Fundamentals of Digital Circuits - Logic Gates

Dr. S. D. Raut Dept. of Computer Science School of Computational Sciences P. A. Holkar Solapur University, Solapur

Mail id : sdraut@sus.ac.in

What are logic gates?

- In the binary lesson, we discussed the switches inside a computer
- Logic gates are the switches that turn ON or OFF depending on what the user is doing!
- They are the building blocks for how computers work.

Logic Circuits

- A collection of individual logic gates connect with each other and produce a logic design known as a Logic Circuit
- The following are the types of logic circuits:
 - Decision making
 - Memory
 - A gate has two or more binary inputs and single output.

3

Basic Logic Gates

- The following are the three basic gates:
 - NOT
 - AND
 - OR

 Each logic gate performs a different logic function.
 You can derive logical function or any Boolean or logic expression by combining these three gates.

NOT Gate

- The simplest form of a digital logic circuit is the inverter or the NOT gate
- It consists of one input and one output and the input can only be binary numbers namely; 0 and 1

5

NOT

- NOT is the most simple logic gate.
- All it does is take in an input that is either ON or OFF and spits out the opposite.
- So for a 1 it will give a 0, and for a 0 it will give a 1.
- Another name for a NOT gate is inverter, because it inverts (makes opposite) the input

AND

- Unlike NOT, AND needs two inputs
- It only turns on when both inputs are ON
- If only one input is on, it spits out OFF
- · If both inputs are off, it spits out OFF

AND Gate

- The AND gate is a logic circuit that has two or more inputs and a single output
- The operation of the gate is such that the output of the gate is a binary 1 if and only if all inputs are binary 1
- Similarly, if any one or more inputs are binary 0, the output will be binary 0.

9

AND Truth Table

- A convenient way to visualize the outputs for the logic gates is through a truth table
- The truth table depicts the gate's response to each possible set of inputs

	0	1
0	0	0
1	0	1

Input 1

Input 2

Output

- - -

OR

- OR also needs two inputs
- · OR needs one input to be ON for it to spit out ON
- It is also ON when both inputs are ON
- It is OFF when both inputs are OFF

OR Gate

- The OR gate is another basic logic gate
- Like the AND gate, it can have two or more inputs and a single output
- The operation of OR gate is such that the output is a binary 1 if any one or all inputs are binary 1 and the output is binary 0 only when all the inputs are binary 0

A			
B Y=A+B	_		
	Input		Output
	Α	В	Y=A+B
	0	0	0
	0	1	1
	1	0	1
	1	1	1 14

OR

- OR also needs two inputs
- OR needs one input to be ON for it to spit out ON
- It is also ON when both inputs are ON
- It is OFF when both inputs are OFF

NAND Gate

- The term NAND is a contraction of the expression NOT-AND gate
- A NAND gate, is an AND gate followed by an inverter
- The algebraic output expression of the NAND gate is
 Y = A.B

<u>А</u> В		A.B	>O <u>Y=Ā.B</u>	Input	t	Output
) (i)		A	В	Y=(~A.B)
^				0	0	1
В		$) O \underline{Y = \overline{A.B}}$		0	1	1
•			O 1 1	1	0	1
Inpu	t	Output	Output	1	1	0
Α	B	Y=A. B	Y= (~)	()		
0	0	0	1			
0	1	0	1			
1	0	0	1			
1	1	1	0			

NOR Gate

- The term NOR is a contradiction of the expression NOT-OR
- A NOR gate, is an OR gate followed by an inverter
- The algebraic output expression of the NOR gate is Y
 = A + B

A $A+B$ $Y=\overline{A+B}$					Innut		Output
В)				B	$Y = \sim (\Delta + R)$	
L					0	0	1
A V		(i) 			0	1	0
В)	$)_{O} \underline{Y = A + B}$			1	0	0
	+	Output	Output		1	1	0
mpu	L	Output	Output				
Α	B	Y=A+B	Y= (~`	Y)			
0	0	0	1				
0	1	1	0				
_							
1	0	1	0				

XOR

- XOR is the short way to say "Exclusive OR"
- Like OR, XOR also only needs one input to be ON for it to spit out ON
- But unlike OR, when both inputs are ON, XOR spits out OFF
- It is also OFF when both inputs are OFF

EX-OR Gate

- The Ex-OR (Exclusive- OR) gate returns high output with one of two high inputs (but not with both high inputs or both low inputs)
- For example, if both the inputs are binary 0 or 1, it will return the output as 0. Similarly, if one input is binary 1 and another is binary 0, the output will be 1 (high)
- The operation for the Ex-OR gate is denoted by encircled plus symbol
- The Ex-OR operation is widely used in digital circuits.
- The algebraic output expression of the Ex-OR gate is
- $\mathbf{Y} = \mathbf{A} \oplus \mathbf{B}$

A				
B)—	—— A⊕B	$\overline{A}B + A\overline{B}$	

Inpu	t			Output		Output	
Α	~A	В	. ~ ₿	Y=~AB	+ A~B	Y	
0	1	0	1	0	0	0	
0	1	1	0	1	0	1	
1	0	0	1	0	1	1	
1	0	1	0	0	0	0	22

EX-OR and EX-NOR Gates

- EX-OR and EX-NOR are digital logic circuits that may use two or more inputs
- EX-NOR gate returns the output opposite to EX-OR gate
- EX-OR and EX-NOR gates are also denoted by XOR and XNOR respectively.

EX-NOR Gate

- The Ex-NOR (Exclusive- NOR) gate is a circuit that returns low output with one of two high inputs (but not with both high inputs)
- For example, if both the inputs are binary 0 or 1, it will return the output as 1. Similarly, if one input is binary 1 and another is binary 0, the output will be 0 (low)
- The symbol for the Ex-NOR gate is denoted by encircled plus symbol which inverts the binary values
- The algebraic output expression of the Ex-NOR gate is

Input		Output	Output	
Α	B	Y=A EXOR B	Y= (~Y)	
0	0	0	1	
0	1	1	0	
1	0	1	0	
1	1	0	1 25	

Applications of Logic Gates

- The following are some of the applications of Logic gates:
 - Build complex systems that can be used to different fields such as
 - Genetic engineering,
 - Nanotechnology,
 - Industrial Fermentation,
 - Metabolic engineering and
 - Medicine
 - Construct multiplexers, adders and multipliers.
 - Perform several parallel logical operations
 - Used for a simple house alarm or fire alarm or in the circuit of automated machine manufacturing industry Fundamentals of Digital Electronics - Logic

End of Slides