Punyashlok Ahilyadevi Holkar Solapur University, Solapur

NAAC Accredited- 2022 'B*** Grade (CGPA 2.96)

Name of the Faculty: Commerce & Management

NEP 2020

Syllabus: Business Statistics Name of the Course: B.Com. II (Sem.–III & IV)

(Syllabus to be implemented June 2025-26)

Level 5 Semester- III Course Code: DSC- V Business Statistics Paper-III (Introduced from June 2025)

Preamble:

To familiarize the students with basic concepts of the Business Statistics and a hands-on practice of the various statistical tools and techniques are the main intensions of this paper. It will enable them to improve their logical reasoning ability and interpretation of various business results. The course aims at acquainting the students with the emerging issues in business, trade and commerce regarding analyzing business facts.

Program Outcomes:

- 1. To expose students to basic Statistical concepts.
- 2. To inculcate an analytical approach to the subject matter.
- 3. To stimulate the student's interest by showing the relevance and use of statistical knowledge.
- 4. To study and critically analyze statistical reasoning to problems of business.
- 5. To boost quantitative thinking and develop numerical abilities.
- 6. To enlighten the student abilities to apply the statistical concepts to real life problems in Commerce, Economics, Management and Social sciences.
- 7. Toimprovetheirlogicalreasoningabilityandinterpretationofvariousstatistical results.
- 8. To prepare a base of various courses like C.A., C.W.A. M.B.A., etc.

Course Outcomes

After completion of this course the students enable

- 1. To understand the concept of central tendency and its importance in summarizing datasets.
- 2. To distinguish between absolute and relative measures of dispersion.
- 3. To Compute and interpret the correlation coefficients.
- 4. ToUnderstandtheconceptofregressionanalysisasastatisticaltechnique used for Prediction.

Unit-IV	Analysis of Bivariate data: Regression	15 hours
		4.5
	without ties) for ungrouped data.	
	+1). Numerical Problems on computation of r and R (with and	
	coefficient (R), Interpretation of r (with special cases $r = -1,0$,	
	correlation coefficient (r), Spearman's Rank correlation	
	Methods of studying correlation: Scatted Plot, Karl Pearson's	
	Concept of correlation, Types of correlation.	nouis
UIIIt-III	Analysis of Bivariate data: Correlation	15 hours
Unit-III	Problems. Analysis of Pivorista datas Correlation	1 =
	Coefficient of variation, Merits and demerits of S.D., Numerical	
	Variance and Standard deviations(S.D.), Coefficient of S.D.,	
	Demerits of Q.D. Numerical Problems.	
	Numerical Problems. Quartile Deviation (Q.D.), Coefficient of Q.D. Merits and	
	Range, Coefficient of range, Merits and Demerits of range,	
	Concept of dispersion, Requirements of a good measure of dispersion, Absolute and Relative measures of dispersion.	
II	-	hours
Unit-	Measures of Dispersion	15
	Empirical relation.	
	Mode: Definition, Merits and demerits, Empirical relation among mean, median and mode. Numerical Problem on	
	Percentiles.	
	median. Numerical Problems. Definitions of Deciles and	
	Median and Quartiles: Definitions, Merits and demerits of	
	Numerical Problems.	
	(Without proof), Combined A.M. Merits and Demerits,	
	Arithmetic mean (A.M.): Definition, Properties of A.M.	
	Concept of central tendency, Requirements of a good average.	
Unit-I	Measures of Central Tendency	15 hours
		Hours
Unit No.	Course Content	No. of
		hours
Credits	100 marks (Semester end examination 60and internal evaluation 40)	Total 60

Concept of Regression, Lines of Regression. Regression equations, regression coefficients, relation between correlation coefficients and regression coefficients, Properties of Regression Coefficients (Without proof), Numerical problems on ungrouped data.

- 1. Gupta S.C. & Kapoor V.K.: Fundamental of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- 2. GuptaS.C. & Kapoor V.K.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
 - 3. Gupta A.C.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
 - 4. Kenny & Keeping: Mathematics of Statistics Volume I and II, Van Nostran.
 - 5. Gupta C.B. and Gupta Vijay (2004) An introduction to Statistical Methods, Vikas Publishing House Pvt. Limited.
 - 6. Agrawal B.M.(2014) Essential of Business Statistics. Ane Books Pvt. Ltd.
 - 7. B. L. Agrawal (2006) Basic Statistics. New Age International

Level 5 Semester- III Course Code: DSC- VI

Business Statistics Paper-IV (Introduced from June 2025)

Course Outcomes:

After completion of this course the students enable to

- 1. Distinguish between random and non-random experiments,
- 2. Use the basic probability rules, including additive and multiplicative laws,
- 3. Understand concept of conditional probability and independence of events,
- 4. Understand the applications of Bayes' theorem.

4	100 marks	Total 60
Credits	(Semester end examination 60and internal evaluation 40)	hours
Unit No.	Course Content	No. of Hours
No. I	Random Experiment and Sample Space	
	Sample space: Concepts of experiments and random experiments. Definitions of Sample space, discrete sample space (finite and countable infinite) and continuous sample space, Examples of Random experiments in real life. Events: Elementary event, Compound event. Algebra of events: Union, Intersection, Complementation of events. Definitions of mutually exclusive events, Exhaustive events, and equally likely events; impossible (null) event, certain (sure) event. Power set $P(\Omega)$ (sample space consisting at most 3 sample points). Symbolic representation of given events and description of events in symbolic form, Illustrative examples.	15
II	Probability Classical (a priori) definition of probability of an event; equiprobable sample space; simple numerical problems on computation of probability of the events based on permutations and combinations; Mathematical definition of probability; Definition of probability in terms of odds ratio with illustrative examples. Axiomatic definition of probability and proof of the results $:i)P(\Phi)=0$, $:ii)P(A^c)=1-P(A)$, $:iii)P(A\cup B)P(A)+P(B)-P(A\cap B)$ (with proof) and its generalization (Statement only),	

III	Conditional Probability	
	two events; Numerical problems on conditional probability	
	Proof of the results:	
	i) $P(A^{c}/B)=1-P(A^{c}/B)$,	
	ii) $P[(A \cup B)/C)] = P(A/C) + P(B/C) - P[(A \cap B)/C)];$	1.5
	iii) If $A \subset B$ then $P(A/B) = P(A)/P(B)$	15
	iv) $IfB \subset AthenP(A/B)=1$	
	3.3 Baye's theorem: Partition of sample space, Idea of posterior	
	Probability, Statement and Proof of Baye's theorem,	
	illustrative examples on Baye's theorem.	
IV	Independence of Events and Baye's Theorem Independence of events: Concept of independence of two events. Proof of the result that if A and B are independent then, i) A and Bc are independent, ii) Ac and B are independent, and iii) Ac and B care independent; Concept of Pair wise independence of events (only for three events);	15
	Concept of Mutual independence of events (only for three events); Numerical problems;	

Books Recommended:

- Agarwal B. L. (2003). Programmed Statistics, 2nd ed., New Age International (P), New Delhi
- 2. Gupta,S.C.andKapoor,V.K.(1983).FundamentalsofMathematicalStatistics, 8th Ed. Sultan Chand and Sons, New Delhi
- 3. Mood, A. M. and Graybill, F.A. and Boes D.C.(2017) Introduction to the Theory of Statistics, 3rd Ed., McGraw Hill Education (Indian Edition)
- 4. BL S Prakash Rao (2010)First Course in Probability and Statistics, Cambridge University Press
- 5. Ross S.(2022)AFirstCourseinProbability,10thEd.,PearsonEducation,
- 6. Rohatgi V. K. and Saleh A. K. Md. E. (2002): An Introduction to probability and statistics. John Wiley & Sons (Asia).
- 7. Bhat B. R. (2023) Modern Probability Theory: An Introductory Textbook 5th Ed. New Age International Publishers.

Level 5.0 Semester-III Course Code: DSM - 2 (Minor) Fundamental of Statistics –I (Introduced from June 2025)

Course Outcomes:

Students will be able to:

- 1. To understand the need and mechanism of sampling.
- 2. To understand different types of sampling and their uses.
- 3. To identify different components of time series as well as and to measure trend component.

4. To compute various types of index numbers.

4 Credits	100 marks	Total 60
	(Semester end examination 60 and internal evaluation 40)	hours
Unit No.	Course Content	No. of
		Hours
Unit-I	Sampling-I	15 hours
	Introduction, Concept of a Population and sample from	
	population. Difference between Population and Sample Inquiry.	
	Advantage of Sample Inquiry. Concept of Sampling, Purpose	
	of Sampling, Definitions of Population, sample, sampling and	
	census. Principles step in sample survey, Advantages of	
	Sampling over census method.	
	Sampling-II	15hours
	Methods of Sampling: Simple random sampling (With and	
	Without replacement), Stratified random sampling, its merits	
	And demerits. Illustrative Examples.	
Unit-III	Business Forecasting and Time series	15hours
	Introduction, steps in forecasting, Requirement of good	
	forecasting system, Methods of Forecasting. Concept of Time	
	series, Definitions and uses of time series, Components of time	
	series: Secular Trend, Seasonal variations, Cyclical variations	
	and Irregular variations. Methods of measuring trend: Freehand	
	or Graphic method, Method of Semi-Averages, Methods of	
	Moving Averages. Merits and Limitations of all these methods.	
	Illustrative Examples.	
Unit-IV	Index Number	15hours
	Definition, Characteristics, Limitation and use of index	
	numbers. Problem in the Construction of Index number, Price	

relative, Quantity relative and Value relative, Applications of Index Numbers in Share Market. Price, Quantity and Value Index number.

Methods of Construction Index Numbers: Un weighted Index

Number: Simple Aggregative method, Simple average of

Relatives method. Merits and Limitations of this method. Weighted Index Number: Weighted Aggregate method,

Weighted average of relative method. Illustrative Examples.

Note: Use of non-programmable calculator is allowed.

- 1. Gupta S.C. & Kapoor V.K.: Fundamental of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- 2. Gupta S. C. & Kapoor V. K.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 3. Gupta A. C.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 4. Kenny & Keeping: Mathematics of Statistics Volume I and II, VanNostran.
- 5. Ken Blank: Business Statistics, Willey India (P.) Ltd., New Delhi.
- 6. Goon Gupta & Dasgupta: Fundamental of Statistics Volume I and II, World Press, Calcutta.
- 7. Spiegel M. R.: Theory and Problems of Statistics, McGraw Hill Book Co., London.
- 8. Shenoy G.V., Srivastava U. K. & Sharma S. C.: Business Statistics, Wiley Eastern.
- 9. DasG.& Patnaik: Fundamentals of Mathematical Analysis, Tata McGraw Hill, New Delhi.
- 10.D. N. Elance (1956): Fundamentals of Statistics Kitab Mahal, Allahabad.
- 11.D. C. Sancheti and V. K. Kapoor: Statistics (Theory and Application), Sultan Chand & Sons Publication, New Delhi.
- 12. MeyerP.L.(1970):Introductory Probability and statistical application, Addison Wesley.
- 13. DeGrootM.H.(1975): Probability and Statistics, Addison Wesley. Mood A.M. Graybill F. A and Bose D. C. (1974): Introduction to the theory of Statistics, McGraw Hill.
- 14. Rohatgi V. K. (1986): An introduction to probability theory and Mathematical statistics, Wiley Eastern.

Level 5.0 Semester- III

Course Code: Open Elective 5

Applied Statistics -I (Introduced from June 2025)

Course Outcomes:

Students will be able to:

- 1. To identify different components of time series as well as and to measure trend component.
- 2. To compute various types of index numbers.

2 Credits	50 marks	Total 30
	(Semester end examination 30 and internal evaluation 20)	hours
Unit No.	Course Content	No. of
		Hours
Unit-I	Time series	15Hours
	Definitions and uses of time series, Components of time	
	series: Secular Trend, Seasonal variations, Cyclical	
	variations and Irregular variations. Methods of measuring	
	trend: Free hand or Graphic method, Method of Semi-	
	Averages, Methods of Moving Averages. Merits and	
	Limitations of all these methods. Illustrative Examples.	
Unit-II	Index Number	15Hours
	Definition, Characteristics, Limitation and use of index	
	numbers. Problem in the Construction of Index number,	
	Price relative, Quantity relative and Value relative,	
	Applications of Index Numbers in Share Market. Price,	
	Quantity and Value Index number.	
	Methods of Construction Index Numbers: Unweighted	
	Index Number: Simple Aggregative method, Simple	
	average of Relatives method. Merits and Limitations of this	
	method. Weighted Index Number: Weighted Aggregate	
	Method, Weighted average of relative method. Illustrative	
	Examples.	

Note: Use of non-programmable calculator is allowed. Reference Books Recommended:

- 1. Gupta S.C. & Kapoor V.K.: Fundamental of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- 2. Gupta S. C. & Kapoor V. K.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 3. Gupta A. C.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 4. Kenny & Keeping: Mathematics of Statistics Volume I and II, VanNostran.
- 5. Ken Blank: Business Statistics, Willey India (P.) Ltd., New Delhi.
- 6. Goon Gupta & Dasgupta: Fundamental of Statistics Volume I and II, World Press, Calcutta.
- 7. Spiegel M. R.: Theory and Problems of Statistics, McGraw Hill Book Co., London.

- 8. Shenoy G.V., Srivastava U. K. & Sharma S. C.: Business Statistics, Wiley Eastern.
- 9. DasG.&Patnaik:FundamentalsofMathematicalAnalysis,TataMcGrawHill, New Delhi.
- 10.D. N. Elance (1956): Fundamentals of Statistics Kitab Mahal, Allahabad.
- 11.D. C. Sancheti and V. K. Kapoor: Statistics (Theory and Application), Sultan Chand & Sons Publication, New Delhi.
- 12. MeyerP.L.(1970):Introductory Probability and statistical application, Addison Wesley.
- 13.De Groot M. H. (1975): Probability and Statistics, Addison Wesley. Mood A. M. Graybill F. A and Bose D. C. (1974): Introduction to the theory of Statistics, McGraw Hill.
- 14. Rohatgi V. K. (1986): An introduction to probability theory and Mathematical statistics, Wiley Eastern.

Level 5.0 Semester- III Course Code: Vocational Skill Course 3 Practical -III (Introduced from June 2025)

Course Outcomes:

After completion of this course the students will be able-

- 1. To Calculate mean, median and mode for given datasets.
- 2. To apply measures of dispersion in real life data analysis.

2 Credits	50 marks	Total 30
	(Semester end examination 30 and internal evaluation 20)	hours
Unit No.	Course Content	No. of
		Hours
	List of Practical	30hours
	1. Computation of Mean, Median and Mode-I (Discrete	
	Frequency Distributions)	
	2. Computation of Mean, Median and Mode -II	
	(Continuous Frequency Distributions)	
	3. Computation of Range and Quartile Deviation -I	
	(Discrete Frequency Distributions)	
	4. Computation of Range and Quartile Deviation -II	
	(Continuous Frequency Distributions)	
	5. Computation of Variance and Standard Deviation-I	
	(Discrete Frequency Distributions)	
	6. Computation of Karl Pearson's Correlation coefficient	
	and Rank Correlation coefficient.	
	7. Computation of regression.	

- 1. Agarwal B. L.: Programmed Statistics, New Age International Limited, New Delhi fourth Edition, 2021
- 2. Gupta S. C. & Kapoor V. K.: Fundamental of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- 3. Gupta S. C. & Kapoor V. K.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 4. Gupta A. C.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 5. Kenny & Keeping: Mathematics of Statistics Volume I and II, Van Nostran.
- 6. Ken Blank: Business Statistics, Willey India (P.)Ltd., New Delhi.

Level 5.0 Semester- IV Course Code: DSC VII

Business Statistics Paper -V

(Introduced from June 2025)

After completion of this course the students enable

- 1. To apply formulas for permutations and combinations.
- 2. To define probability and understand its fundamental principle.
- 3. To solve problems involving the binomial distribution.
- 4. To Compute and interpret control limits for different types of Control chart.

4	100 marks	Total 60
Credits	(Semester end examination 60 and internal evaluation 40)	hours
Unit	Course Content	No. of
No.		Hours
Unit-I	Permutation and Combination	15 hours
	Factorial, Results of Factorial, Introduction to Permutation	
	and Combination, Definition and application of the counting	
	principle. Multiplication rule for counting, Factorial notation	
	and basic operations with factorials. Formula for permutations	
	when some objects are repeated. Example problems:	
	arranging letters, numbers, or statistical data points. Basic	
	Combination Formula, sampling problems, constructing	
	sample sets, and understanding combinatorial probability.	
	Numerical Examples.	
Unit-	Introduction to Probability	15 hours
II		
	Definitions and examples -Experiment, Sample space,	
	Event, mutually exclusive events, equally likely events,	
	Exhaustive events, Sure event, Null event, Complementary	
	event and independent events.	
	Mathematical definition of probability, Definition of	
	Conditional Probability. Statements of Addition and	
	Multiplication laws of probability. Problems on	
	Probabilities, Conditional probabilities, Probabilities using	
	Addition and Multiplication laws of probabilities (without	
	use of permutations and combinations).	

Unit-	Probability Distributions: Binomial and Normal	15hours
III	distribution	
	Definitions- Random Variable, Discrete and Continuous	
	random variables, Probability mass function (p. m. f.),	
	Probability density function (p. d. f.).	
	Binomial Distribution: - Probability mass function (p. m.	
	f.) of binomial distribution with parameters n and p . Mean,	
	Variance and S.D. of binomial distribution (without proof).	
	Examples of real-life situations where binomial distribution	
	is applicable. Numerical problems on binomial distribution.	
	Normal Distribution: -Probability density function (p. d	
	.f.) of Normal distribution with parameters μ and σ^2 .	
	Notation: $X \sim N(\mu, \sigma^2)$.	
	Properties of Normal distribution. Numerical problems on	
	Normal distribution.	
Unit-	Statistical Quality Control (S.Q.C)	15hours
IV		
	Meaning of quality. Meaning of SPC. Chance and Assignable causes of variations. Meaning of Process control and Product control.	
	Procedure of construction of Shewhart's control chart. Types	
	of Shewhart's control charts- i) Control charts for Mean and	
	Range. ii) Control chart for number of defectives (d-chart or	
	np-chart) for a fixed sample size. iii) Control chart for	
	number of defects per unit(c-chart).	
	Numerical problems on the construction of the above charts.	

Note: Use of non-programmable calculator is allowed. Reference Books Recommended:

- 1. Gupta S.C.& Kapoor V.K.: Fundamental of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- 2. Gupta S.C. & Kapoor V.K.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 3. Gupta A.C.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 4. Kenny & Keeping: Mathematics of Statistics Volume I and II, VanNostran.
- 5. Gupta C.B. and Gupta Vijay (2004) An introduction to Statistical Methods, Vikas Publishing House Pvt. Limited.
- 6. Agrawal B.M. (2014) Essential of Business Statistics. Ane Books Pvt. Ltd.
- 7. B.L.Agrawal (2006) Baisc Statistics. New Age International.

Level 5.0 Semester- IV

Course Code: DSC VIII Business Statistics Paper –VI (Introduced from June 2025)

Course Outcomes:

The students will be enabled to

- 1. Understand discrete random variable, probability distribution.
- 2. Understand the concept of mathematical expectation, mean and variance, p. g. f.
- 3. Understand random variables assuming finite values and their probability distribution such as discrete uniform, Binomial and Hyper geometric distributions.
- 4. Understand random variables assuming countable infinite values and their probability distribution such as –Poisson, Geometric and Negative Binomial distributions.

4	100 marks	Total 60
Credits	(Semester end examination 60 and internal evaluation 40)	hours
Unit	Course Content	No. of
No.		Hours
Unit I	Univariate Probability Distributions (finite sample space): Definition of discrete random variable. Probability mass function (p. m. f.) and cumulative distribution function (c. d. f.) of a discrete random variable, Properties of c. d. f.(statements only).Probability distribution of function of random variable. Median and mode: Median and mode of a univariate discrete probability distribution. Examples.	15

Unit II	Mathematical expectation (University wanders	
Umt II	Mathematical expectation (Univariate random	
	variable): Definition of expectation of a random variable.	
	Expectation of a function of a random variable, Results on	
	expectation of a functions of a random variable	1.5
	:i) $E(c) = c$, where c is a constant, ii) $E(a X + b) = a$	15
	E(X)+b, where a and b are constants, Mean and	
	variance: Definitions of mean and variance of univariate	
	distribution, V(a X+ b)	
	$= a^2 V (X)$, Raw and central moments: Definition of raw	
	and central moments. Probability generating function (p. g.	
	f.): Definition of probability generating function (p. g. f.) of	
	a random variable.	
Unit III	Discrete probability distributions defined on finite	
	support: Discrete uniform distribution: p.m.f., c.d.f., mean	
	and variance. Hyper geometric distribution: p.m.f., mean	
	and variance. Bernoulli distribution: p.m.f., p.g.f., mean	
	and variance. Binomial distribution: p.m.f., p.g.f., mean and	15
	variance. Additive property of Binomial distribution	
	(Statement Only). Binomial distribution as a limiting case	
	of Hyper geometric distribution (Statement Only);	
	Illustrative Examples for the above distributions.	
Unit IV	Discrete probability distributions defined on countable	
	infinite support:	
	Poisson distribution: p.m.f., p.g.f., mean and variance.	
	Additive property of Poisson distribution (Statement Only).	15
	Poissondistribution as a limiting case of Binomial	13
	distribution (Statement Only); Geometric distribution:	
	p.m.f., c.d.f., p.g.f., mean and variance. Negative Binomial	
	distribution: p.m.f., p.g.f., mean and variance.	
	Illustrative examples for the above distributions.	

Books Recommended:

- 1. Gupta S.C.& Kapoor V.K.: Fundamentals of Mathematical Statistics. Sultan Chand & sons, New Delhi.
- 2. Goon, A.M., Gupta M.K. and Dasgupta B: Fundamentals of Statistics Vol. I and Vol. II World Press, Calcutta.
- 3. Hogg R.V. and Criag A.T.: Introduction to Mathematical Statistics (Third edition), Macmillan Publishing, New York.

- 4. Mood A.M., Gray bill F.A.: Introduction to theory of Statistics. Boes D. C. Tata, Mc Graw Hill, New Delhi. (Third Edition)
- 5. Parimal Mukhopadhyaya: An Introduction to the Theory of Probability. World Scientific Publishing.
- 6. Walpole R.E. & Mayer R.H.: Probability & Statistics, Mac Millan Publishing Co.Inc, New York.
- 7. Chougule, P.S.et.al.: Textbook on Business Statistics Paper II for B.Com.II (Sem IV), Nirali Prakashan (2023).
- 8. Patil, P.Y.and Patil S.B.:Textbook on DSC–IV:DISCRETE PROBABILITY DISTRIBUTIONS for B Sc I (Sem II), Shivaji University Press Kolhapur.
- 9. Patil, P.Y.: Statistics Practical Work book with Solutions for BSc I (Statistics), Rupi Publications Pvt. Ltd.

Level 5.0 Semester- IV Course Code: DSM3 (Minor) Fundamental of Statistics-II (Introduced from June 2025)

Course Outcomes:

After completion of this course the students enable

- 1. To understand the concept of central tendency and its importance in summarizing datasets.
- 2. To distinguish between absolute and relative measures of dispersion.
- 3. To Compute and interpret the correlation coefficients.
- 4. To understand the concept of regression analysis as a statistical technique used for Prediction.

4	100 marks	Total
Credits	(Semester end examination 60 and internal evaluation 40)	60
	(Semester end endimination of data internal evaluation to)	hours
Unit	Course Content	No.
No.		of
		Hours
Unit-I	Measures of Central Tendency	15
		hours
	Concept of central tendency, Requirements of a good average.	
	Arithmetic mean (A.M.): Definition, Properties of A.M.	
	(Without proof), Combined A.M. Merits and Demerits,	
	Numerical Problems.	
	Median and Quartiles: Definitions, Merits and demerits of	
	median. Numerical Problems. Definitions of Deciles and	
	Percentiles.	
	Mode: Definition, Merits and demerits, Empirical relation	
	among mean, median and mode. Numerical Problem on	
	Empirical relation.	
Unit-	Measures of Dispersion	15
II	_	hours

	Concept of dispersion, Requirements of a good measure of dispersion, Absolute and Relative measures of dispersion. Range, Coefficient of range, Merits and Demerits of range, Numerical Problems. Quartile Deviation (Q.D.), Coefficient of Q.D., Merits and Demerits of Q.D. Numerical Problems. Variance and Standard deviations(S.D.), Coefficient of S.D., Coefficient of variation, Merits and demerits of S.D., Numerical	
	Problems.	
Unit-III	Analysis of Bivariate data: Correlation	15 hours
	Concept of correlation, Types of correlation. Methods of studying correlation: Scatted Plot, Karl Pearson's correlation coefficient (r), Spearman's Rank correlation coefficient (R), Interpretation of r (with special cases r = -1,0, +1). Numerical Problems on computation of r and R (with and without ties) for ungrouped data.	
Unit-IV	Analysis of Bivariate data: Regression	15 hours
	Concept of Regression, Lines of Regression. Regression equations, regression coefficients, relation between correlation coefficients and regression coefficients, Properties of Regression Coefficients (Without proof), Numerical problems on ungrouped data.	

- 1. Gupta S. C. & Kapoor V. K.: Fundamental of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
 - 2. Gupta S. C. & Kapoor V. K.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
 - 3. Gupta A. C.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
 - 4. Kenny & Keeping: Mathematics of Statistics Volume I and II, Van Nostran.
 - 5. Gupta C.B. and Gupta Vijay(2004) An introduction to Statistical

Methods, Vikas Publishing House Pvt. Limited.

- 6. Agrawal B. M. (2014) Essential of Business Statistics. Ane Books Pvt. Ltd.
- 7. B. L. Agrawal (2006) Basic Statistics. New Age International

Level 5.0 Semester-IV Course Code: Open Elective 6 Applied Statistics -II

(Introduced from June 2025)

Course Outcomes:

After completion of this course the students will be able-

- 1. To compute correlation between two variables in real life situations.
- 2. To construct various control charts.

	7 0 1	
2 Credits	50 marks	Total 30
	(Semester end examination 30 and internal evaluation 20)	hours
Unit No.	Course Content	No. of
		Hours
Unit-I	Correlation and Regression	15 Hours
	Concept of correlation, Types of correlation.	
	Methods of studying correlation: Scatted Plot, Karl	
	Pearson's correlation coefficient (r), Spearman's Rank	
	correlation coefficient (R), Interpretation of r (with special	
	cases $r = -1, 0, +1$). Numerical Problems on computation	
	of r and R (with and without ties) for ungrouped data.	
	Concept of Regression, Lines of Regression.	
	Regression equations, regression coefficients, relation	
	between correlation coefficients and regression	
	coefficients, Properties of Regression Coefficients	
	(Without proof), Numerical problems on ungrouped data.	
Unit-II	Statistical Quality Control (S.Q.C)	15hours
	Meaning of quality. Meaning of SPC. Chance and	
	Assignable causes of variations. Meaning of Process	
	• •	
	Mean and Range. ii) Control chart for number of	
	defectives (d- chart or np - chart) for a fixed sample size.	
	iii) Control chart for number of defects per unit (c-chart).	
	Numerical problems on the construction of the above	
1		
Unit-II	between correlation coefficients and regression coefficients, Properties of Regression Coefficients (Without proof), Numerical problems on ungrouped data. Statistical Quality Control (S.Q.C) Meaning of quality. Meaning of SPC. Chance and Assignable causes of variations. Meaning of Process control and Product control. Procedure of construction of Shewhart's control chart. Types of Shewhart's control charts- i) Control charts for Mean and Range. ii) Control chart for number of defectives (d- chart or np - chart) for a fixed sample size. iii) Control chart for number of defects per unit (c-chart).	15hours

Note: Use of non-programmable calculator is allowed.

- 1. Gupta S.C. & Kapoor V.K.: Fundamental of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- 2. Gupta S. C. & Kapoor V. K.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 3. Gupta A. C.: Fundamental of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 4. Kenny & Keeping: Mathematics of Statistics Volume I and II, VanNostran.
- 5. Ken Blank: Business Statistics, Willey India (P.) Ltd., New Delhi.
- 6. Goon Gupta & Dasgupta: Fundamental of Statistics Volume I and II, World Press, Calcutta.
- 7. Spiegel M. R.: Theory and Problems of Statistics, McGraw Hill Book Co., London.
- 8. Shenoy G.V., Srivastava U. K. & Sharma S. C.: Business Statistics, Wiley Eastern.
- 9. DasG.&Patnaik:FundamentalsofMathematicalAnalysis,TataMcGrawHill.New Delhi.
- 10.D. N. Elance (1956): Fundamentals of Statistics Kitab Mahal, Allahabad.
- 11.D. C. Sancheti and V. K. Kapoor: Statistics (Theory and Application), Sultan Chand & Sons Publication, New Delhi.
- 12. MeyerP.L.(1970):IntroductoryProbabilityandstatisticalapplication, Addison Wesley.
- 13.DeGrootM.H.(1975):ProbabilityandStatistics,AddisonWesley.Moo dA.M. Graybill F. A and Bose D. C. (1974): Introduction to the theory of Statistics, McGraw Hill.
- 14. Rohatgi V. K. (1986): An introduction to probability theory and Mathematical statistics, Wiley Eastern.

Level 5.0 Semester-IV Course Code: Skill Enhancement Course 3 Practical Using MS-Excel (Introduced from June 2025)

Course Outcomes:

After completion of this course the students will be able-

- 1. To Calculate mean, median and mode for given data sets using MS-Excel.
- 2. To apply measures of dispersion in real life data analysis using MS- Excel.

2 Credits	50 marks	Total 30
	(Semester end examination 30 and internal evaluation 20)	hours
Unit No.	Course Content	No. of
		Hours
	List of Practical	30 hours
	Note:-Complete the entire following Practical's by	
	using MS-Excel.	
	1. Computation of Mean, Median and Mode-I(Discrete	
	Frequency Distributions)	
	2. Computation of Mean, Median and Mode -II	
	(Continuous Frequency Distributions)	
	3. Computation of Range and Quartile Deviation -I	
	(Discrete Frequency Distributions)	
	4. Computation of Range and Quartile Deviation -II	
	(Continuous Frequency Distributions)	
	5. Computation of Variance and Standard Deviation-I	
	(Discrete Frequency Distributions)	
	6. Computation of Karl Pearson's Correlation coefficient	
	and Rank Correlation coefficient.	
	7. Computation of regression.	
	-	

- 1. Agarwal B.L.: Programmed Statistics, New Age International Limited, New Delhi fourth Edition, 2021
- 2. Kieran Healy, Data Visualization A Practical Introduction, Princeton University Press, 2018
- 3. Claus O.Wilke, Fundamentals of DataVisualization,O'ReillyMedia,1st edition, 2019

- 4. Dr. B. G. Kore, MS-Excel for data Analysis, Nirali Prakashan5. David M Lovino, Statistics for Managers using Micro soft Excel, Pearson