Seat	
No.	

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022

(STATISTICS)
Real Analysis
Day \& Date: Monday, 13-02-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative.

1) Subset of a countable set is always \qquad .
a) Countable
b) Uncountable
c) partially countable
d) none of these
2) The limit of sequence $S_{n}=\frac{1}{n}, n \in N$ is \qquad
a) 1
b) 0
c) 10
d) 2
3) The set of all integers is \qquad .
a) Countable
b) Uncountable
c) both (a) and (b)
d) none of these
4) The number $\sqrt{9}$ is \qquad number.
a) Irrational
b) Rational
c) Integer
d) none of these
5) If there exists one to one correspondence between given set and set of natural numbers, then the given set is \qquad
a) perfect set
b) Good set
c) countable set
d) Uncountable set
6) Every infinite bounded set has a \qquad -
a) interior point
b) limit point
c) initial point
d) None of these
7) Which of the following is not correct?
a) Every continuous function is differentiable.
b) Every differentiable function is continuous.
c) Every continuous function is right continuous.
d) Every continuous function is left continuous.
8) The $\alpha($.$) function in R-S integral is$ \qquad .
a) Always non negative
b) Always monotonic non-increasing
c) Always monotonic non-decreasing
d) Always constant
9) The set $s\left\{\left(1+\frac{(-1)^{n}}{n}\right), n \in N\right\}$ has \qquad limit points.
a) One
b) Two
c) Zero
d) Four
10) If set $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=$
a) Zero
b) 1
c) Infinity
d) -1
B) Fill in the blanks.
11) A set $\{1,3,7,20\}$ has total of \qquad limit points.
12) The maximum value of the function $f(x)=-x 2+2 \%+3$ is \qquad .
13) Greatest Lower Bound of a set is also called as \qquad .
14) If A and B are open sets, then $A \cap B$ is \qquad .
15) A superset of uncountable set \qquad .
16) A geometric series with common ratio r converges, if \qquad .
Q. 2 Answer the following 16
a) State:
i) Heine-Borel theorem
ii) Bolzano-Weistrauss theorem
b) Write a short note on mean value theorem.
c) State implicit function theorem. Also state its applications.
d) Define and illustrate:
i) Open set
ii) Closed set

Q. 3 Answer the following

a) Prove or disprove: Arbitrary intersection of closed sets is always closed.
b) Define a bounded sequence. Show that a convergent sequence is always bounded. Is every bounded sequence convergent? Justify.
Q. 4 Answer the following
a) Explain with illustration the concept of infimum and supremum of a set.
b) Define open set. Prove or disprove: Arbitrary union of open sets is open.
Q. 5 Answer the following
a) Discuss the convergence of following series:
i) $\quad \sum_{n=2}^{\infty} \frac{n+1}{n^{2}-1}$
ii) $\quad \sum_{n=2}^{\infty=2} \frac{1}{n^{2}-1}$
b) Define radius of convergence. Illustrate using any power series.
Q. 6 Answer the following 16
a) Discuss in detail Riemann integration.
b) Explain Lagrange's method for obtaining constrained maxima or minima.
Q. 7 Answer the following
a) Examine the convergence of p-series for various values of p.
b) State and prove rule of integration by parts.

SLR-GR-2

Seat

No.
Set \mathbf{P}

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022

(STATISTICS)

Linear Algebra \& Liner Models

Day \& Date: Tuesday, 14-02-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q.Nos. 1 and 2 are compulsory.
2) Attempt any Three questions from Q. 3 to Q. 7
3) Figures to the right indicate full marks.
Q. 1 A) Choose the correct Alternative.

1) If A and B are two matrices of order $n \times n$ with ranks r_{1} and r_{2}, then -
a) $\operatorname{Rank}(A B)=r_{1}+r_{2}$
b) $\operatorname{Rank}(A B)>r_{1}+r_{2}$
c) $\operatorname{Rank}(A B) \geq r_{1}+r_{2}-n$
d) $\operatorname{Rank}(A B) \leq r_{1}-r_{2}$
2) For non-homogenous system of equations $A x=b$ with k unknowns, unique solution exists if-
a) $\operatorname{Rank}[\mathrm{A}: \mathrm{b}]>\operatorname{rank}(\mathrm{A})$
b) $\quad \operatorname{Rank}[\mathrm{A}: \mathrm{b}]=\operatorname{rank}(\mathrm{A})=\mathrm{k}$
c) $\operatorname{Rank}[A: b]=\operatorname{rank}(A)<k$
d) All of the above
3) Matrix addition is
a) Commutative
b) Associative
c) Both(a) and (b)
d) Neither (a) nor (b)
4) If v_{1}, v_{2}, v_{3} are three vectors such that $4 v_{1}+2 v_{2}+v_{3}=0$, then
a) v_{1}, v_{2}, v_{3} are linearly dependent vectors
b) v_{1}, v_{2}, v_{3} are linearly independent vectors
c) Need to verify other linear combinations to check independence.
d) None of these
5) If G is a g-inverse of matrix A, then \qquad .
a) $\operatorname{rank}(\mathrm{A}) \geq \operatorname{rank}(\mathrm{G})$
b) $\quad \operatorname{rank}(\mathrm{A})=\operatorname{rank}(\mathrm{G})$
c) $\operatorname{rank}(\mathrm{GAG})<\operatorname{rank}(\mathrm{A})$
d) $\operatorname{rank}(\mathrm{A}) \leq \operatorname{rank}(\mathrm{G})$
6) Linear combinations of estimable functions are \qquad .
a) Always non-estimable
b) Always estimable
c) May or may not be estimable
d) None of these
7) For a matrix N with 5 rows and 3 columns, $\rho(N)$ is rank of N then
a) $\rho(\mathrm{N}) \leq 5$
b) $\quad \rho(\mathrm{N}) \geq 3$
c) $\rho(\mathrm{N}) \geq 5$
d) $\rho(N) \leq 3$
8) For a Gauss-Markov model $\mathrm{Y}=\mathrm{X} \beta+\varepsilon$,
a) $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0$, if $i \neq j$
b) $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)<0$, if $i \neq j$
c) $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)>0$, if $i \neq j$
d) None of these
9) The quadratic form $2 X_{1}^{2}+X_{2}^{2}$ is -
a) positive definite
b) negative definite
c) positive semi definite
d) negative semi definite
10) For which value of x will the matrix given below will become singular?
$\left[\begin{array}{ccc}8 & x & 0 \\ 4 & 0 & 2 \\ 12 & 6 & 0\end{array}\right]$
a) 4
b) 6
c) 8
d) 12
B) Fill in the blanks.
11) Multiplication of a matrix with a scalar constant is called as \qquad .
12) The rank of identity matrix of order 7 is \qquad _.
13) If transpose of the given matrix is equal to the matrix itself, then it is called \qquad .
14) The product of matrix A and its inverse A^{-1} is \qquad .
15) The dimension of the vector space R^{2} over the field R is \qquad .
16) If number of columns is less than number of rows, then the matrix is called as \qquad .
Q. 2 Answer the following.
a) Write a note on matrix multiplication. Also illustrate with one example.
b) Define-
i) Symmetric matrix
ii) Skew-symmetric matrix
c) Define:
i) Span of a set of vectors.
ii) Spanning set
d) Define subspace. State the conditions needed to verify whether a subset of a vector space is a subspace.

Q. 3 Answer the following.

a) Determine whether $S=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in R^{3} / y=0\right\}$ is a vector space under regular addition and scalar multiplication.
b) Prove: For any vector \underline{u} in vector space V, $0 . \underline{u}=\underline{0}$

Q. 4 Answer the following.

a) How the independence of vectors is examined? Also verify whether following set is a set of independent vectors.
$S=\left\{\binom{1}{2},\binom{5}{4}\right\}$
b) Define:
i) Symmetric matrix
ii) Skew-symmetric matrix

Prove or disprove: Every square matrix can be written as sum of symmetric and skew symmetric matrix.

Q. 5 Answer the following.

a) Define norm of a vector. Using Gram Schmidt orthogonalisation process, obtain orthonormal basis from the given set S.
$S=\left\{\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 5\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$
b) Describe row-reduced form of a matrix. Also give one example of such a matrix of order 5×5.

SLR-GR-2

Q. 6 Answer the following.

a) Define inverse of a matrix. Show that it is unique. 08
b) Show that rank of a matrix is unaltered by multiplication with a non-singular matrix
Q. 7 a) Show that the following system of equations is consistent. Also find solution for the same.
$x+y+z=6$
$x+2 y+3 z=14$
$x+4 y+7 z=30$
b) Define linear model. Discuss the estimation of parameters involved in the model.

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022

(STATISTICS)

Distribution Theory

Day \& Date: Wednesday, 15-02-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Question no. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7.
3) Figure to right indicate full marks.
Q. 1 A) Multiple choice questions.

1) Which of the following is not a scale family?
a) $U(0,1)$
b) $U(0, \theta)$
c) $\mathrm{N}\left(0, \sigma^{2}\right)$
d) $\operatorname{Exp}(\theta)$
2) A random variable X is said to be symmetric about point α if \qquad .
a) $P(X \geq \alpha+x)=P(X \geq \alpha-X)$
b) $P(X \geq \alpha+x)=P(X \leq \alpha-X)$
c) $P(X \leq \alpha+x)=P(X \leq \alpha-X)$
d) $P(X \leq \alpha+x)=P(X \geq \alpha-X)$
3) Let $F(x)$ denotes the distribution function of random variable X. Then which of the following is not true?
a) $0 \leq F(x) \leq \infty$
b) $F\left(x_{1}\right) \leq F\left(x_{2}\right)$ if $x_{1}<x_{2}$
c) $F(-\infty)=0$
d) $F(+\infty)=1$
4) Let X be distributed as $\operatorname{Exp}($ Mean $\theta)$. Then distribution of $Y=X \mid \theta$ is \qquad .
a) $\operatorname{Exp}($ Mean $\theta)$
b) $\operatorname{Exp}($ Mean 1)
c) $U(0,1)$
d) $U(0, \theta)$
5) Let X be a non-negative random variable with distribution function F. If $E(X)$ exists then $E(X)=$ \qquad .
a)
$\int_{0}^{\infty} F(x) d x$
b)
$\int_{0}^{\infty}[F(x)-1] d x$
c)

d)

$$
\int_{0}^{\infty}[1-F(x)] d x
$$

6) For $X>0$, which of the following is not true?
a) $E\left[X^{2}\right] \geq[E(X)]^{2}$
b) $\quad E[1 / X] \geq 1 / E(X)$
c) $E[\sqrt{X}] \geq \sqrt{E(X)}$
d) $E[\log X] \leq \log [E(X)]$
7) For which of the following distribution, $E(X)$ does not exist?
a) Cauchy
b) Uniform
c) Normal
d) Exponential
8) If $M_{X}(t)$ denotes MGF of random variable X. If $Z=a X$ then $M_{2}(t)$ is \qquad
a) $a M_{X}(t)$
b) $\quad a M_{X}(a t)$
c) $M_{X}(a t)$
d) $\quad a M_{X}(t / a)$
9) Let (X, Y) has bivariate normal $B V N(3,4,25,36,3 / 5)$ then the conditional mean of X given $Y=10$ is \qquad .
a) 5
b) 4
c) 3
d) None of these
10) Let $X_{1}, X_{2}, \ldots \ldots, X_{n}$ be a random sample from pdf $f_{x}(x)$ and $Y_{1} \leq Y_{2} \leq \cdots \leq Y_{n}$ be its order statistics. If pdf of Z is $n\left[F_{x}(z)\right]^{n-1} f_{x}(z)$ then Z is \qquad .
a) sample median
b) sample range
c) smallest observation
d) largest observation
B) Fill in the blanks.
11) The mean of first order statistic in $U(0,1)$ distribution is \qquad .
12) Let X and T be two iid random variables with pdf $f(x)=2 e^{-2 x}, x \geq 0$. The distribution of $Z=X-Y$ is \qquad .
13) Suppose $X_{1}, X_{2}, \ldots \ldots, X_{k}$ is a multinomial random variate then $\operatorname{Cov}\left(X_{i}, X_{j}\right), i=j=1,2, \ldots \ldots . k, i \neq j$ is \qquad .
14) If Z is standard normal variate then variance of Z^{2} is \qquad .
15) Let X be distributed as $B(n, p)$. The distribution of $Y=n-X$ is \qquad .
16) Suppose X is $U(0,1)$ random variable then $Y=-\log X$ has \qquad distribution.
Q. 2 Answer the following 16a) Define scale family. Illustrate it with one example.b) Let X has $N(0,1)$ distribution. Find the distribution of $Y=|X|$.c) Define power series distribution. Obtain its MGF.d) If X is symmetric about α then show that $E(X)=\alpha$.
Q. 3 Answer the following. 16
a) Define distribution function of a random variable X. State and prove its important properties.

b) Define truncated normal distribution truncated below a. Obtain its mean.
Q. 4 Answer the following. 16
a) State and prove Markov's inequality.
b) Let X is a non-negative continuous random with distribution function $F(x)$. If $E(X)$ exist then show that $E(X)=\int_{0}^{\infty}[1-F(u)] d u$
Q. 5 Answer the following.

a) Define moment generating function (MGF) of a random variable X. Explain
how it is used to obtain moments of a random variable X.

b) Let X has Poisson (λ) distribution. Obtain the MGF of X. Hence obtain its
mean and variance.16

Q. 6 Answer the following.

a) Define multinomial distribution. Obtain its moment generating function. Hence obtain the pmf of trinomial distribution.
b) Derive the $p d f$ of largest order statistic based on a random sample of size n from a continuous distribution with $p d f f(x)$ and $c d f F(x)$.
Q. 7 Answer the following.
a) Let (X, Y) has $B V N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Obtain the conditional distribution of X given $Y=y$.
b) If X and Y are jointly distributed with probability density function (p.d.f.). $f(x, y)=24 x y, x \geq 0, y \geq 0$ and $x+y \leq 1$
Find.

1) Marginal distributions of X and Y.
2) Conditional distribution of Y given $X=x$.
3) $E(Y / X=x)$

SLR-GR-4

Seat

No.
Set

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)
 Estimation Theory

Day \& Date: Thursday, 16-02-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Question no. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7.
3) Figure to right indicate full marks.
Q. 1 A) Multiple choice questions.

1) Which of the following statements is correct \qquad .
a) MLE always exists
b) MLE is always unique
c) MLE is always unbiased
d) None of the above is true
2) Let X_{1}, X_{2} be iid Poisson (θ) variables. Then $X_{1}+2 X_{2}$ is \qquad .
a) sufficient statistic for θ
b) not sufficient statistic for θ
c) Minimal sufficient statistic for θ
d) complete sufficient statistic for θ
3) If T_{n} is sufficient statistic for θ based on random sample of size n, then $\frac{\partial \operatorname{logL}}{\partial \theta}$ is a function of \qquad -.
a) θ only
b) T_{n} only
c) both T_{n} and θ
d) none of the above
4) The denominator of Cramer-Rao inequality gives \qquad .
a) lower bound
b) upper bound
c) amount of information
d) none of the above
5) Let T_{n} be an unbiased estimator of θ. Then \qquad .
a) T_{n}^{2} is unbiased estimator of θ^{2}
b) \sqrt{T}_{n} is unbiased estimator of $\sqrt{\theta}$
c) $e^{T_{n}}$ is unbiased estimator of e^{θ}
d) $3 \mathrm{~T}_{\mathrm{n}}+4$ is unbiased estimator of $3 \theta+4$
6) Conditional distribution of random variable θ given $X=x$ is called \qquad .
a) Prior distribution
b) Posterior distribution
c) Loss function
d) Bayes risk
7) If T_{1} is sufficient statistic for θ and T_{2} is an unbiased estimator of θ, then an improved estimator of θ in terms of its efficiency is \qquad -.
a) $E\left(T_{1} T_{2}\right)$
b) $E\left(T_{1}+T_{2}\right)$
c) $E\left(T_{1} / T_{2}\right)$
d) $E\left(T_{2} / T_{1}\right)$
8) Let $\mathrm{I}(\theta)$ be the Fisher information on θ, supplied by the sample. If T is an unbiased estimator of $\Psi(\theta)$, then the variance of T will be \qquad .
a) $\geq \frac{\left[\Psi^{\prime}(\theta)\right]^{2}}{\mathrm{I}(\theta)}$
b) $\leq \frac{\left[\Psi^{\prime}(\theta)\right]^{2}}{\mathrm{I}(\theta)}$
c) $\geq \frac{1}{\mathrm{I}(\theta)}$
d) $\leq \frac{1}{\mathrm{I}(\theta)}$
9) Which of the following is a non-informative prior?
a) $\pi(\theta)=1$
b) $\pi(\theta)=1 / \theta$
c) $\pi(\theta)=\sqrt{I /(\theta)}$
d) All the above
10) Let, X_{1}, X_{2} random sample of size 2 from $N\left(0, \sigma^{2}\right)$ then moment estimator of σ^{2} is \qquad _.
a) $\frac{X_{1}^{2}+X_{2}^{2}}{2}$
b) $\frac{X_{1}+X_{2}}{2}$
c) $X_{1}+X_{2}$
d) $\quad X_{1} X_{2}$
B) Fill in the blanks.
11) If $E_{\theta}(T) \neq \theta$ then T is \qquad estimator of θ.
12) A statistic whose distribution does not depend on parameter is called
\qquad statistic.
13) Bayes estimator of a parameter under squared error loss function is ___ of posterior distribution
14) Method of scoring is used in \qquad estimation.
15) If prior and posterior distributions belongs to the same family of distributions then such family is called \qquad -
16) Based on random sample of size n from $\overline{\mathrm{N}\left(0, \sigma^{2}\right)}, \sigma^{2}>0$, MLE of σ^{2} is \qquad .
Q. 2 Answer the following16
a) Define sufficient statistic and minimal sufficient statistic.
b) Define Fisher information in a single observation and in n iid observations.
c) Define MLE. State and prove the invariance property of MLE.
d) State and prove Basu's theorem. Illustrate its applicability with example.
Q. 3 Answer the following. 16
a) State and prove Neyman-Fisher factorization theorem.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $U(0, \theta), \theta>0$ distribution. Show that $X_{(n)}$ is sufficient statistic for θ, but $X_{(1)}$ is not sufficient statistic.
Q. 4 Answer the following. 16
a) State and prove Cramer-Rao inequality with necessary regularity conditions.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid Poisson (λ) random variables. Obtain C-R lower bound for unbiased estimator of λ.
Q. 5 Answer the following.
a) Define UMVUE. State and prove Lehmann-Scheffe theorem.
b) Obtain UMVUE of $p(1-p)$ based on a random sample of size n from $B(1, p)$ distribution.
Q. 6 Answer the following.
a) Define maximum likelihood estimator (MLE). Describe the method of maximum likelihood estimation for estimating an unknown parameter.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid $U(0, \theta), \theta>0$
Find:
17) Moment estimator θ
18) MLE of θ

Q. 7 Answer the following.

a) Define Bayes estimator. Describe the procedure of obtaining Bayes estimator.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be random sample from $B(1, \theta)$ distribution and prior density of θ is $B_{1}(\alpha, \beta)$. Assuming squared error loss function, find Bayes estimator of θ.

Seat	
No.	

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022

 (STATISTICS)

 (STATISTICS) Statistical Computing

Day \& Date: Friday, 17-02-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) Let $X \sim U(0,1)$ and $F_{X}($.$) be its cumulative distribution function. If$ $Y=F_{X}($.$) then Y$ follows \qquad .
a) $U(0,1)$
b) $\operatorname{Exp}(1)$
c) $N(0,1)$
d) Cauchy $(0,1)$
2) Which of the following method is used for generating random numbers from a statistical distribution?
a) Acceptance - Rejection method
b) Inverse transform method
c) Monte Carlo methods
d) All the above
3) In Simpson's $\frac{1^{\text {rd }}}{3}$ rule, the numbers of intervals are \qquad .
a) Odd
b) Even
c) Multiple of 3 only
d) At least 6
4) To obtain one observation from bi-variate Poisson distribution, we need to draw \qquad Poisson random numbers.
a) One
b) Two
c) Three
d) Four
5) Which of the following numerical methods are used to solve $f(x)=0$?
a) Bisection method
b) Trapezoidal rule
c) Secant method
d) Both a) and c)
6) In Bootstrap method, \qquad sampling method is used.
a) SRSWOR
b) SRSWR
c) Stratified sampling
d) Systematic sampling
7) Rate of convergence to correct root is very high for \qquad method.
a) Newton-Raphson
b) Bisection
c) Regula False
d) Euler's method
8) For $f(x)=-x^{2}$ with $x_{0}=3$ and $\alpha=0.5$, the maximum value of the given function using steepest ascent method is \qquad .
a) 1
b) 3
c) 0
d) -3
9) \qquad method fits a quadratic equation using three points for finding approximate root of given function
a) Bisection method
b) Secant method
c) Newton-Raphson method
d) Muller's method
10) If $U_{1}, U_{2} \sim U(0,1)$ then $\sqrt{-2 \log \left(U_{1}\right)} \cos \left(2 \pi U_{2}\right)$ follows \qquad -.
a) Gamma distribution
b) Standard Normal distribution
c) Beta distribution
d) Gamma distribution
B) Fill in the blanks.

06

1) If $U \sim U(0,1)$ then $X=-2 \log (1-U)$ follows \qquad .
2) If $Y \sim$ Gamma ($\mathrm{n}, 1$) then, $X=2 Y$ follows Chi-square with \qquad degrees of freedom.
3) In Bootstrap resampling technique from sample of size n, we get \ldots re-samples.
4) EM algorithm is used to find \qquad .
5) Congruential random number generator gives \qquad random numbers
6) Let $X \sim U(0,1)$ and $Y \sim U(0,1)$ then distribution of $Z=X+Y$ can be obtained using \qquad .
Q. 2 Answer the following
a) Describe linear congruential method with suitable example.
b) Find a positive root of $x e^{2}=2$ by the method of False position (correct up to 4 decimal places).
c) Describe Bootstrap method.
d) What is convolution of distribution? Obtain formula for convolution of continuous distribution.
Q. 3 Answer the following
a) What is acceptance rejection (A R) method of random number generation?
a) What is acceptance rejection (A R) method of random number generation? using A R method.
b) Obtain an algorithm for generating random numbers from χ_{n}^{2} distribution.

Q. 4 Answer the following
a) What is EM algorithm? Illustrate using an example.
b) Explain the Bisection method for finding solution to the equation $f(x)=0$
Q. 5 Answer the following
a) State and prove the result for generating random observations from Poisson distribution.
b) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size n from the displaced exponential with pdf $e^{-(x-\theta)} I_{[\theta, \infty)}(x)$ then show that, the jackknife estimator is unbiased estimator of θ.

Q. 6 Answer the following

a) Let $X \sim U(0,1)$ and $Y \sim U(0,1)$. Define $Z=X+Y$, obtain the distribution of Z.
b) Obtain an algorithm to generate n random numbers from Binomial (m, p) distribution.
Q. 7 Answer the following
a) Obtain an algorithm to estimate universal constant π using Monte Carlo method.
b) Explain Newton-Raphson method of finding solution of the equation $f(x)=0$. Write its geometrical meaning.

Seat	
No.	

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2022

(STATISTICS)
Probability Theory
Day \& Date: Monday, 20-02-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) If $\left\{A_{n}\right\}$ is decreasing sequence of sets, then it converges to \qquad .
a) $\lim \inf A_{n}$
b) $\lim \sup \left\{A_{n}\right\}$
c) both (a) and (b)
d) None of the above
2) If for two independent events A and $B, P(A)=0.2, P(B)=0.4$, then $P(A \cup B)=$ \qquad .
a) 0.68
b) 0.55
c) 0.52
d) 0.68
3) If $x \in A$ implies $x \in B$, then \qquad .
a) $A \subset B$
b) $B \subset A$
c) $A=B$
d) All of these
4) If events A and B are independent events, then which of the following is correct?
a) $P(A \cap B)=P(A)+P(B)$
b) $\quad P(A \cup B)=P(A)+P(B)-P(A) * P(B)$
c) $\quad P(A \cup B)=P(A) * P(B)$
d) $P(A \cap B)=P(A)-P(B)$
5) If X_{n} is a degenerate random variable for all n and X is identical random variable to X_{n}, then $\left\{X_{n}\right\}$ converges to X in \qquad .
a) $\mathrm{r}^{\text {th }}$ mean and in probability
b) probability and in distribution
c) $r^{\text {th }}$ mean, in probability and in distribution
d) $\mathrm{r}^{\text {th }}$ mean, almost sure, in probability and in distribution
6) A class F is said to be closed under finite intersection, if $A, B \in \mathrm{~F}$ implies \qquad .
a) $A \cap B \in \mathrm{~F}$, for all $A, B \in \mathrm{~F}$
b) $A^{C} \in \mathrm{~F}, B^{C} \in \mathrm{~F}$
c) both (a) and (b)
d) None of these
7) If F is a σ-field, then which of the following is not always correct?
a) F is a field
b) F is a class closed under countable unions
c) F is a class closed under complementation
d) F is a minimal sigma field
8) The sequence of sets $\left\{A_{n}\right\}$, where $A_{n}=\left(0,2+\frac{1}{n}\right)$ converges to \qquad .
a) $(0,2)$
b) $(0,2]$
c) $[0,3)$
d) $[0,2]$
9) A class F is said to be monotone class, if \qquad .
a) It is a field
b) If it is closed under monotone operations
c) Both (a) and (b)
d) Either (a) and (b)
10) Indicator function is a \qquad .
a) Simple function
b) Elementary function
c) Arbitrary function
d) All of these
B) Fill in the blanks.
11) If $F($.$) is a distribution function for some random variable, then$ $\lim _{n \rightarrow-\infty} F(x)=$ \qquad .
12) Convergence in probability implies \qquad convergence.
13) A class closed under complementation and finite union is called as \qquad .
14) If $A \subset B$, then $P(A) \quad$ ___ $P(B)$.
15) The convergence in \qquad is also called as a weak convergence.
16) Expectation of a random variable X exists, if and only if \qquad exists.

Q. 2 Answer the following

a) Define mixture of two probability measures. Show that mixture is also a probability measure.
b) Prove or disprove: Arbitrary intersection of fields is a field.
c) Write a note on Lebesgue measure.
d) Write a note on characteristic function of a random variable.
Q. 3 Answer the following
a) State and prove monotone convergence theorem.
b) Prove that if $\left\{B_{n}\right\}$ converges to B, then $P\left(B_{n}\right)$ also converges to $P(B)$.

Q. 4 Answer the following

a) Discuss limit superior and limit inferior of a sequence of sets. Find the same for sequence $\left\{A_{n}\right\}$, where $A_{n}=\left(0,3+\frac{(-1)^{n}}{n}\right), n \in N$
b) Prove that an arbitrary random variable can be expressed as a limit of sequence of simple random variables.
Q. 5 Answer the following 16
a) Prove that collection of sets whose inverse images belong to a σ-field, is a also a σ-field.
b) Prove that inverse image of σ-field is also a σ-field.
Q. 6 Answer the following
a) Prove or disprove:

1) Convergence in distribution implies convergence in probability
2) Convergence in probability implies convergence in distribution
b) Define expectation of simple random variable. If X and Y are simple random variables, prove the following:
3) $E(X+Y)=E(X)+E(Y)$
4) $E(c X)=c E(X)$, where c is a real number
5) If $X>0$ a.s., then $E(X)>0$

Q. 7 Answer the following

a) Prove that expectation of a random variable X exists, if and only if $E|X|$ exists.
b) State and prove Borel-Cantelli lemma.
M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2022

(STATISTICS)

Stochastics Processes

```
Day \& Date: Tuesday, 21-02-2023
Max. Marks: 80
```

Time: 11:00 AM To 02:00 PM
Instructions: 1) Question 1 and 2 are compulsory.
2) Attempt any Three from Q. 3 to Q. 7
3) Figures to the right indicate full marks.
Q. 1 A) Choose Correct Alternative.

1) Which of the following are class properties?
a) Persistency
b) Periodicity
c) Transientness
d) All of these
2) Let $\left\{X_{n}, n \geq 0\right\}$ be a mark chain with state space $\{0,1,2\}$ and tpm
$\mathrm{P}=\left|\begin{array}{ccc}0.5 & 0 & 0.5 \\ 0.1 & 0.1 & 0.8 \\ 0.8 & 0 & 0.2\end{array}\right|$ Which of the following is true?
a) State 1 is ergodic
b) State 0 and 1 are communicative
c) All states are recurrent
d) State 1 is transient
3) To find n-step transition probabilities, \qquad are used
a) Newton equations
b) Sterling's equations
c) Chapman-Kolmogorov equations
d) Lebesgue equations
4) If $\{\mathrm{N}(\mathrm{t})\}$ is a counting process, then $\mathrm{N}(0)=$
a) 0
b) 1
c) 10
d) 2.71
5) The collection of all possible states of a stochastic process is called as \qquad .
a) State Space
b) Time Space
c) Chain space
d) All of these
6) A non-null recurrent aperiodic state is also called as \qquad .
a) Transitive state
b) Binomial state
c) Ergodic state
d) None of these
7) A column sum of a stochastic matrix is \qquad .
a) Always one
b) Always equal to the number of states
c) Is always 3
d) May or may not be 1
8) In a Markov chain, if for a state $i, P_{i i}=1$, then state i is called as \qquad .
a) finite state
b) absorbing state
c) complete state
d) None of above

SLR-GR-8

9) If $\{\mathrm{N}(\mathrm{t})\}$ is a poisson process, then the inter-arrival times follow \qquad .
a) beta distribution of second kind
b) Poisson distribution
c) binomial distribution
d) exponential distribution
10) The process $\{\mathrm{X}(\mathrm{t}), \mathrm{t}>0\}$, where $\mathrm{X}(\mathrm{t})=$ number of COVID patients in a city at the end of $n^{\text {th }}$ day, is an example of \qquad stochastic process.
a) discrete time continuous state space
b) discrete time discrete state space
c) continuous time continuous state space
d) continuous time discrete state space
B) Fill in the blanks
11) If probability ' p ' of positive jump is 0.5 for a random walk, then it is called as \qquad .
12) If period of a state is one, then the state is called as \qquad .
13) A finite Markov chain which contains only one communication class is \qquad .
14) For a persistent state 'i', the ultimate first return probability $F_{i i}=$ \qquad 1
15) In a Markov chain, if for a state $\mathrm{i}, \mathrm{P}_{\mathrm{ii}}=1$, then state i is called as \qquad -.
16) Yule-Furry process is also called as \qquad .
Q. 2 Answer the following.
a) Discuss first return probability for a state.
b) Write a note on counting process.
c) What is transition probability matrix?
d) Define and illustrate Markov chain. Show that initial distribution and TPM specifies the Markov chain completely.
Q. 3 Answer the following.
a) Describe gambler's game. If a gambler starts the game with initial amount, ' i ', find his winning probability.
b) Prove or disprove: Periodicity is class property.

Q. 4 Answer the following.

a) Define stationary distribution of a Markov chain. Find the same for a Markov 08 chain with state space $\{1,2,3\}$, whose tpm is

$$
\left[\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
2 / 5 & 1 / 5 & 2 / 5
\end{array}\right]
$$

b) Prove that persistency is a class property.
Q. 5 Answer the following.
a) Define pure birth process and obtain its probability distribution. 08
b) Define branching process. With usual notations, obtain its mean and variance.
Q. 6 Answer the following.
$\begin{array}{ll}\text { a) If }\{N(t)\} \text { is a Poisson process, then for } s<t \text {, obtain the distribution of } N(s) \text {, if } & \mathbf{0 8} \\ \text { it is already known that } N(t)=k \text {. } & 08\end{array}$
Q. 7 a) Define stochastic process. Discuss its classification based on state space 08 and time space.
b) Establish the equivalence between two definitions of Poisson process.

SLR-GR-9

Seat

No.

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2022

Theory of Testing of Hypotheses

Day \& Date: Wednesday, 22-02-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) Let X has a $N\left(\mu, \sigma^{2}\right)$ distribution where both μ and σ^{2} are unknown.

Then the simple hypothesis is \qquad .
a) $H_{0}: \sigma=5$
b) $H_{0}: \mu=10$
c) $H_{0}: \mu=5, \sigma=1$
d) $H_{0}: \mu \neq 5, \sigma=4$
2) In order to obtain a most powerful test, we \qquad .
a) minimize the level of significance
b) minimize the power
c) minimize the level of significance and fix the power
d) fix the level of significance and maximize the power
3) In testing $H_{0}: \sigma=\sigma_{0}$ in $N\left(0, \sigma^{2}\right)$ the critical region based on n observations is $\sum_{i=1}^{n} X_{i}^{2}<k$. For which alternative hypothesis does this provide UMP test?
a) $\sigma \neq \sigma_{0}$
b) $\sigma=\sigma_{0}$
c) $\sigma<\sigma_{0}$
d) $\sigma>\sigma_{0}$
4) For testing simple versus simple hypotheses MP and LRT tests are \qquad .
a) the same
b) different
c) not comparable
d) equivalent in size but not with respect power
5) If in Wilcoxon's signed-rank test, sample size is large, the statistic T^{+} is distributed with mean \qquad .
a) $n(n+1) / 2$
b) $n(n+1) / 4$
c) $n(2 n+1) / 4$
d) $n(n-1) / 4$
6) If $k=2$ then Kruskal-Wallis H test reduces to \qquad .
a) Kolmogorov-Smirnov test
b) Wilcoxon signed-rank test
c) Mann-Whitney U test
d) none of these
7) Family of Cauchy $(1, \theta)$ distribution \qquad .
a) has MLR property
b) belong to one parameter exponential family
c) has mean θ
d) does not have MLR property

SLR-GR-9

8) A nonparametric version of the parametric analysis of variance is \qquad .
a) Mann-Whitney test
b) Kruskal-Wallis test
c) sign test
d) Wilcoxon signed-rank test
9) The area of critical region depends \qquad .
a) size of type-I error
b) size of type-II error
c) value of statistic
d) number of observations
10) A size α test is said to unbiased if \qquad .
a) it has maximum power in the class of all size α tests
b) size and power are equal
c) power is smaller than size
d) size of the test does not exceed its power
B) Fill in the blanks.
11) To obtain a critical region (or cut off point) in testing a statistical hypothesis, we need the distribution of test statistic under \qquad hypothesis.
12) In likelihood ratio test, under some regularity conditions on $f(x, \theta)$ the random variable $-2 \log \lambda(x)$ (where $\lambda(x)$ is a likelihood ratio is asymptotically distributed as \qquad .
13) In testing independence in a 2×3 contingency table, the number of degrees of freedom in χ^{2} distribution is \qquad .
14) The statistic H in Kruskal-Wallis test is approximately distributed as \qquad .
15) Let $X_{1}, X_{2}, \ldots ., X_{n}$ be iid $N\left(\mu, \sigma^{2}\right)$, where σ^{2} is known. Then pivotal quantity for confidence interval of μ is \qquad .
16) Generalized NP lemma is used to construct \qquad tests.

Q. 2 Answer the following

a) Explain the terms: i) Randomized test ii) Nonrandomized test. Give one example for each.
b) Describe Wald-Wolfowitz run test.
c) Describe pivotal quantity method to obtain confidence interval of parameter θ.
d) State one sample U statistic theorem.

Q. 3 Answer the following

a) Define most powerful (MP) test. Explain the method of obtaining MP test of size α for testing simple hypothesis against simple alternative.
b) Obtain a most powerful test of size α for testing $H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma=\sigma_{1}\left(>\sigma_{0}\right)$ based on a random sample of size n from $N\left(\mu, \sigma^{2}\right)$, where μ is known.
Q. 4 Answer the following
a) Show that for a family having MLR property, there exists UMP test for testing one sided hypotheses against one sided alternative.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample drawn from $U(0, \theta)$ distribution. Find UMP size α test for testing $H_{0}: \theta \leq \theta_{0}$ against $H_{1}: \theta>\theta_{0}$.

Q. 5 Answer the following

a) Describe likelihood ratio test (LRT). Show that LRT for testing simple hypothesis against simple alternative is equivalent to Neyman-Pearson test.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from $N\left(\theta, \sigma^{2}\right), \sigma^{2}$ is known. Obtain shortest length confidence interval for θ.
Q. 6 Answer the following 16
a) Define (i) UMA confidence interval and (ii) UMAU confidence interval. State and prove the result useful in obtaining UMA confidence interval using suitable test.
b) Discuss the use of chi-square test in goodness of fit problem.
Q. 7 Answer the following 16
a) Define (i) similar test and (ii) test having Neyman structure. State the result connecting similar test with Neyman structure.
b) Stating the hypothesis, explain two sample Wilcoxon-Mann-Whitney test and state mean of the test statistic.

Seat	
No.	

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2022

Sampling Theory
Day \& Date: Thursday, 23-02-2023
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) The most important factor in determining the sample size is
a) The availability of resources
b) Purpose of survey
c) Heterogeneity of population
d) None of the above

Max. Marks: 80
2) In which of the following situation(s) cluster sampling is appropriate?
a) When the units are situated for apart
b) When sampling frame is not available
c) When all the units are not easily identifiable
d) All the above
3) To have minimum $\operatorname{var}\left(\bar{y}_{s t}\right)$, one has to choose a large sample using cost per unit of survey provided
a) n is fixed, S_{j} is small and C_{j} is small
b) n is fixed, S_{j} is small and C_{j} is large
c) n is fixed, S_{j} is large and C_{j} is small
d) n is fixed, S_{j} is large and C_{j} is large
4) Cluster sampling is efficient than simple random sampling without replacement if the intraclass correlation coefficient ρ is,
a) $\rho>0$
b) $\quad \rho<0$
c) $\rho=0$
d) $\quad \rho=1$
5) If the size values associated with 5 population units are $23,18,36,9$ and 14 and a random number selected is 44 then which population unit will you select using Cumulative total method in the probability proportional to size sampling?
a) 4
b) 3
c) 2
d) 5
6) Systematic random sampling is more efficient than stratified random sampling if,
a) $\rho_{w s t}=0$
b) $\rho_{w s t}>0$
c) $\rho_{\text {wst }}<0$
d) $\rho_{w s t}=1$
7) In cluster sampling in usual notations, the relation between $\mathrm{S}^{2}, \mathrm{Sw}^{2}$ and Sb^{2} is,
a) $(N M-1) S^{2}=N(M-1) S_{w}^{2}+(N-1) S_{b}^{2}$
b) $(N M-1) S^{2}=M(N-1) S_{b}^{2}+(N-1) S_{b}^{2}$
c) $(N-1) S^{2}=M(N-1) S_{w}^{2}+S_{b}^{2}$
d) $(N M-1) S^{2}=S_{w}^{2}+(N-1) S_{b}^{2}$
8) A population was divided into clusters and it was found that within cluster variation was less than the variation between the clusters. If a random sample of units was selected from each cluster then the sampling procedure used is,
a) Multistage sampling
b) Stratified sampling
c) Cluster sampling
d) Systematic sampling
9) Probability Proportional to Size sampling is more efficient than simple random sampling with replacement in usual notations if,
a) $\operatorname{Cov}\left(X, \frac{y^{2}}{x}\right)<0$
b) $\operatorname{Cov}\left(X, \frac{y^{2}}{x}\right)>0$
c) $\operatorname{cov}\left(X, \frac{y^{2}}{x}\right)=0$
d) $\operatorname{Cov}\left(X, \frac{x^{2}}{y}\right)>0$
10) f $\overline{\bar{y}}$ is sample mean per element in two stage sampling, when a simple random sample of n first stage units are drawn from N first stage units and m second stage units drawn from M second stage units with replacement at both stages then $V(\overline{\bar{y}})$ is,
a) $V(\overline{\bar{y}})=\frac{N-1}{N n} S_{1}^{2}+\frac{M-1}{M} S_{2}^{2}$
b) $\quad V(\overline{\bar{y}})=\frac{N-1}{N} S_{1}^{2}+\frac{M-1}{M m} S_{2}^{2}$
c) $V(\overline{\bar{y}})=\frac{N-1}{N n} S_{1}^{2}+\frac{M-1}{M m} S_{2}^{2}$
d) $V(\overline{\bar{y}})=\frac{N-1}{N n} S_{1}^{2}+\frac{M-1}{M n m} S_{2}^{2}$
B) Fill in the blanks or true or false.

1) More heterogeneous is the population \qquad is the sample size.
2) In cluster sampling, the variance within clusters is \qquad between cluster variance.
3) If an investigator select districts from a state, Panchayat samities from districts and farmers from Panchayat samities, then such sampling procedure is known as \qquad
4) Estimation of sample size for a stratum subject to the prefixed value of $\operatorname{var}\left(\bar{X}_{s t}\right)$ in stratified sampling is called \qquad allocation
5) If information is not available on certain sampling units then it is called as \qquad .
6) When the population consists of units arranged in a sequence or deck, one would prefer \qquad -.

Q. 2 Answer the following

a) Explain the following concepts with respect to random to sampling.
i) Probability sampling
ii) Population
iii) Sample unit
iv) Sampling frame
b) If a simple random sample without replacement of size n clusters is drawn from the population of N clusters each with same size M, then derive an unbiased estimator of population mean with its variance in terms of intra class correlation coefficient.
c) If a simple random sample of size n is drawn from a population of N units. Discuss when regression estimator is more precise than ratio estimator assuming sample size n is large with justification.
d) Explain Midzuno sampling design and obtain first order inclusion probability under Midzuno sampling design.

Q. 3 Answer the following

a) In stratified random sampling suppose the total cost of sampling is $=\sum_{h=1}^{k} C_{h} n_{h}$, where C_{h} is the average cost of surveying a unit in the $\mathrm{h}^{\text {th }}$ stratum. Determine the sample size, n_{h}, allocated to $\mathrm{h}^{\text {th }}$ stratum such that n_{h} is proportional to population stratum size, N_{h} for a given cost of survey. Is estimator $\bar{y}_{s t}=\sum_{h=1}^{k} W_{h} \bar{y}_{h}$ remains unbiased for population mean? Justify your answer. Obtain the mean square error of $\bar{y}_{s t}$ under proportional allocation for given cost function.
b) Explain the Neyman allocation, in case of stratified random sampling. Derive the condition on stratum size for which variance of an unbiased estimator of population mean is minimum when sample size is fixed. Hence obtain the minimum variance of an unbiased estimator of population mean.
Q. 4 Answer the following
a) In a linear systematic random sampling of size n show that

$$
\operatorname{var}\left(\bar{y}_{s y s}\right)=\frac{N-n}{n N} S_{w s t}^{2}\left[1+(n-1) \rho_{w s t}\right]
$$

where is variance among units that lie in the same stratum and is correlation between units that are in the same systematic sample. Hence show that systematic sampling is more precise than stratified random sampling if $\rho_{w s t}<0$.
b) Explain circular systematic random sampling with an illustration. Show that mean of circular systematic random sample is an unbiased estimator of population mean.

Q. 5 Answer the following

a) Explain Lahiri's method to obtain probability proportional to size sample of size n . Show that, inclusion probability of $\mathrm{i}^{\text {th }}$ unit is proportional to its size variable.
b) In case of probability proportional to size (PPS) sample drawn with replacement, show that Hansen-Hurwitz estimator is an unbiased estimator of population total. Obtain variance of Hansen-Hurwitz estimator.
Q. 6 Answer the following
a) Define Hartley and Ross estimator of population ratio. Show that it is unbiased
b) Obtain variance of an unbiased estimator \bar{y} of population mean when sample is selected without replacement in first-stage as well as in secondstage. Also obtain estimated variance.

Q. 7 Answer the following

a) Determine the optimum allocation value n^{\prime} of first-phase sampling and n_{h}^{*} of second-phase so as to minimize variance of $\bar{y}_{s t d}$, an unbiased estimator of population mean, for specified cost, in double sampling.
b) What do you mean by unit non-response? Discuss the effect of it on the estimation of population mean.

Asymptotic Inference

Day \& Date: Monday, 13-02-2023
Time: 11:00 AM To 02:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.

Max. Marks: 80
Q. 1 A) Choose the correct alternative

1) An estimator T_{n} is said to weakly consistent for θ if \qquad .
a) $\quad P_{\theta}\left\{\left|T_{n}-\theta\right|>\varepsilon\right\}=1$
b) $\lim _{n \rightarrow \infty} P \theta\left\{\left|T_{n}-\theta\right|>\varepsilon\right\}=1$
c) $\lim _{n \rightarrow \infty} P \theta\left\{\left|T_{n}-\theta\right|>\varepsilon\right\}=0$
d) all the above
2) Consider the following statements:
1. Joint consistency implies marginal consistency.
2. Marginal consistency implies joint consistency.

Which of the above statements is / are true?
a) Only 1
b) Only 2
c) both 1 and 2
d) neither 1 nor 2
3) Which one of the following is true for estimation of θ for $U(0, \theta)$ distribution by the MLE \qquad .
a) unbiased but not consistent
b) consistent but not unbiased
c) both consistent and unbiased
d) neither consistent nor unbiased
4) For a distribution belonging to one parameter exponential family, estimator based on sufficient statistic is CAN for θ.
a) maximum likelihood
b) Moment
c) both (A) and (B)
d) neither (A) nor (B)
5) In a random sample of size n from $N(\theta, 1)$ distribution, MLE of θ was reported to be 1.5. The variance of the asymptotic normal distribution of case of $\sqrt{n}\left(\bar{X} n^{2}-\theta^{2}\right)$ is given by \qquad .
a) 10
b) 9
c) 4
d) 1
6) Let $X_{1}, X_{2} \ldots, X_{n}$ be iid with $E\left(X_{i}^{2}=\operatorname{Var}\left(X_{i}\right)=\sigma^{2}\right.$ then asymptotic distribution of \bar{X}_{n} is \qquad
a) $N\left(0, \frac{\sigma 2}{n}\right)$
b) $\quad N\left(0, \sigma^{2}\right)$
c) $\quad N(0,1)$
d) $\quad N\left(0, \frac{1}{n}\right)$
7) If T_{1} and T_{2} are consistent estimators of θ then we prefer T_{1} to T_{2} if \qquad .
a) $\operatorname{ARE}\left(T_{1}, T_{2}\right)=1$
b) $\operatorname{ARE}\left(T_{1}, T_{2}\right)>1$
c) $\operatorname{ARE}\left(T_{1}, T_{2}\right)<1$
d) None of these

SLR-GR-12

8) A sequence of estimators $T_{1}, T_{2}, \ldots ., T_{n}$ of $\emptyset(\theta)$ is said to be best asymptotically normal (BAN) if it satisfies the condition \qquad .
a) $\sqrt{n}\left[T_{n}-\emptyset(\theta)\right] \sim \mathrm{N}\left(0, \sigma^{2}\right)$ as $n \rightarrow \infty$
b) T_{n} is consistent
c) T_{n} has minimum variance as compared to the variance of any other estimator is T_{n}^{*}
d) all the above
9) The variance stabilizing transformation for Poisson population is \qquad .
a) square root
b) Logarithmic
c) $\tanh ^{-1}$
d) $\sin ^{-1}$
10) Bartlett's test is used to investigate the significant difference between ___ of normally distributed populations.
a) proportions
b) means
c) variances
d) none of these
B) Fill in the blanks.
11) Let $X_{1}, X_{2} \ldots . X_{n}$ be iid from poisson (θ). CAN estimator of $P_{\theta}(X=0)$ is \qquad
12) Exponential family is \qquad than the Cramer family.
13) If an estimator T_{n} is consistent for θ then $\Psi\left(T_{n}\right)$ is consistent for $\Psi(\theta)$ if Ψ is \qquad function.
14) Asymptotic distribution of LRT statistic is \qquad .
15) Variance stabilizing transformation was introduced by \qquad .
16) For Laplace $(\theta, 1)$ distribution, the asymptotic variance of \bar{X}_{n} is \qquad .
Q. 2 Answer the following
a) State Cramer regularity conditions.
b) Show that sample mean is consistent estimator of population mean whenever population mean is finite.
c) Describe Rao's score test. State its asymptotic distribution.
d) Based on random sample of size n from Poisson (θ), obtain variance stabilizing transformation of the estimator.
Q. 3 Answer the following 16
a) Define a consistent estimator for a vector parameter. Show that joint consistency is equivalent to marginal consistency.
b) Let $X_{1}, X_{2} \ldots, X_{n}$ be iid $U(0, \theta)$, computing the actual probability show that $X_{(n)}$ is consistent estimator of $U(0, \theta)$.
Q. 4 Answer the following

a) Define CAN estimator for a real parameter θ. State and prove invariance
property for a CAN estimator.16
b) Let $X_{1}, X_{2} \ldots ., X_{n}$ be iid exponential with location θ. Examine whether $X_{(1)}$ is CAN for θ.
Q. 5 Answer the following
a) Define BAN estimator. Show that sample distribution function at a given point is CAN for the population distribution function at the same point
b) Let $X_{1}, X_{2} \ldots ., X_{n}$ be a random sample of size n from the distribution having pdf $f(x ; \mu, \lambda)=\frac{1}{\lambda} \exp \left[-\left(\frac{x-\mu}{\lambda}\right)\right], x \geq \mu, \lambda>0$. Obtain moment estimator of (μ, λ) and its asymptotic variance-covariance matrix.
Q. 6 Answer the following 16
a) What is variance stabilizing transformation? Illustrate an application of variance stabilizing transformation in constructing large sample confidence intervals.
b) Based on random sample of size n from exponential distribution with mean θ, obtain variance stabilizing transformation for MLE of θ. Obtain $100(1-\alpha) \%$ confidence interval for θ based on the transformation.
Q. 7 Answer the following
a) Derive Bartlett's test for homogeneity of variances of several normal populations.
b) Let $X_{1}, X_{2} \ldots, X_{n}$ be iid $\mathrm{B}(1, \theta)$. Let $\Psi(\theta)=\theta(1-\theta)$. Obtain CAN estimator for $\Psi(\theta)$. Discuss its asymptotic distribution at $\theta=\frac{1}{2}$.

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022

 (STATISTICS)
Multivariate Analysis

3) Figures to the right indicate full marks.
Q. 1 A) Choose Correct Alternative.
4) Let $\underline{X}=\left(X_{1}, X_{2}, X_{3}\right)$ is a random vector with $\operatorname{Var}(\underline{X})=\sum$. Eigen values of \sum are $0.6,0.4$ and 0.2 . Then proportion of variation explained by the first principal component is \qquad .
a) 0.2
b) 0.5
c) 0.3333
d) 0.6666
5) Let \underline{X} be a random vector with covariance matrix Σ. A decrease in variances of p variables in \underline{X} will be lead to \qquad .
a) increase trace(Σ)
b) Decrease trace (Σ)
c) Does not affect trace(Σ)
d) Nothing can be said
6) Let p dimensional vector \underline{X} has $N_{p}(\mu, \Sigma)$ distribution. Let us partition $\underline{\mathrm{X}}=\left(\underline{\mathrm{X}}_{(1)}, \underline{\mathrm{X}}_{(2)}\right)$ in q and $\mathrm{p}-\mathrm{q}$ component sub vectors. Then conditional variance-covariance matrix of $\underline{X}_{(2)}$ given $\underline{X}_{(1)}$ is \qquad .
a) $\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$
b) $\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$
c) $\Sigma_{12}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$
d) $\Sigma_{21}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$
7) Which of the following statistical techniques identifies homogenous subgroups?
a) Factor analysis
b) Multivariate analysis of variance
c) Cluster analysis
d) Discriminant analysis
8) Let $\underline{X}_{1}, \underline{X}_{2}, \ldots, \underline{X}_{\mathrm{n}}$ be a random sample of size n from p -variate normal distribution with mean vector μ and covariance matrix \sum. The distribution of mean vector $\underline{\bar{X}}$ is
a) $\mathrm{N}_{\mathrm{p}}\left(\mu, \frac{1}{\mathrm{n}} \Sigma\right)$
b) $\mathrm{N}_{\mathrm{p}}(\mu, \Sigma)$
c) $\mathrm{N}_{\mathrm{p}}\left(\mu, \frac{1}{\mathrm{n}-1} \Sigma\right)$
d) $\mathrm{N}_{\mathrm{p}}\left(\frac{1}{\mathrm{n}} \mu, \frac{1}{\mathrm{n}} \Sigma\right)$
9) ___ is a clustering procedure where all objects start out in one giant cluster
a) Divisive clustering
b) Non-hierarchical clustering
c) Agglomerative clustering
d) Single linkage clustering
10) If \underline{X} has $N_{p}(\mu, \Sigma)$ distribution then linear combination $Z=a \underline{X}$ has \qquad distribution.
a) $\mathrm{N}_{\mathrm{p}}(\mu, \Sigma)$
b) $\mathrm{N}_{\mathrm{p}}\left(\mu, \mathrm{a} \sum \mathrm{a}^{\prime}\right)$
c) $N\left(a^{\prime} \mu, a^{\prime} \sum a\right)$
d) $N\left(a^{\prime} \mu a, a^{\prime} \sum a\right)$
11) The mean vector of $\left(X_{1}+X_{2}, X_{1}-X_{2}\right)$ is $(10,0)$ then mean vector of $\left(X_{1}, 2 X_{1}-X_{2}\right)$ is \qquad —.
a) $(5,10)$
b) $(10,0)$
c) $(10,5)$
d) $(5,5)$
12) For a multivariate normal random vector, the variance-covariance matrix is always \qquad .
a) symmetric
b) square matrix
c) non-negative definite
d) All of these
13) Let A has $W_{p}(n, \Sigma)$ distribution and B is a $(q \times p)$ matrix then distribution of $B A B$ ' is \qquad -
a) $W_{p}(\bar{n}, \Sigma)$
b) $W_{q}(n, \Sigma)$
c) $W_{p}\left(n, B \sum B^{\prime}\right)$
d) $\mathrm{W}_{\mathrm{q}}\left(\mathrm{n}, \mathrm{B} \sum \mathrm{B}^{\prime}\right)$
$B)$ Fill in the blanks
14) A \qquad is a graphical device for displaying clustering results.
15) As the distance between two populations increases, misclassification error \qquad .
16) The \qquad principal component explains least variation of the data.
17) At the start of divisive clustering, we assume total \qquad clusters.
18) Partitioning clustering uses \qquad approach of clustering.
19) With usual notations, Fisher's best discriminant function is given by \qquad .
Q. 2 Answer the following.
20) Describe ECM rule in discriminant analysis.
21) Obtain moment generating function of multivariate normal distribution.
22) Define variance-covariance matrix. State its properties.
23) Show that two p-variate normal vectors $\underline{X_{1}}$ and $\underline{X_{2}}$ are independent if and only if $\operatorname{cov}\left(\underline{X_{1}}, \underline{X_{2}}\right)=0$

Q. 3 Answer the following.

$\begin{array}{lll}\text { a) State multivariate normal density. Find mean vector and variance- } & \mathbf{0 8} \\ \text { covariance matrix for this density. }\end{array}$

Q. 4 Answer the following.

a) If $\underline{X} \sim N_{p}\left(\underline{\mu}, \sum\right)$, then find the distribution of the following:

1) $\underline{a}^{\prime} X, \bar{w}$ where \underline{a} is a p-dimensional vector of constants.
2) $A \underline{X}$, where A is matrix of order $m \times p$
b) Differentiate between hierarchical and non-hierarchical clustering methods.

Explain, in detail, k-means clustering

Q. 5 Answer the following.

a) Explain the idea of discriminant analysis. What are the potential errors
involved in it? Obtain the classification rule for the case of two populations
with densities $f_{1}\left(\underline{x)}\right.$ and $f_{2} \underline{x}$.
b) Derive the density of multivariate normal distribution

Q. 6 Answer the following.

a) Describe canonical variable and canonical correlations. State and prove 08 any two properties of canonical variables.
b) Describe agglomerative clustering in detail. Illustrate with the help of 08 example using complete linkage method.
Q. 7 a) Discuss principal components analysis. How it can be used as a dimension 08 reduction technique?
b) Define:

1) Distance matrix
2) Single linkage
3) Complete linkage
4) Average linkage

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022

 (STATISTICS)
Planning and Analysis of Industrial Experiments

Day \& Date: Wednesday, 15-02-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Question no. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7.
3) Figure to right indicate full marks.
Q. 1 A) Multiple choice questions.

1) The error degrees of freedom in one-way classification model $Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j} ; \quad i=1,2, \ldots . . v, j=1,2, \ldots \ldots n_{i}$ and assumptions on errors are followed; are \qquad .
a) $n-1$
b) $v-1$
c) $n-v$
d) $v-n$
2) In a 2^{2} factorial experiment with, the contrast due to interaction effect $A B$ is \qquad .
a) $[(a)+(a b)+(1)-(b)]$
b) $[(a b)+(a)-(1)-(b)]$
c) $[(1)+(a b)-(a)-(b)]$
d) $[(a)+(a b)+(1)+(b)]$
3) A BIBD is always \qquad .
a) disconnected
b) connected
c) orthogonal
d) complete
4) Which of the following is two-way ANOCOVA model with single covariate?
a) $Y_{i j}=\mu+\alpha_{i}+\gamma z_{i j}+\epsilon_{i j}$
b) $Y_{i j}=\mu+\alpha_{i} * \beta_{j}+z_{i j}+\epsilon_{i j}$
c) $Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\gamma z_{i j}+\epsilon_{i j}$
d) $Y_{i j}=\mu+\alpha_{i}+\beta_{j}-z_{i j}+\epsilon_{i j}$
5) In a 2^{6} experiment, number of two - factor interaction effects are \qquad .
a) 6
b) 32
c) 15
d) 63
6) In a RBD with 5 treatments and 4 blocks, the number of experimental units in each block are \qquad .
a) 6
b) 4
c) 5
d) 19
7) In resolution IV design all main effects are \qquad .
a) Strongly Clearly estimable
b) Clearly estimable
c) not clearly estimable
d) not estimable
8) The rank of C matrix is \qquad .
a) $v+1$
b) $v-1$
c) v
d) v-2
9) In one - way ANOVA model, the error sum of squares are estimates of \qquad .
a) within treatment variation
b) between treatment variation
c) total variation
d) none of these
10) In a 3^{2} experiment, main effects has \qquad degrees of freedom.
a) 2
b) 4
c) 6
d) 9
B) Fill in the blanks:
11) Replication, randomization and \qquad are three basic principles of design of experiments.
12) In a factorial experiment \qquad and \qquad effects are more important.
13) In single replicate design error has \qquad degrees of freedom.
14) In total confounding \qquad effect is confounded in \qquad replicates.
15) In a 2^{5-1} fractional factorial experiment with defining relation I = ABCD, it resolution \qquad design.
16) The total number of effect in 2^{5} experiment are \qquad .
Q. 2 Answer the following 16
a) Define a connected block design. Show that RBD is a connected design.
b) Write down lay out of 2^{3} experiment in two replicates.
c) Define BIBD. Show that in a BIBD $(v, b, r, k, \lambda), N^{\prime}=\left[\{r-\lambda) I_{v}+\lambda E_{v v}\right]$.
d) In one-way ANOVA model; obtain the least square estimates of parameters.

Q. 3 Answer the following.

a) Obtain reduced normal equations for estimating treatment effects in general block design.
b) Obtain the least square estimates of parameters in the following model $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\varepsilon_{i j k}, i=1,2, \ldots . . v, j=1,2, \ldots \ldots b . k=1,2, \ldots r . \varepsilon_{i j k} \sim N\left(0, \sigma^{2}\right)$
Q. 4 Answer the following. 16

a) Derive the necessary and sufficient condition for orthogonality of a given
block design.
b) In general block design state and prove the properties of Q, where $\mathrm{Q}=\mathrm{T}-\mathrm{NK}^{-\delta} \mathrm{B}$
Q. 5 Answer the following.
a) Obtain two blocks of 2^{5} factorial experiments using suitable generator
b) Derive $1 / 4$ fraction of 2^{6} experiment and write its consequences

Q. 6 Answer the following.

16a) Define resolution of design and minimum aberration design. Give illustrative example of each.
b) In a connected block design prove that rank (C) = v-1 and hence rank of estimation space is $v+b-1$.
Q. 7 Answer the following.
a) Prove that dual of a symmetric BIBD is also a symmetric BIBD.
b) Derive the test for testing hypothesis of equality of all treatment effects in one-way classification model.

Seat	
No.	

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022

 (STATISTICS)
Regression Analysis

Day \& Date: Thursday, 16-02-2023
Max. Marks: 80
Time: 11:00 AM To 02:00 PM
Instructions: 1) Question no. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7.
3) Figure to right indicate full marks.
Q. 1 A) Multiple choice questions.

1) In simple linear regression model $Y=\beta_{0}+\beta_{1} X+\epsilon, \beta_{0}$ and β_{1} are respectively \qquad .
a) slope and intercept
b) error and slope
c) intercept and slope
d) intercept and error
2) In a multiple linear regression model with $\varepsilon \sim N\left(0, \sigma^{2} I\right)$, the distribution of residual vector e is \qquad .
a) $N\left(0, H \sigma^{2}\right)$
b) $\quad N\left(0,(I-H) \sigma^{2}\right)$
c) $N\left(0, \sigma^{2} I\right)$
d) $\quad N\left(0,\left(X^{\prime} X\right)^{-1} \sigma^{2}\right)$
3) Which one of the statement is true regarding residuals in regression analysis?
a) Mean of residuals is always zero
b) Mean of residuals is always less than zero
c) Mean of residuals is always greater than zero
d) There is no such rule for residuals
4) To test significance of an individual regression coefficient in multiple linear regression model \qquad is used.
a) F test
b) t test
c) Z test
d) X^{2} test
5) The coefficient of determination $\left(R^{2}\right)$ is the square of correlation coefficient between (where Y is response) \qquad .
a) Y and hat matrix
b) Y and its predicted value
c) regressors
d) none of these
6) Backward elimination process begins with the assumption that \qquad .
a) no regressors are in the model
b) some regressors are in the model
c) all regressors are in the model
d) none of these
7) Multicollinearity is concerned with \qquad .
a) correlation among predictors
b) correlation among error terms
c) correlation between response and predictors
d) none of these
8) Orthogonal polynomials are used to fit a polynomial model of \qquad .
a) first order in one variable
b) second order in two variables
c) any order in two variables
d) any order in one variable
9) Logistic regression model is an appropriate model when response variable is distributed as \qquad .
a) Poisson
b) Binomial
c) Normal
d) Gamma
10) If a response variable in a GLM follows Binomial distribution, then
\qquad link function is suitable.
a) $\log \theta$
b) $-\log \theta$
c) $1 / \theta$
d) $\log (\theta / 1-0)$
B) Fill in the blanks.
11) In a multiple linear regression model with k regressors, the distribution of $\left(\mathrm{SS}_{\text {Reg }} / \sigma^{2}\right)$ is \qquad .
12) The proportion of variation explained by the regression model is measured by \qquad _.
13) $\mathrm{E}\left(\mathrm{C}_{\mathrm{p}} /\right.$ Bias $\left.=0\right)=$ \qquad -.
14) The largest condition index of ($\left.X^{\prime} X\right)$ is defined as \qquad .
15) In usual notations, $a(\varnothing)$ for normal distribution is always equal to \qquad .
16) The joint points of pieces in polynomial fitting are usually called \qquad .
Q. 2 Answer the following
a) Discuss variance stabilizing transformation and its use.
b) With usual notations, show that $\operatorname{Cov}(\hat{y}, e)=0$
c) Discuss Variance inflation factor (VIF) method for detection of multicollinearity.
d) Discuss the logistic regression model. Give a real-life situation where this model is appropriate.
Q. 3 Answer the following.
a) Define multiple linear regression model and obtain the least squares estimates of its parameters.
b) In the usual notations, outline the procedure of testing a general linear hypothesis $\mathrm{T} \beta=0$.

Q. 4 Answer the following.

a) Explain the concept of non-linear regression model. Discuss least squares method for estimation of parameters for non-linear regression model.
b) Describe forward selection method for variable selection and state its limitations.
Q. 5 Answer the following.
a) State the autocorrelation problem. Explain Durbin-Watson test for detecting autocorrelation. What are its limitations?
b) Explain the residual plots. Outline the procedure of construction of normal probability plot and procedure for checking normality assumption.
Q. 6 Answer the following.
a) Define $k^{\text {th }}$ order polynomial regression model in one variable. Describe orthogonal polynomial to fit the polynomial model in one variable.
b) Define a one parameter natural exponential family. Show that the $B(n, \theta), \theta \in[0,1]$ is member of natural exponential family.

Q. 7 Answer the following.

a) Derive the maximum likelihood estimators of parameters of a logistic16 regression model with one covariate.
b) Define 'Deviance statistic'. Find it when data comes from normal distribution with mean μ and variance σ^{2}.

SLR-GR-17

Seat	
No.	

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)
 Data Mining

Day \& Date: Monday, 20-02-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternatives from the options.

1) The part of the entire data, which is used for building the model is called as \qquad .
a) Training data
b) Testing data
c) Irrelevant data
d) Residual data
2) Which one is example of case based learning?
a) Decision Tree
b) K-Nearest neighbor
c) Genetic algorithm
d) Neural networks
3) A 100\% efficient decision tree has 3 independent variables and 1 class label, each with two categories, then maximum possible number of end nodes (at extreme bottom) is \qquad .
a) 2
b) 4
c) 8
d) 16
4) Looking for combinations of items purchased together is called \qquad .
a) market data analysis
b) market basket analysis
c) marketing data analysis
d) Combo analysis
5) Which of the following is a type of activation function?
a) Linear
b) Non-Linear
c) Sigmoid
d) All of these
6) Naive Bayesian classifier uses \qquad tool.
a) information gain
b) Probability
c) Both (a) and (b)
d) None of these

SLR-GR-17

7) Task of inferring a model from unlabeled training data is called
\qquad _.
a) supervised learning
b) unsupervised learning
c) Reinforcement learning
d) None of these
8) The things that customers actually purchase are known as \qquad .
a) Items
b) Support
c) Transaction
d) Function
9) Support vector machine is \qquad .
a) unsupervised learning
b) supervised learning
c) reinforcement learning
d) genetic algorithm
10) Which one is non-hierarchical clustering algorithm?
a) Agglomerative clustering
b) Divisive clustering
c) k-means clustering
d) All of these
B) Fill in the blanks.
11)

is the type of machine learning in which machines are trained using well "labelled" training data.
2) The \qquad algorithm of supervised learning is known as 'Lazy learning algorithms.
3) In data mining, ANN stands for \qquad .
4) SVM is an abbreviation for \qquad .
5) With usual notations, the formula for accuracy is $\frac{\cdots}{P+N}$
6) Unlike regression problem, the type of class label in classification problem is \qquad .

Q. 2 Answer the following.

a) Discuss, with illustration, the concept of supervised learning.
b) What are the advantages of unsupervised learning?
c) Discuss accuracy and precision of a classifier.
d) Describe the problem of imbalanced data.

Q. 3 Answer the following.

a) Discuss Bayesian classifier. Also explain why it is called as naive classifier.
b) Describe decision tree classifier in detail.

SLR-GR-17

Q. 4 Answer the following. 16a) Discuss the working mechanism of ANN.b) Discuss logistic regression classifier in detail.
Q. 5 Answer the following. 16
a) What are the advantages and disadvantages of supervised learning?
b) Discuss confusion matrix in detail.
Q. 6 Answer the following. 16
a) Discuss the different metrics for Evaluating Classifier Performance.
b) Describe supervised learning method. Also explain SVM classifier.
Q. 7 Answer the following. 16
a) Discuss characteristics of kNN classifier.
b) Describe-

1) Sensitivity of a model
2) Specificity of a model

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022

Industrial Statistics

Day \& Date: Tuesday, 21-02-2023
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) The control limits of the p and $n p$ charts are based on the assumption that the number of nonconforming items follows \qquad
a) normal
b) binomial
c) Poisson
d) geometric
2) Usually 2σ limits are called as \qquad .
a) specification limits
b) control limits
c) warning limits
d) action limits

Max. Marks: 80 distribution.
3) Assignable causes are \qquad .
a) not as important as natural causes
b) within the limits of control chart
c) also referred to as chance causes
d) causes of variation that can be identified and removed
4) To determine location of a defect, which of the following tool is used?
a) Defect concentration diagram
b) Check sheet
c) Scatter diagram
d) Pareto chart
5) Producer's risk is the probability of \qquad .
a) accepting a good lot
b) rejecting a good lot
c) rejecting a bad lot
d) accepting a bad lot
6) Which of these is not a part of magnificent seven of SPC?
a) Single sampling plan
b) Pareto chart
c) Check Sheet
d) Scatter Diagram
7) The capacity index C_{p} involves \qquad parameter(s) to be estimated.
a) only μ
b) only σ
c) both μ and σ
d) none of these
8) Tabular method is used to implement \qquad chart.
a) CUSUM
b) EWMA
c) Moving average
d) CRL
9) In demerit system, the unit will not fail in service but has minor defects in finish or appearance is classified as \qquad defects.
a) class A
b) class B
c) class C
d) class D
10) In most acceptance sampling plans, when a lot is rejected, the entire lot is inspected and all defective items are replaced. When using this technique, the AOQ \qquad .
a) becomes a larger fraction
b) becomes a smaller fraction
c) is not affected
d) none of these
B) Fill in the blanks.

1) The control chart designed to deal with the defects or nonconformities of a product is called \qquad .
2) An out-of-control signal given by a control chart when the process is actually in-control is called \qquad _.
3) The concept of Six-Sigma was developed by \qquad company.
4) For the centered process, the relation between capability index C_{p} and probability of nonconformance p is given by \qquad .
5) V-mask procedure is used to implement \qquad chart.
6) In the development of \bar{X} and S charts, the distribution of quality characteristic X is assumed to be \qquad .

Q. 2 Answer the following

a) Explain chance and assignable causes of variation.
b) Explain Ishikawa diagram with suitable example.
c) Write a short note on Conforming run length (CRL) chart.
d) Explain the following terms:

1) Acceptance Quality Level (AQL)
2) Lot Tolerance Percentage Defective (LTPD)

Q. 3 Answer the following

a) Discuss various definitions of 'Quality' and various dimensions of quality.
b) Discuss the various steps involved in the construction of \bar{X} and S charts.
Q. 4 Answer the following
a) Explain the variable sampling plan when upper specification is given and standard deviation is known.
b) Define OC function and ARL of a control chart. Obtain the same for \bar{X} chart assuming normality of process with known standards.
Q. 5 Answer the following
a) Describe double sampling plan for attributes. Obtain AOQ and ASN for the same.
b) Stating the underlying assumptions, explain the construction and operation of a sequential sampling plan for attributes.

Q. 6 Answer the following

a) Stating the assumptions clearly, define index C_{p}. Interpret $C_{p}=1$. Obtain $(1-\alpha)$ level confidence interval for C_{p}.
b) What is CUSUM chart? Explain its construction and operation.
Q. 7 Answer the following
a) Describe the development and operation of Hotelling's T^{2} chart to monitor process mean vector.
b) Explain SIX SIGMA methodology and DMAIC cycle in detail.
M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)

Reliability and Survival Analysis

Day \& Date: Wednesday, 22-02-2023
Max. Marks: 80
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.
Q. 1 A) Choose the correct alternative.

1) The $i^{\text {th }}$ component of a system is relevant if \qquad .
a) $\phi\left(1_{i}, \underline{x}\right)=1$ and $\phi\left(0_{i}, \underline{x}\right)=1$
b) $\quad \phi\left(1_{i}, \underline{x}\right)=0$ and $\phi\left(0_{i}, \underline{x}\right)=0$
c) $\quad \phi\left(1_{i}, \underline{x}\right)=1$ and $\phi\left(0_{i}, \underline{x}\right)=0$
d) $\phi\left(1_{i}, \underline{x}\right)=0$ and $\phi\left(0_{i}, \underline{x}\right)=1$
2) A vector \underline{X} is called path vector if \qquad .
a) $0 \leq \phi(\underline{X}) \leq 1$
b) $\quad \phi(\underline{X})=1$
c) $\phi(\underline{X})=0$
d) $\quad \phi(\underline{X})=0.5$
3) If distribution F is $I F R A$ then \qquad is star shaped.
a) hazard function
b) $\quad \log R(t)$
c) $\quad-\log R(t)$
d) $1 / R(t)$
4) The minimal path sets of structure ϕ are \qquad for its dual.
a) minimal path vectors
b) minimal cut sets
c) minimal path sets
d) none of the above
5) Suppose $R(t)$ is the reliability of series system of two components having reliabilities $R_{1}(t)$ and $R_{2}(t)$ respectively then \qquad .
a) $\quad R(t)=\operatorname{Max}\left\{R_{1}(t), R_{2}(t)\right\}$
b) $\quad R(t)=\operatorname{Min}\left\{R_{1}(t), R_{2}(t)\right\}$
c) $\quad R(t) \leq \operatorname{Min}\left\{R_{1}(t), R_{2}(t)\right\}$
d) $\quad R(t)<\operatorname{Max}\left\{R_{1}(t), R_{2}(t)\right\}$
6) In type II censoring \qquad .
a) the number of failures is fixed
b) the time of an experiment is fixed
c) both time and number of failures is fixed
d) none of these
7) Which of the following distribution has no ageing property?
a) lognormal
b) exponential
c) gamma
d) none of these
8) A distribution function $F(t)$ said to have new better than used (NBU) if \qquad
a) $\bar{F}(t+x) \geq \bar{F}(t) \bar{F}(x)$
b) $\bar{F}(t+x) \leq \bar{F}(t) \bar{F}(x)$
c) $\bar{F}(t+x)=\bar{F}(t) \bar{F}(x)$
d) none of the above
9) In survival analysis, the outcome variable is \qquad .
a) continuous
b) discrete
c) dichotomous
d) none of the above
10) The censoring time is identical for every censored observation in \qquad .
a) right random censoring
b) type I censoring
c) type II censoring
d) both type I and type II censoring
B) Fill in the blanks.
11) As the number of components n increases, the reliability of parallel system \qquad .
12) Series system of n components has \qquad minimal path sets.
13) IFRA property is preserved under \qquad .
14) The hazard function ranges between \qquad .
15) To find exact confidence interval for mean of exponential distribution under no censoring, the pivotal quantity has \qquad distribution.
6) A sequence of (2×2) contingency tables is used in \qquad test.
Q. 2 Answer the following.
a) Define:
16) Structure function
17) Coherent structure. Illustrate giving one example each.
b) Write a short note on star shaped function.
c) Explain the following terms:
18) Survival function
19) Random censoring
d) Write a short note on empirical survival function and its properties.
Q. 3 Answer the following. 16
a) If failure time of an item has gamma distribution obtain the failure rate function.
b) Define Poly function of order $2\left(P F_{2}\right)$. Prove that if $f \in P F_{2}$ then $F \in I F R$.
Q. 4 Answer the following.
a) Define NBU and NBUE classes of distributions. Prove that
$F \in I F R A \Rightarrow F \in N B U$.
b) If failure time of an item has the distribution
$f(t)=\frac{\lambda^{\alpha}}{\Gamma \alpha} t^{\alpha-1} e^{-\lambda t}, t>0, \lambda, \alpha>0$
Examine whether it belongs to IFR or DFR.
Q. 5 Answer the following
a) Obtain the nonparametric estimator of survival function based on complete data. Also obtain confidence band for the same using Kolmogorov-Smirnov statistic.
b) Obtain maximum likelihood estimate of mean of the exponential distribution under type II censoring.
Q. 6 Answer the following
a) Describe Kaplan-Meier estimator and derive an expression for the same.
b) Describe Mantel's technique of computing Gehan's statistics for a twosample problem for testing equality of two life distributions.

Q. 7 Answer the following

a) Derive Greenwood's formula for an estimate of variance of actuarial estimator of survival function.
b) Define:

1) k-out-of- n system.
2) Dual of a structure function.

Obtain the dual of k-out-of- n system
M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022
(STATISTICS)
Optimization Techniques

Day \& Date: Thursday, 23-02-2023
Time: 03:00 PM To 06:00 PM
Instructions: 1) Q. Nos. 1 and 2 are compulsory.
2) Attempt any three questions from Q. No. 3 to Q. No. 7
3) Figure to right indicate full marks.

Max. Marks: 80
Q. 1 A) Fill in the blanks by choosing correct alternatives given below.

1) Which of the following is correct?
a) A linear programming problem with only one decision variable restricted to integer value is not an integer programming problem.
b) An integer programming problem is an LLP with all decision variable are restricted to integers.
c) Pure IPP is one where all decision variable are restricted to integers.
d) None of the above
2) The zero -one programming problem requires \qquad .
a) Decision variables to have values either 0 or 1 .
b) The decision variables have coefficients between 0 and 1 .
c) All constraints have coefficients between 0 and 1 .
d) All of the above
3) Given a system of m simultaneous linear equations with n unknowns $(m<n)$. The number of basic variables will be \qquad .
a) n
b) m
c) $n-m$
d) none of the above
4) If $X^{\prime} Q X$ is positive semi definite then, it is \qquad .
a) Strictly convex
b) Strictly concave
c) Convex
d) Concave
5) In two person zero sum game is said to be fair if \qquad .
a) The upper value and lower value of the game are not equal
b) The upper value is more than lower value of the game
c) The upper value and lower value of the game are same and equal to zero.
d) None of the above
6) To maintain optimality of current optimum solution for a change Δc_{k} in the coefficient c_{K} of non basic variable, we must have \qquad .
a) $\Delta c_{k}=z_{K}-c_{k}$
b) $\Delta c_{k} \geq z_{K}-c_{k}$
c) $\Delta c_{k} \leq z_{K}-c_{k}$
d) $\Delta c_{k}=z_{K}$
7) If we delete one of the constraint from LP problem then \qquad .
a) Feasible solution space is enlarged
b) Feasible solution space is reduced
c) It may or may not affect on feasible solution space
d) None of these
8) Integer linear programming problem means \qquad .
a) It linear programming problem with additional constraint only one decision variable is integer
b) It linear programming problem with additional constraint all or some of the decision variables are integers
c) Decision variables takes only 0 or 1 value
d) Coefficients in objective function are integers
9) In Gomory's cutting plane method each cut involves introduction of \qquad .
a) An equality constraints
b) Less than equal to constraint
c) Greater than equal to constraint
d) An artificial variable
10) When all the players of the game follow their optimal strategies, then the expected pay off of the game is called \qquad .
a) Gain of the game
b) Loss of the game
c) Value of the game
d) None of these
B) Fill in the blanks.
11) Feasible solution to an LPP must satisfied \qquad .
12) Simplex method starts with \qquad .
13) Saddle point of the pay off matrix is a point satisfied \qquad .
C) State whether following statements are true or false.
14) Primal problem has optimal solution then dual problem has optimal solution.
15) Basic feasible solution to LLP is not unique.
16) Necessary and sufficient condition for a basic feasible solution to a minimization LPP to an optimum is (for all j) $z_{j}-c_{j} \leq 0$.

Q. 2 Answer the following

a) Describe graphical method to solve LPP.
b) Describe two phase method to solve LPP.
c) Define the following terms

1) Convex set
2) Convex combinations
3) Convex polyhedral
d) Write a note on non linear programming problem.
Q. 3 a) State and prove fundamental theorem on duality. 08
b) Use simplex method to solve the following LPP
$\operatorname{Max} Z=5 X_{1}+3 X_{2}$
sub to $\quad X_{1} \leq 4$,
$X_{2} \leq 3$,
$X_{1}+2 X_{2} \leq 18$,
$X_{1}+X_{2} \leq 9$,
$X_{1}, X_{2} \geq 0$;
Q. 4 a) Describe simplex method in detail to solve LPP. 08
b) Solve the following LPP using two phase method.
Maximize $z=5 X_{1}+3 X_{2}$
subject to
$2 X_{1}+X_{2} \leq 1$
$X_{1}+4 X_{2} \geq 6$
$X_{1}, X_{2} \geq 0$
Q. 5 a) Explain Gomory's cutting plane method to solve all IPP. 08
b) Explain in brief the Wolfe's method to solve QPP. 08
Q. 6 a) With usual notations for rectangular game problem prove that 08
$\max \min \bar{v} \leq \min \max \underline{v}$
b) Describe how $m \times n$ rectangular game problem is converted into a linear 08 programming problem.
Q. 7 a) Solve the game with payoff matrix using graphical method.
$\left[\begin{array}{cc}2 & 7 \\ 3 & 5 \\ 11 & 2\end{array}\right]$
b) Solve the following LPP using Big M method

$$
\operatorname{Max} Z=2 x_{1}+5 x_{2}
$$

Subject to the constraints:

$$
\begin{gathered}
3 x_{1}+2 x_{2} \geq 6 \\
2 x_{1}+x_{2} \leq 6, \\
x_{1}, x_{2} \geq 0 .
\end{gathered}
$$

