)	T_n be an unbiased estimator T_n^2 is unbiased estimator of $\sqrt{T_n}$ is unbiased estimator of e^{T_n} is unbiased estimator of $3T_n + 4$ is unbiased estimator	r of θ θ^2 of $\sqrt{\theta}$ f e^{θ} tor of	.Then $3\theta + 4$
Let	X_1, X_2, \ldots, X_n is a random s	ample	e from $U(0,\theta), \theta > 0$ The MLE of
a)	\bar{X} .	b)	X ₍₁₎
c)	$X_{(n)}$	d)	sample median

Q.1 A)

Instructions: 1) Question no. 1 and 2 are compulsory.

3) Figure to right indicate full marks.

Choose the correct alternative: 1) A sufficient statistic contains all the information which is contained

M.Sc. (Semester - II) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS Statistical Inference - I (MSC22202)

in _____.

Day & Date: Sunday, 23-07-2023

Time: 11:00 AM To 02:00 PM

Seat

No.

b) sample

upper bound

a) population c) parameter d) none of the above

2) Attempt any three questions from Q. No. 3 to Q. No. 7.

- Cramer-Rao inequality with regards to the variance of an unbiased 2)
 - estimator provides _____.
 - a) lower bound
 - b)
- 3)
- 4)
- 5)

6)

7)

8)

(n)

10

Set

Max. Marks: 80

Ρ

06

04

- 9) If T_n is consistent estimator of θ then $\phi(T_n)$ is consistent estimator of $\phi(\theta)$ if _____.
 - a) ϕ is linear function
 - b) ϕ is continuous function
 - c) ϕ is differentiable function
 - d) none of these
- 10) Which of the following is true?
 - a) Consistent estimator is always unbiased
 - b) Every consistent estimator is CAN
 - c) Consistent estimator need not be unique
 - d) Consistent estimator is always MLE

B) Fill in the blanks.

- **1)** Based on random sample of size *n* from $N(\mu, 1), \mu \in R$ population. MLE of μ is _____.
- 2) For power series family of distribution _____ is sufficient statistic for θ
- **3)** Let $X_1, X_2 \dots X_n$ be iid Poisson (θ), UMVUE for θ is _____
- 4) If an estimator T_n of population parameter θ converges in probability to θ as *n* tends to infinity is said to be _____.
- 5) For Cauchy distribution with location θ , the consistent estimator of θ is _____.
- 6) Minimal sufficient statistic is a function of _____.

Q.2 Answer the following

- a) Define:
 - i) Sufficient statistic
 - ii) Minimal sufficient statistic
- **b)** Let random variable *X* has *Poisson* (θ) distribution. Show that distribution of **04** *X* is complete.
- c) Define a maximum likelihood estimator for a parameter θ , and state the large **04** sample properties of this type of estimator under regularity conditions, to be stated clearly.
- **d)** Let $X_1, X_2, ..., X_n$ be iid $U(0, \theta)$, computing the actual probability show that $X_{(n)}$ is consistent estimator of θ .

Q.3 Answer the following.

- a) Define Power series family of distributions. Show that $B(n, \theta)$ distribution **08** belong to power series family.
- **b)** Let $X_1, X_2 \dots, X_n$ be a random sample from $U(0, \theta), \theta > 0$ distribution. Show that $X_{(n)}$ is sufficient statistic for θ , but $X_{(1)}$ is not sufficient statistic.

Q.4 Answer the following.

- a) Define consistent estimator. State and prove invariance property of **08** consistent estimator of a real valued parameter θ .
- **b)** Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, \sigma^2)$. Find two consistent **08** estimators of σ^2 .

Q.5 Answer the following.

- a) State and prove Rao-Blackwell theorem.
- **b)** Use Rao-Blackwell theorem to derive UMVUE of $P(X_1 = 0)$ based on sample **08** $X_1, X_2, ..., X_n$ from *Poisson* (λ), $\lambda > 0$ distribution.

Q.6 Answer the following.

Q.7

a)	Define Fisher information matrix. Obtain Fisher information matrix in case of	08		
b)	b) State and prove Cramer-Rao inequality with necessary regularity conditions.			
An a)	swer the following.	08		
b)	Let X_1, X_2, \dots, X_n be jid $U(0, \theta), \theta > 0$ Find	08		
	i) Moment estimator θ			
	ii) MLE of θ			

Seat	
No.	

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS

Statistical Inference – II (MSC22301)

Day & Date: Monday, 10-07-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Q. Nos 1 and 2 are compulsory.

2) Attempt any Three questions from Q. No.3 to Q. No.73) Figures to the right indicates full marks.

Q.1 A) Choose the correct alternatives. 1) If we reject the null hypothesis when it is true, we might be making _____.

	a) type I errorc) a correct decision	b) d)	type II error unpredictable
2)	In a large sample test for the significance is increased. The a) decrease	gnifica e new b)	nce of population mean, the level critical value will increase
	c) remain unchanged	a)	change but nothing can be said
3)	If λ is the likelihood ratio test stagot its asymptotic distribution as	atistic, S χ^2 di	which one of the following has stribution?
	a) $\log_e(\lambda)$	b)	$\log_{e}(1/\lambda)$
	c) $\log_e(\lambda^2)$	d)	$\log_{e}(1/\lambda^{2})$
4)	To decide about hypothesis H_0	, SPR	T involves
-	a) one region only	b)	two regions only
	c) three regions	d)	four regions
5)	In Kruskal-Wallis test of <i>k</i> samp are	oles, th	ne appropriate degrees of freedom
	a) k	b)	k-1
	c) $k + 1$	d)	n-k
6)	The range of Kendall's rank cor	relatio	$n \tau$ is .
- /	a) 0 to 1	b)	0 to ∞
	c) -1 to 1	d)	$-\infty$ to ∞
7)	In testing $H_0: \sigma = \sigma_0 \inf_n N(0, \sigma^2)$	the c	ritical region based on n
	observations is $\sum_{i=1}^{k} X_i^2 < k$	For	which alternative hypothesis does
	this provide UMP test?		
	a) $\sigma \neq \sigma_0$	b)	$\sigma = \sigma_0$
	c) $\sigma > \sigma_0$	d)	$\sigma < \sigma_0$
8)	Which of the following is a simp	le hyp	othesis for $N(\mu, \sigma^2)$?
,	a) $H_0: \mu = 5, \sigma = 2$	b)	$H_0: \mu = 10$
	c) $H_0: \mu = 0, \sigma > 1$	d)	$H_0: \mu \neq 3, \sigma = 1$

Max. Marks: 80

10

Set P

9) Based on random sample of size *n* from $N(0, \sigma^2)$ distribution, the pivotal quantity for construction of confidence interval for σ^2 is _____.

- 10) A 95% confidence interval estimate for the difference between two population means, $\mu_1 \mu_2$ is determined to be (62.75, 68.52). If confidence level is reduced to 90%, confidence interval _____.
 - a) becomes wider

becomes narrower

- b) remains same
- d) more information is needed

c) become B) Fill in the blanks:

- 1) The degrees of freedom for a χ^2 statistic in case of contingency table of order 2 × 2 are _____.
- 2) The approximate distribution of Kruskal-Wallis test statistic is _____.
- A hypothesis is to be tested with possible rejection is known as ______ hypothesis.
- 4) If there are 10 symbols of two types, equal in number, the maximum possible number of runs is _____.
- 5) When testing for randomness, we can use _____ test.
- 6) If k = 2 then Kruskal-Wallis H test reduces to _____.

Q.2 Answer the following.

- a) What is goodness of fit test? Give its application.
- b) Distinguish between sign test and signed-rank test.
- c) Analyze 2 × 2 contingency table when the cell frequencies are sufficiently large.
- **d)** Explain in brief the test of significance for testing $H_0: \mu = \mu_0$ for $N(\mu, \sigma^2)$ distribution, where σ is known, on the basis of large sample.

Q.3 Answer the following.

- a) Describe the test of significance for testing equality of variances of two normal populations.
 - 1) for large samples
 - 2) for small samples.
- b) A sample of size one is drawn from the exponential distribution having pdf

 $f(x,\theta) = \frac{1}{\theta}e^{-x/\theta}$, x > 0 to test the hypothesis $H_0: \theta = 1$ against $H_1: \theta = 10$. The hypothesis H_0 is accepted if the observed value is ≤ 2 . Find the probabilities of committing type I and type II errors and also find power of test.

Q.4 Answer the following.

- a) Define two kinds of errors and power of a test. Which error is minimized in statistical test? Why not both errors?
- **b)** Use Neyman-Pearson lemma to obtain most powerful test for testing $H_0: \sigma = \sigma_0$ against $H_1: \sigma = \sigma_1 (> \sigma_0)$ based on random sample of size *n* from $N(0, \sigma^2)$ distribution.

Page 2 of 3

06

Q.5 Answer the following.

- a) What is a Run? Explain how the hypothesis of the randomness of a sample of numerical observations may be tested based on the number of runs.
- b) Describe Mann-Whitney U test. How is it carried out for large samples?

Q.6 Answer the following.

- a) Define Wald's SPRT of strength (α, β) for testing simple null hypothesis against a simple alternative hypothesis. In what respect SPRT differs from the fixed sample test.
- **b)** Describe sequential procedure for testing the hypothesis $H_0: \theta = \theta_0$ against the alternative $H_1: \theta = \theta_1(\theta_1 > \theta_0)$, where θ is parameter of Poisson distribution.

Q.7 Answer the following.

- **a)** Explain the technique of likelihood ratio test. Use it to test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$, where σ^2 is the variance of $N(\mu, \sigma^2)$ distribution and μ is unknown.
- **b)** Obtain $100(1 \alpha)$ % confidence intervals for normal location parameter μ ,
 - 1) when σ^2 known and
 - 2) when σ^2 unknown, a random sample of size *n* being given.

16

16

	3	Figure to right indicate full marks.	
A)	Fill 1)	n the blanks by choosing correct alternatives given below. The distribution is a multivariate generalization of chi-sq distribution. a) Hotelling's T ² b) Multivariate Normal c) Wishart distribution d) None of these	uare
	2)	The range for Canonical correlation isa) $[-1,1]$ b) $[0,1]$ c) $[0,\infty]$ d) $[0.5,1]$	
	3)	 While applying clustering algorithm, the distance between clusters is taken to be the largest distance between observation two clusters. a) average linkage b) complete linkage c) single linkage d) none of these 	en two ns from
	4)	If \underline{X} has $N_p(\underline{\mu}, \Sigma)$ distribution then moment generating function vector X is a) $Exp(\underline{t'}\underline{\mu} - \frac{1}{2}\underline{t'}\Sigma\underline{t})$ b) $Exp(\underline{t'}\underline{\mu} + \frac{1}{2}\underline{t'}\Sigma\underline{t})$ c) $Exp(\underline{t'}\underline{\mu} + \frac{1}{2}\underline{t'}\Sigma^{-1}\underline{t})$ d) $Exp(\underline{t'}\underline{\mu} - \frac{1}{2}\underline{t'}\Sigma^{-1}\underline{t})$	of
	5)	 To classify a given multivariate observation to either of two populations, we use a) Principle components analysis b) Discriminant analysis c) Cluster analysis d) None of these 	
	6)	Let p dimensional vector \underline{X} has $N_p(\underline{\mu}, \Sigma)$ distribution. Let us part $\underline{X} = (\underline{X}_{(1)}, \underline{X}_{(2)}$ in q and p-q component sub vectors. Then condition covariance of $\underline{X}_{(2)}$ given $\underline{X}_{(1)}$ is a) $\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ b) $\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$ c) $\Sigma_{12} - \Sigma_{12} \Sigma_{21}^{-1} \Sigma_{21}$ d) $\Sigma_{21} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$	rtition tional
	7)	A principal component analysis was run and the following eigenvalues were obtained: 3.8, 2.1, 0.4. How many components were you retain so that 50% of the variation present in the old variable	n ould les will

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

Day & Date: Wednesday, 12-07-2023

Time: 11:00 AM To 02:00 PM

Seat

No.

2) Attempt any three questions from Q. No. 3 to Q. No. 7

M.Sc. (Semester - III) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS **Multivariate Statistical Methods (MSC22306)**

Q.1 A

be explained?

a)	1	b)	2
c)	3	d)	0

SLR-SW-12

Set Ρ

Max. Marks: 80

		8)	Let A a)	has $W_{P}(n,\Sigma)$ distribution	on then E(A) b)	= Σ	
			C)	\overline{n} $n\Sigma$	d)	Σ	
						n-1	
		9)	Total the or	variation explained by riginal variables.	all principal	components is that by	
			a)	equal to	b)	greater than	
			C)	less than	a)	none of these	
		10)	Margi vecto	nal distribution of any r follows	single variab	le from multivariate normal	
			a) c)	Univariate normal Gamma	b) d)	Beta None of these	
	B)	Fill i	n the I	olanks.	,		06
	_,	1)	Wisha	art distribution is a mu	ltivariate gen	eralization of	•••
		2)	The e	eigen values of the ma	trix $\begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ are	e	
		3)	In cas two c	se of single linkage, th lusters is taken to be t	e dista he distance a	ance between various units of among these clusters.	
		4)	Let ve	ector <u>Y</u> has $N_p(\mu\Sigma)$ dis	tribution. For of $X = A Y + A Y$	a constant matrix $A_{q \times p}$ and	
		5)	The _	principal compo	nent explains	s maximum variation of the	
		6)	The ti	race of variance covar	iance matrix	is always	
Q.2	Ans	wer th	ne folle	owing			16
	a) b) c) d)	What Obtai Write Write	do yo n char a note a note	u mean by discriminar acteristic function of n e on canonical correlate on divisive clustering	nt analysis? nultivariate no tion. I.	ormal distribution.	
03	Δns	wor th	o foll	owing			
Q.J	a)	Obtai densi	n the r	rule for discrimination t (X) and $f_{2}(X)$	for two multiv	ariate populations with	08
	b)	Expla	$\sin \sin \theta$	gle linkage method in c	detail with the	e help of illustration.	08
Q.4	Ansv a)	wer th With u	ne follo usual i	owing notations, obtain the m	naximum likel	lihood estimator of Σ for	08
		$N_P(\mu)$,Σ)				
	b)	Obtai from <i>l</i>	n the α $N_P\left(\mu, \Sigma\right)$	distribution of sample Σ	mean vector	of the sample of size n drawn	80
Q.5	Ans	wer th	ne folle	owing			
	a)	Discu	iss the	concept of clustering	. Also explain	, in detail, hierarchical and	08
	b)	Discu	iss the	procedure of k-mean	s clustering.		08
Q.6	Ans	wer th	ne folle	owing			
	a)	Obtai norma	n the o al vect	distribution of linear co or.	mbination of	components of a multivariate	08
	b)	Discu	iss agg	glomerative clustering	in detail.		08

Q.7 Answer the following

a)	Explain, in detail, complete linkage and average linkage methods of	08
	calculating distance.	
b)	Describe the mechanism of k-means clustering in detail.	08

theory have which of the following postulate? diminishing returns applies to agricultural yield sential for man's existence natural instinct to increase the population we	

M.Sc. (Semester - IV) (New) (CBCS) Examination March/April-2023 **BIOSTATISTICS Demography and Health Statistics (MSC22401)**

Day & Date: Monday, 10-07-2023 Time: 03:00 PM To 06:00 PM

Seat

No.

Instructions: 1) Question 1 and 2 are compulsory.

- 2) Attempt any Three from Q.3 to Q.7
- 3) All questions carry equal marks.

Q.1 Choose the correct alternatives from the given options. A) 1) Demography is not related to _____ b) Geography

- a) Economics
 - Social Biology c) d)
- The difference between population at two census is known as _____. 2)

None of these

- a) Population constant
- Population change b) c) Population increase Population decrease d)
- Death rate of infants having age 0 to 4 weeks is known as 3)
 - a) Infant mortality rate Neo natal mortality rate b) Specific death rate d)
 - c) Post natal mortality rate
- 4) Which of the following is not a component of population change?
 - a) Fertility Mortality b)
 - c) Migration d) None of these
- _ method, the census was being conducted in one day. 5) In
 - a) De Facto method of census
 - b) De Jure method of census
 - c) Regular method of census
 - d) In Facto method of census
- There are _____ and _____ standardized death rates. 6)
 - a) correct, incorrect b) direct, indirect
 - c) complete, incomplete d) absolute, negative
- The National Rural Health Mission was conducted during _____. 7)
 - a) 2007-12 2002-09 b)
 - c) 2005-12 2005-08 d)
- The NFHS -I was conducted during 8)
 - 1992-93 1993-94 a) b)
 - C) 1998-99 d) 1999-2000
- 9) The Malthusian
 - a) The law of
 - b) Food is es
 - c) There is a
 - d) All the abo

SLR-SW-14

Max. Marks: 80

		 10) Which of the following is not a Socio-Economic theories of population? a) Leibenstein's Motivational theory of population growth b) Karl Marx theory of surplus population c) Dumont's theory of social capillarity d) Pearl and Reeds Logistic Curve Theory of Population 	
	В)	 Fill in the blanks: 1) The base year is the year of 2) Projection horizon means number of years between and 3) Geometric change is extrapolation method of population projection. 4) The IMR of certain population of size 72,000 where there are 5,800 infant deaths during the year is 5) Weight of infants at birth is as cause of Mortality. 6) The people migrated from TN to Maharashtra areto the TN. 	06
Q.2	Ans a) b) c) d)	wer the following. Define direct and indirect standardized death rates. State important factors affecting Mortality. State the assumptions for Pearl and Reed's Logistic curve theory. How Demography is related to Geography? Explain.	16
Q.3	Ans a) b)	wer the following. What are subject matter of Demography? Discuss in detail. Discuss in detail the Migration as a component of population change.	08 08
Q.4	Ans a) b)	swer the following. Explain Malthusian Theory of Population. Discuss the Cohart-Component method of Population projection.	08 08
Q.5	Ans a) b)	wer the following. Write in detail salient features and Merits of NFHS 1 and 2. Explain Demography as a scientific discipline.	08 08
Q.6	Ans a) b)	wer the following. What is Dumont's theory of social capillarity? Explain criticism on it. Discuss the Government policy to control population growth.	08 08
Q.7	Ans a) b)	swer the following. Explain Pearl and Reed's logistic curve theory. What is criticism on it? Discuss in detail Optimum theory of Population.	08 08

Max. Marks: 80

Seat	
No.	

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS Clinical Trials (MSC22402)

Day & Date: Wednesday, 12-07-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 73) Figure to right indicate full marks.

Q.1 A) Fill in the blanks by choosing correct alternatives given below.

- 1) What do you mean by a randomized design?
 - a) Randomly assigning subjects either for placebo or active dose
 - b) The subjects do not know which study treatment they receive
 - c) Patients injected with placebo and active doses
 - d) Signed document of the recruited patient for the clinical trial procedures
- 2) If the Relative Bioavailability is 1, it indicates: ____
 - a) Bioavailability of dosage form of one drug is same as that of the other dosage form
 - b) Complete binding of the drugs to the proteins as compared to the standard drug
 - c) Complete bioavailability of the drug
 - d) Complete distribution of the drug
- 3) Three brands of coffee are rated for taste on a scale of 1 to 10. Six persons are asked to rate each brand so that there is a total of 18 observations. The appropriate test to determine if three brands taste equally good is _____.
 - a) One way analysis of variance
 - b) Wilcoxon rank-sum test
 - c) Spearman rank difference
 - d) Kruskal-Wallis test
- 4) When Phase IV clinical trials Conducted?
 - a) After FDA Approval to marketing the drug
 - b) Before FDA Approval to marketing the drug
 - c) During Phase III trial Process
 - d) None of these
- 5) Which of the following would occur in a longitudinal study?
 - a) Measures are taken from different participants over an extended period
 - b) Participation is expected to last for a minimum of 24 hours
 - c) Measures are taken from the same participants on different occasions usually over extended periods of time
 - d) Measures are taken from participants in at least six different countries

6) What is ANDA?

c)

a) c)

- a) Abbreviated New Drug Application
- b) Anything as New Drug Application
- c) All New Drug Application
- d) None of the above

7) Which of the following is NOT associated with Phase 4 clinical trials?

- a) Also known as post-marketing surveillance
- b) A mixture of populations involved
- c) small numbers of participants
- d) Monitoring of long-term safety
- 8) In clinical trials, 'Treatment' can be _____
 - a) Placebo b) any pharmaceutical identity
 - Any medical device d) All of the above
- 9) Which type of trials are needed for the approval of generic drug?
 - a) Superiority trials
 - c) Equivalence trials

Both a) and b)

- b) Combination trialsd) None of these
- 10) Carryover effect can be estimated in _
 - Parallel design b) Crossover design
 - d) none of these

B) State whether the following statements are True or False:

- 1) We can estimate carry over effect in 'Crossover Design'.
- 2) In clinical trials, 'Treatment' can be placebo.
- 3) Randomization is effective tool to prevent the selection bias.
- 4) The whole market will be under Phase III surveillance.
- 5) To avoid experimenter bias, when the experimenter nor the participant is aware of which group the participant is in, this is known as single blind.
- 6) The aim of post marketing studies is Safety and comparisons with other medicines.

Q.2 Answer the following

- a) Write notes on run in and washout period.
- **b)** Write the note on: Investigation New Drug Application (INDA).
- c) What are the major objectives behind conduction of the clinical trials (CTs)
- d) Write a note on:
 - i) Active control and equivalence trials
 - ii) Combination trials

Q.3 Answer the following

- a) Explain the concept of Bioavailability and Bioequivalence.
- b) What is the meaning of blinding? Way it is used in clinical trials? Explain the **08** type of bindings.

Q.4 Answer the following

- a) What is randomization? Why randomization is needed? What are the types
 08 of randomizations involved in clinical trials?
- b) Explain concept of protocol and process of protocol developments in clinical 08 trials.

06

16

Q.5	Ans a)	wer the following What are crossover designs? In which situations crossover de useful?	signs are	08
	b)	Explain the all phases involve in the development of clinical tri	als.	08
Q.6	Answer the followinga) What is longitudinal design? Write advantages and disadvantages		iges of	08
	b)	longitudinal design. Explain the overall clinical drug development process.		08
Q.7	Q.7 Answer the following			
	a) b)	Explain the difference between the Multicenter trails and Meta Explain the concept of sample size. Discuss are the factors ne calculate the appropriate sample size.	analysis. cessary to	08 08

Seat No.

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS Survival Analysis (MSC22403)

Day & Date: Friday, 14-07-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Question no. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Multiple choice questions.

- A series system is a special case of k-out-of-n system when _____ 1)
 - a) k = 1 b) k=2 k = nc) k = n-ld)

2) Which of the following rate function corresponds to DFR distribution?

- a) h(t) = t $h(t) = e^{t}$ b)
- c) h (t) = e^{-t} d) $h(t) = t e^{t}$ If $R_s(t)$ and $R_p(t)$ are the reliabilities of series and parallel systems
- 3) respectively then for a system having identical components, which of the following is true?
 - a) $\frac{R_s(t)}{R_p(t)} > 1$ b) $\frac{R_s(t)}{R_p(t)} < 1$ none of the above c) $\frac{R_s(t)}{R_n(t)} = 1$ d)
- Let p_i is the reliability of i^{th} component then reliability of parallel 4) system of *n* independent components is _____.

a)
$$1 - \prod_{i=1}^{n} p_i$$

c) $1 - \prod_{i=1}^{n} (1 - p_i)$
b) $1 - \prod_{i=1}^{n} p_i$
d) $1 - \sum_{i=1}^{n} (1 - p_i)$

5) A life time distribution F having finite mean is said to be NWUE for $t \ge 1$ 0, if _____. a)

- c) $\mu_t = \mu_0$ d) none of the above
- Which of the following is a particular case of random censoring? 6)
 - a) Type I Type II b)
 - c) both type I and type II none of the above d)
- 7) Which of the following is not true?
 - a) K-M estimator is parametric in nature
 - b) K-M estimator is generalized maximum likelihood estimator
 - c) K-M estimator is consistent
 - d) K-M estimator is also known as product limit estimator

10

Max. Marks: 80

06

16

- 8) In survival analysis, the data set may contain_____.
 - a) only left censored observations
 - b) only right censored observations
 - c) both left and right censored observations
 - d) none of the above

9) Which of the following is an example of right censored observation?

- a) patient decided to move elsewhere
- b) patient become non-cooperative
- c) person may not experience the event before the study ends
- d) all the above

10) Which of the following is true?

- a) The hazard function has no upper bound
- b) The hazard function has an upper bound
- c) The hazard function is a probability
- d) S(t) = P(T > t) is a hazard function

B) Fill in the blanks.

- 1) If $\emptyset(x)$ is a structure function then dual of $\emptyset(x)$ is _____.
- 2) DFRA property is preserved under____
- 3) For _____ lifetime distribution, each member has non-monotonic failure rate.
- 4) The scaled TTT transform for exponential distribution with mean λ . is
- 5) In time censoring experiment with $n = 10, t_0 = 15$ two units failed at 9 and 13. The total time on TTT statistics has value equal to_____.
- 6) Product limit estimator of survival function is developed by_____.

Q.2 Answer the following.

- a) Define k out of n system. Obtain the reliability function of this system.
- **b)** Give two definitions of star shaped function and prove their equivalence.
- c) Define TTT transform. Show that for an IFR distribution TTT transform is a convex function.
- d) Obtain the nonparametric estimator of survival function based on complete data.

Q.3 Answer the following.

- a) Define reliability of a component and reliability of a system. Obtain the reliability of series and parallel systems of an independent components.
- b) Obtain the structure function of a coherent system by using minimal path sets. Illustrate the same by an example.

Q.4 Answer the following.

- a) Define type-II censoring. Derive the likelihood function of observed data under type II censoring hence obtain MLE of mean of exponential distribution.
- b) Discuss maximum likelihood estimation of parameters of a Weibull
 06 distribution based on complete data.

Q.5 Answer the following.

- a) Define IFR and IFRA class of distributions. If F ε IFR then show that F ε 08 IFRA.
- **b)** Define star shaped function. Prove that F_{ε} IFRA if and only if $-\log R(t)$ is **08** star shaped.

Q.6 Answer the following.

- a) Describe Kaplan-Meier estimator and derive an expression for the same. 08
- b) Describe in detail Mantel-Haenzel test. Indicate the null distribution of test statistic. 08

Q.7 Answer the following.

a)	If failure time of an item has gamma distribution obtain the failure rate	08
	function.	
b)	Derive Greenwood's formula for an estimate of variance of actuarial	08
	estimator of survival function.	

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS

Time Series Analysis (MSC22407)

Day & Date: Sunday, 16-07-2023 Time: 03:00 PM To 06:00 PM

Seat No.

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 73) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative:

- 1) Which of the following is not the component of time series?
 - a) Level b) Secular Trend
 - c) Seasonal d) None of these
- 2) The mean of a stationary process is _
 - a) always zerob) constantc) non-constantd) None of these
- 3) A strictly stationary process is _____ weakly stationary
 - a) always
 - b) only for multivariate Gaussian process
 - c) Never
 - d) Sometimes
- 4) Let $\{X_t\}$ be an autoregressive process of order two then the condition for its stationarity is _____.
 - a) $\phi_2 \phi_1 < 1, \phi_2 + \phi_1 < 1, |\phi_2| < 1$
 - b) $\phi_2 \phi_1 > 1, \phi_2 + \phi_1 < 1, |\phi_2| < 1$
 - c) $\phi_2 \phi_1 < 1, \phi_2 + \phi_1 > 1, |\phi_2| < 1$
 - d) $\phi_2 \phi_1 < 1, \phi_2 + \phi_1 < 1, |\phi_2| > 1$

5) The PACF of AR (1) process is zero after lag

- a) One b) two
- c) Three d) zero
- 6) The singe exponential smoothing equation is _____.
 - a) $S_t = \alpha Y_{t-1} + (1-\alpha)S_{t-1}$ $t \ge 2$
 - b) $S_t = \alpha^2 Y_{t-1} + (1-\alpha)S_{t-1}$ $t \ge 2$
 - c) $S_t = \alpha Y_{t-1} + (1-\alpha)^2 S_{t-1}$ $t \ge 2$
 - d) $S_t = \alpha^2 Y_{t-1} + 2(1-\alpha)S_{t-1}$ $t \ge 2$
- 7) In a given time series there is only trend component present, then which exponential smoothing best fit for the series?
 - a) Single exponential smoothing
 - b) Double exponential smoothing
 - c) Triple exponential smoothing
 - d) Quadratic smoothing

SLR-SW-17

Max. Marks: 80

10

Set

06

16

- 8) Holt - Winter smoothing method is used when there is _____.
 - Trend component present only a)
 - Seasonal component present only b)
 - Trend and seasonal both present c)
 - There is level component present only d)
- Box Jenkin's suggested to use _____ as an alternative method to find 9) best model for given time series
 - Interpolation a) c) Extrapolation
 - b) Differencing d) Exponential smoothing
- The process $X_t = \phi_1 X_{t-1} + Z_t$ where $\{Z_1\} \sim WN(0, \sigma^2)$ is process if 10)
 - $|\phi_1| < 1$ $|\phi_1|>1$ a) b) c) $|\phi_1| = 1$ d) $|\phi_1| < 1.5$

B) Fill in the blanks.

- The autocovariance function of given time series at lag zero is nothing 1) but of the series
- The ACF of time series with seasonal component shows _____ 2) pattern
- ACF of MA (q) process has insignificant autocorrelations after lag 3)
- A real-valued function defined on the integers is the autocovariance 4) function of a stationary time series if and only if it is even and _____
- Differencing method can be used to estimate _____ and _____ 5) component in the given time series if present
- The causal representation of ARMA (p,q) process $\{X_t\}$ is _____. 6)

Q.2 Answer the following.

- Define the autocovariance function and state is characterizing properties. a)
- Write a short note on preliminary transformations in time series analysis. b)
- Write a short note on classical decomposition model of time series. c)
- Define AR (1) process. Obtain its autocorrelation function. d)

Q.3 Answer the following.

- Define MA (1) process and hence obtain its partial autocorrelation function. 08 a)
- Define AR (2) process and hence obtain the condition of stationarity of the **08** b) same process.

Q.4 Answer the following.

- Describe the diagnostic checking methods in time series analysis **08** a) **08**
- Describe any two tests for stationarity of a time series b)

Answer the following. Q.5

- Define ARMA (1,1) process and hence obtain its autocorrelation function. **08** a)
- Write in detail model identification methods. b)

Q.6 Answer the following.

- Determine which of the following processes are causal and/or invertible 08 a)
 - $X_t + 0.6X_{t-1} = Z_t + 0.04Z_{t-1}$ i)
 - ii) $X_t + 1.6X_{t-1} = Z_t 0.4Z_{t-1} + 0.04Z_{t-1}$ in both process $\{Z_t\} \sim WN(o, \sigma^2)$
- Describe analysis of Seasonal ARIMA $(p, d, q) \times (P, D, Q)$ process. b) 08

Q.7 Answer the following.

- Explain moving average as a method of estimation and elimination of trend. Explain double exponential smoothing method in detail. a) 08 08
- b)

Seat	
No.	

M.Sc. (Semester - IV) (New) (CBCS) Examination: March/April-2023 BIOSTATISTICS Data Mining (MSC22408)

Day & Date: Sunday, 16-07-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Question no. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternative.

- In supervised learning, if 90% data is of positive class label value, and 1) just 10% data is of negative class label value, such a data will be called .
 - a) Imperfect data c) Scattered data
- Imbalanced data b) d) Bad data
- 2) The classification problem based on available data with known class labels is

b)

- a) Supervised learning
- Semi-supervised learning c) unsupervised learning All of these d)

residual data

- The data used to check accuracy of the built model is called _____. 3)
 - a) Training data b) Testing data
 - c) irrelevant data d)
- 4) In _____ linkage method, the distance between two clusters is considered as average of all the possible pairwise distances between the observations of these clusters.
 - a) Single linkage Average linkage b)
 - c) Complete linkage d) Centroid linkage
- 5) Market-basket problem was formulated by _____. a) Agrawal et al.
 - b) Toda et al.
 - c) Steve et al. d) Simon et. Al
- Which of the following can be considered as a generalization of 6) regression technique?
 - a) ANN SVM b)
 - c) kNN d) **Decision Tree**
- In k- nearest neighbor algorithm, k stands for _ 7)
 - a) Number of neighbors that are investigated
 - b) Number of Iterations
 - c) Number of total records
 - d) Random number
- 8) Which of the following can be considered to be generalization of decision tree?
 - a) kNN

- Bayes' classifier b)
- c) Random forest None of these d)

Max. Marks: 80

		9) 10)	 Each neuron is made up of a number of nerve fibers called a) Molecules b) Dendrites c) Atoms d) Sigmoid In clustering, if the distance between two clusters is considered as distance between their centroids, then it is called as a) Single linkage b) Average linkage c) Complete linkage d) Centroid linkage 			
	B)	State 1) 2) 3) 4) 5) 6)	 whether following statements are True or False. kNN is a supervised learning tool. In clustering analysis, class labels are provided. kNN classifier is also called as lazy classifier. Most of the data should be used to check performance of the data. Data used to verify performance of the built model is called training data. Process of removing duplicate records is called data cleaning. 	06		
Q.2	Ans a) b) c) d)	swer the following. Write a note on problem of classification. Why kNN classifier is also called as lazy classifier? Explain classification and regression in detail. Explain the steps Involved in Supervised Learning.				
Q.3	Ans a) b)	swer the following. Write a short note on clustering. Describe k-nearest neighbor classifier in detail. Also discuss the drawbacks of kNN classifier.				
Q.4	Ans a) b)	swer the following. Describe Artificial Neural Network (ANN) in detail. Write down the algorithm for Bayesian classifier.				
Q.5	Ans a) b)	swer the following. Explain logistic regression classifier in detail. What are the different metrics for Evaluating Classifier Performance?				
Q.6	Ans a) b)	swer the following. Explain the class imbalance problem in detail. Describe unsupervised learning. Also explain in detail, association rules and prediction.				
Q.7	Ans a) b)	wer th Explai Descri i) ii)	he following. in decision tree in detail. Also explain the idea of random forest. ribe- Accuracy of a model Precision of a model	08 08		