

PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

FACULTY OF SCIENCE & TECHNOLOGY

NEP 2020 Complaint Curriculum for T.Y.B.Tech.

Engineering with effect from 2025-26

Syllabus of Open Elective Basket common for all the UG Engineering programs

PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

FACULTY OF SCIENCE & TECHNOLOGY NEP 2020 Compliant Curriculum

With effect from 2025-2026

Distribution	Course Code	Name of the	Engagement Hours		Credits	FA	SA			Total	
		Course	L	Τ	Р		ESE	ISE	ICA	OE/ POE	
PCC											
PCC											
PCC											
PEC											
AEC	AEC-02	Creativity and Design Thinking	1		2	02	50*		25		75
OE	OE-03	Interdisciplinary Mini Project	1		2	02			25	25	50

Semester -V

PCC- Programme Core Course,PEC-Programme Elective CourseAEC- Ability Enhancement Course,IKS- Indian Knowledge System,CC- Co-curricular Courses,VSEC-Vocational and Skill EnhancementCourse MDM-Multidisciplinary Minor: It should be selected from other UG Engineering Minor

Programme.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur T. Y. B. Tech. Engineering Semester-I (AEC-02) Creativity and Design Thinking

Teaching Scheme	Examination Scheme
Theory: - 1Hr/Week, 1 Credit	ESE-50 Marks
Practical: - 2Hrs/Week, 1 Credit	ICA- 25 Marks

Course Introduction:

This course introduces the principles of creativity and design thinking, emphasizing innovative

Problem-solving through ideation, prototyping, and sustainable product development. Students will explore real-world applications, creative techniques, and environmental considerations to develop user-centric and impactful engineering solutions.

Course Objectives: During this course, the student is expected

- 1. To introduce students to the concepts of creativity, innovation, and design thinking process.
- 2. To develop problem-solving skills using divergent and convergent thinking approaches for iterative design methodologies.
- 3. To familiarize students with prototyping methods and their applications in iterative design methodologies.
- 4. To emphasize sustainable design principles and their integration into product development processes.

Course Outcomes: At the end of this course, students will be able to

- 1. Elaborate the critical design thinking skills needed to either improve an existing product or design a new product.
- 2. Demonstrate the ability to generate and evaluate creative ideas using ideation techniques.
- 3. Apply Creativity and Prototyping to refine product designs effectively.
- 4. Analyze and apply sustainable design principles into the engineering design process.

SECTION I

Unit 1: Introduction to Creativity and Design Thinking (4 Hrs)

Creativity and Innovation: Definition, importance, and characteristics, Design Thinking Process, Empathize, Define, Ideate, Prototype, Test, Barriers to Creativity and Techniques to Overcome Barriers.

Unit 2: Ideation and Concept Development (3Hrs)

Exploring Problem-Solving Approaches: Divergent and convergent thinking, Creative Ideation Methods: Different Method of Idea Generation such as Brainstorming, SCAMPER, TRIZ, Mind Mapping, Transforming Ideas into Concepts: Concept sketching, storytelling, and visualization techniques.

SECTION II

Unit 3: Creativity and Prototyping (4 Hrs)

Creativity in Design: Applying creativity, brainstorming, and concept generation in problemsolving, Prototyping Methods and Strategies: Low-fidelity vs. high-fidelity prototypes, rapid prototyping, and iterative design, Real-Life Applications: Case studies on Real-life applications demonstrating customer-driven designs and meeting product specifications.

Unit 4: Sustainable Design and Product Development (4Hrs)

Design for Environment Principles: Applying environmental sustainability throughout the product life cycle., Product Development Processes: Selecting and implementing staged, spiral, and agile development models based on project needs. Case Studies: Sustainable product development in the engineering domain.

TERM WORK

Term work should be based on assignments (Case studies) based on the above topics.

- 1. Presentations Idea pitching and storytelling exercises.
- 2. Mini-Projects, Hands-on prototyping, testing (e.g.Designing a sustainable Engineering product).
- 3. Group Discussions Exploring innovative business models and their applications.
- 4. Participation engaging in designs thinking workshops and brainstorming sessions.

TEXT BOOK

- 1. Product Design and Development by Karl T. Ulrich, Steven D. Eppinger, Tata McGraw Hill.
- 2. Design Thinking: Understanding How Designers Think and Work by Nigel Cross.
- 3. Creative Confidence by Tom Kelley and David Kelley.

REFERENCE BOOKS

- 1. Product Design for Engineers by Devdas Shetty, Cengage Learning.
- 2. Product Design by Kevin Otto and Kristin Wood, Pearson Education.
- 3. Sustainable Design: A Critical Guide by David Bergman.
- 4. Entrepreneurship by Robert D. Hisrich, Michael Peters, and Dean Shepherd, Tata McGraw Hill.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur T. Y. B. Tech. Engineering Semester-I (OE-03) Interdisciplinary Mini Project

Teaching Scheme	Examination Scheme
Theory: - 1Hr/Week, 1 Credit	ICA- 25 Marks
Practical: - 2Hrs/Week, 1 Credit	OE- 25 Marks

Course Prerequisite:

An interdisciplinary mini-project is designed for interdisciplinary learning to help students to develop practical ability and knowledge about practical tools/techniques that integrate concepts from other fields with potential project ideas to solve real life problems related to the industry, academic institutions and society.

Course Objectives

During this course, students are expected to:

- 1. To foster interdisciplinary collaboration among engineering students for familiarize students with cutting-edge technologies and trends in engineering.
- 2. To encourage the application of diverse engineering principles to enhance technical, analytical, and problem-solving skills through project-based learning to find innovative solutions.
- 3. To equip students with the knowledge of ethical considerations and sustainable development principles in engineering.
- 4. To develop project management, documentation, and presentation skills.

Course Outcomes: At the end of this course, student will be able to:

- 1. Apply interdisciplinary knowledge, teamwork and collaboration skills to design and implement innovative solutions to engineering problems.
- 2. Develop integration to emerging technologies in engineering and their applications into project design and development.
- 3. Apply ethical principles and sustainable development goals in engineering design.
- 4. Produce and present a comprehensive project report with proper documentation.

SECTION I

Unit 1: Introduction to Interdisciplinary Projects (4 Hours)

Definition and significance of interdisciplinary projects, Importance of interdisciplinary projects in engineering, Overview of project management: Planning, execution, and evaluation, Team formation and role allocation.

Unit 2: Problem Identification and Scope Definition (3 Hrs)

Techniques for identifying real-world problems, Defining project scope, objectives, and deliverables, Feasibility analysis: Technical, economic, and environmental considerations.

SECTION II

Unit 3: Design and Development Process (3 Hrs)

System design and architecture, Integration of core engineering disciplines (electrical, mechanical, electronics, computer science), Prototyping and testing methodologies.

Unit 4: Ethics and Sustainability in Engineering Projects (3 Hrs)

Ethical considerations in engineering design and implementation, Sustainable development goals and their relevance to engineering projects.

Unit 5: Project Documentation and Presentation (2 Hrs)

Writing technical reports: Structure and guidelines, Effective presentation techniques, Intellectual property rights and patent filing basics.

TERM WORK

Students will work in teams of maximum 3-4 members to complete a mini-project. The project should integrate at least two engineering disciplines. Assessment can be done on Project Proposal, Mid-Term Review, Presentation and Viva.

TEXT BOOK

1. Project Management for Engineering and Technology by David L. Goetsch, Pearson Education.

- 2. Interdisciplinary Engineering Design Education by Michael A. Stylios, Springer.
- Project Management: A Systems Approach to Planning, Scheduling, and Controlling by Harold Kerzner.
- 4. Interdisciplinary Research: Process and Theory by Allen F. Repko and Rick Szostak.

REFERENCE BOOKS

- 1. Product Design for Engineers by Devdas Shetty, Cengage Learning.
- 2. Engineering Project Management by Nigel J. Smith.
- 3. Emerging Technologies: From Hype to Impact by Bruno Salgues.
- 4. Sustainable Engineering: Principles and Practice by David T. Allen and David R. Shonnard.