Seat No.					Set	Ρ					
M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)											
Real Analysis											
Day & [Time: 0	Day & Date: Monday, 13-02-2023 Max. Marks: 80 Time: 03:00 PM To 06:00 PM										
Instruc	 Instructions: 1) Q. Nos. 1 and 2 are compulsory. 2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks. 										
Q.1 A	.) Cł 1)	Boose the corre Subset of a c a) Countable c) partially co	ct alternative. countable set is alwa countable	b) d)	Uncountable none of these	10					
	2)	The limit of s a) 1 c) 10	equence $S_n = \frac{1}{n}$, $n \in I$	V is b) d)	0 2						
	3)	The set of all a) Countable c) both (a) al	integers is nd (b)	b) d)	Uncountable none of these						
	4)	The number a) Irrational c) Integer	$\sqrt{9}$ is number	b) d)	Rational none of these						
	5)	If there exists of natural nu a) perfect se c) countable	s one to one corresp mbers, then the give t set	ondence I n set is b) d)	between given set and set Good set Uncountable set						
	6)	Every infinite a) interior po c) initial poin	bounded set has a int t	b) d)	limit point None of these						
 7) Which of the following is not correct? a) Every continuous function is differentiable. b) Every differentiable function is continuous. c) Every continuous function is right continuous. d) Every continuous function is left continuous. 											
	8)	The α(.) func a) Always no b) Always mo c) Always mo d) Always co	tion in R-S integral is n negative onotonic non-increas onotonic non-decrea nstant	s sing sing							
	9)	The set s{(1 a) One c) Zero	$+ \frac{(-1)^n}{n}$, $n \in N$ has	b) d)	nit points. Two Four						

		10) If set $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n =$	
		a) Zero b) 1	
		c) Infinity d) -1	
	В)	Fill in the blanks.1) A set {1,3,7,20} has total of limit points.2) The maximum value of the function $f(x) = -x2 + 2\% + 3$ is3) Greatest Lower Bound of a set is also called as4) If A and B are open sets, then $A \cap B$ is5) A superset of uncountable set6) A geometric series with common ratio r converges, if	06
Q.2	Ans	wer the following	16
	a)	State:	
		 I) Heine-Borel theorem ii) Bolzano-Weistrauss theorem 	
	b)	Write a short note on mean value theorem.	
	c)	State implicit function theorem. Also state its applications.	
	a)	i) Open set	
		ii) Closed set	
03	Δns	wer the following	16
Q .0	a) b)	Prove or disprove: Arbitrary intersection of closed sets is always closed. Define a bounded sequence. Show that a convergent sequence is always	10
	/	bounded. Is every bounded sequence convergent? Justify.	
Q.4	Ans	wer the following	16
Q . 1	a)	Explain with illustration the concept of infimum and supremum of a set.	
	b)	Define open set. Prove or disprove: Arbitrary union of open sets is open.	
Q.5	Ans	wer the following	16
	a)	Discuss the convergence of following series:	
		1) $\sum_{n=2}^{n} \frac{n+1}{n^2-1}$	
		ii) $\sum_{i=2}^{n-2} \frac{1}{i}$	
	b)	$\sum_{n=2} n^2 - 1$	
	D)	Define radius of convergence. Indistrate using any power series.	
Q.6	Ans	wer the following	16
	a) b)	Explain Lagrange's method for obtaining constrained maxima or minima.	
- -	,		
Q.7	Ans a)	wer the tollowing Examine the convergence of p-series for various values of p	16
	b)	State and prove rule of integration by parts.	

			Linear Algebra	& Line	er Mo				
Day & Date: Tuesday, 14-02-2023 Time: 03:00 PM To 06:00 PM									
Instr	uctio	ns: 1) 2) 3)	Q.Nos. 1 and 2 are compulso Attempt any Three questions Figures to the right indicate fi	ory. from Q. ull marks	3 to (s.				
Q.1	A) 1)	Choc If A a a) R c) R	ose the correct Alternative. nd B are two matrices of order $Rank(AB) = r_1 + r_2$ $Rank(AB) \ge r_1 + r_2 - n$	ernxn b) d)	with r Ran Ran				
	2)	For n soluti a) R	on-homogenous system of ϵ on exists if- $Cank[A \cdot h] > rank(A)$	equation	s Ax=				
	2)	c) R	Rank[A:b] = rank(A) < k	d)	All c				
	3)	watri							

Seat

No.

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)

odels

Q.7

- ranks r1 and r2, then
 - $k(AB) > r_1 + r_2$
 - $k(AB) \le r_1 r_2$
- =b with k unknowns, unique
 - Associative b)
 - Neither (a) nor (b) d)
- 4) If v_1 , v_2 , v_3 are three vectors such that $4v_1 + 2v_2 + v_3 = 0$, then
 - a) v_1, v_2, v_3 are linearly dependent vectors
 - b) v_1, v_2, v_3 are linearly independent vectors
 - c) Need to verify other linear combinations to check independence.
 - d) None of these

a) Commutative

c) Both(a) and (b)

- If G is a g-inverse of matrix A, then 5)
 - rank(A) = rank(G)a) $rank(A) \ge rank(G)$ b) $rank(A) \le rank(G)$ c) rank(GAG) < rank(A)d)

6) Linear combinations of estimable functions are

- Always estimable a) Always non-estimable b)
- c) May or may not be estimable None of these d)

For a matrix N with 5 rows and 3 columns, $\rho(N)$ is rank of N then 7)

- a) $\rho(N) \leq 5$ $\rho(N) \geq 3$ b) c) $\rho(N) \ge 5$ d) $\rho(N) \leq 3$
- 8) For a Gauss-Markov model $Y = X\beta + \varepsilon$,
 - a) $Cov(\varepsilon_i, \varepsilon_i) = 0, if i \neq j$
 - C) $Cov(\varepsilon_i, \varepsilon_i) > 0, if i \neq j$
- The quadratic form $2X_1^2 + X_2^2$ is -9)
 - a) positive definite
 - b) negative definite negative semi definite c) positive semi definite d)

b)

d)

 $\operatorname{Cov}(\varepsilon_i, \varepsilon_i) < 0, if \ i \neq j$

None of these

- k[A:b] = rank(A) = k
- of the above

Ρ Set

Max. Marks: 80

10) For which value of x will the matrix given below will become singular?

•				 	 	 •••••		· · ·	-
Γ	8	x	[0				-		
L	4	0	2						
Ľ	12	6	0]						
а)	4						b)	
С)	8						d)	

B) Fill in the blanks.

- 1) Multiplication of a matrix with a scalar constant is called as _____.
- The rank of identity matrix of order 7 is _____
- If transpose of the given matrix is equal to the matrix itself, then it is called _____.

6 12

- The product of matrix A and its inverse A⁻¹ is _____
- 5) The dimension of the vector space R² over the field R is _____
- If number of columns is less than number of rows, then the matrix is called as _____.

Q.2 Answer the following.

16

06

- a) Write a note on matrix multiplication. Also illustrate with one example.
- b) Define
 - i) Symmetric matrix
 - ii) Skew-symmetric matrix
- c) Define:
 - i) Span of a set of vectors.
 - ii) Spanning set
- d) Define subspace. State the conditions needed to verify whether a subset of a vector space is a subspace.

Q.3 Answer the following.

a)	Determine whether $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in R^3 / y = 0 \right\}$ is a vector space under regular	08
	addition and scalar multiplication	

addition and scalar multiplication.

b) Prove: For any vector \underline{u} ir	vector space V, 0. $\underline{u} = \underline{0}$ 08
---	---

Q.4 Answer the following.

a) How the independence of vectors is examined? Also verify whether08 following set is a set of independent vectors.

 $S = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \end{pmatrix} \right\}$

- b) Define: i) Sy
 - Symmetric matrix
 - ii) Skew-symmetric matrix

Prove or disprove: Every square matrix can be written as sum of symmetric and skew symmetric matrix.

Q.5 Answer the following.

a) Define norm of a vector. Using Gram Schmidt orthogonalisation process, obtain orthonormal basis from the given set S.

$$S = \left\{ \begin{pmatrix} 3\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\5 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$$

b) Describe row-reduced form of a matrix. Also give one example of such a **08** matrix of order 5 x 5.

Q.6 Answer the following.

- a) Define inverse of a matrix. Show that it is unique. **08**
- b) Show that rank of a matrix is unaltered by multiplication with a non-singular **08** matrix
- **Q.7** a) Show that the following system of equations is consistent. Also find solution **08** for the same.

x + y + z = 6 x + 2y + 3z = 14x + 4y + 7z = 30

b) Define linear model. Discuss the estimation of parameters involved in the model. **08**

α)	$\Gamma(1 \approx) = 1$		
Let	X be distributed as Exp(Mea	an θ)	Then distribution of $Y = X \theta$ is
a)	Exp (Mean θ)	b)	Exp (Mean 1)
C)	U(0,1)	d)	U(0,θ)
Let	X be a non-negative random (X) evicts then $\Gamma(X)$	n vari	able with distribution function F.
	(x) exists then $E(x) =$	<u>.</u> .	00
a)	\int	D)	
	F(x)dx		$\left[\left[F(x) - 1 \right] dx \right]$
	<i>J</i> 0		<i>J</i> 0
C)	8	d)	8
-,	$\int [1+F(x)]dx$	•.)	$\int [1 - F(r)] dr$
	0		0
For	X > 0, which of the following	ng is i	not true?
a)	$E[X^2] \ge [E(X)]^2$	b)	$E[1/X] \ge 1/E(X)$
C)	$E\left[\sqrt{X}\right] \ge \sqrt{E(X)}$	d)	$E[\log X] \le \log[E(X)]$
_			
For	which of the following distril	oution	, E(X) does not exist?
a)	Cauchy	b)	Uniform
C)	Normal	d)	Exponential

3) Let F(x) denotes the distribution function of random variable X. Then which of the following is not true?

- a) $0 \le F(x) \le \infty$

6)

7)

4)

- Le
- a)
- C) 5) Le
- b) $F(x_1) \le F(x_2)$ if $x_1 < x_2$ c) $F(-\infty) = 0$ d) $F(+\infty) = 1$

3) Figure to right indicate full marks.

Time: 03:00 PM To 06:00 PM Instructions: 1) Question no. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7.

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS) **Distribution Theory**

Q.1 A)

Day & Date: Wednesday, 15-02-2023

Seat

No.

- 1)

- Multiple choice questions.

- - Which of the following is not a scale family?

 - a) U(0,1) b) $U(0, \theta)$
- C) N(0, σ^2) d) $Exp(\theta)$

2) A random variable X is said to be symmetric about point α if .

- a) $P(X \ge \alpha + x) = P(X \ge \alpha X)$
- b) $P(X \ge \alpha + x) = P(X \le \alpha X)$
- c) $P(X \le \alpha + x) = P(X \le \alpha X)$
- d) $P(X \le \alpha + x) = P(X \ge \alpha X)$

Set Ρ

If $M_X(t)$ denotes MGF of random variable X. If Z = a X then $M_2(t)$ 8) is ____. a) $aM_X(t)$ b) $aM_X(at)$ c) $M_X(at)$ d) $aM_X(t/a)$ Let (X, Y) has bivariate normal BVN(3,4,25,36,3/5) then the conditional 9) mean of X given Y = 10 is _____. b) 4 a) 5 c) 3 d) None of these Let X_1, X_2, \dots, X_n be a random sample from pdf $f_x(x)$ and 10) $Y_1 \leq Y_2 \leq \cdots \leq Y_n$ be its order statistics. If pdf of Z is $n[F_x(z)]^{n-1}f_x(z)$ then Z is _____. a) sample median b) sample range c) smallest observation largest observation d) 06 B) Fill in the blanks. The mean of first order statistic in U(0,1) distribution is _____ 1) Let *X* and *T* be two iid random variables with pdf $f(x) = 2e^{-2x}$, $x \ge 0$. 2) The distribution of Z = X - Y is Suppose X_1, X_2, \dots, X_k is a multinomial random variate then 3) $Cov(X_i, X_j), i = j = 1, 2, ..., k, i \neq j$ is If Z is standard normal variate then variance of Z^2 is . 4) Let *X* be distributed as B(n, p). The distribution of Y = n - X is _____. 5) Suppose *X* is U(0,1) random variable then $Y = -\log X$ has 6) distribution. Q.2 Answer the following 16 a) Define scale family. Illustrate it with one example. **b)** Let *X* has N(0,1) distribution. Find the distribution of Y = |X|. c) Define power series distribution. Obtain its MGF. d) If X is symmetric about α then show that $E(X) = \alpha$. Answer the following. 16 a) Define distribution function of a random variable X. State and prove its important properties. b) Define truncated normal distribution truncated below a. Obtain its mean. Answer the following. 16 a) State and prove Markov's inequality. **b)** Let X is a non-negative continuous random with distribution function F(x). If E(X) exist then show that $E(X) = \int_0^\infty [1 - F(u)] du$ Q.5 Answer the following. 16 a) Define moment generating function (MGF) of a random variable X. Explain how it is used to obtain moments of a random variable *X*. **b)** Let X has Poisson (λ) distribution. Obtain the MGF of X. Hence obtain its mean and variance. Answer the following. 16 a) Define multinomial distribution. Obtain its moment generating function. Hence obtain the pmf of trinomial distribution.

Q.3

Q.4

Q.6

- b) Derive the *pdf* of largest order statistic based on a random sample of size n from a continuous distribution with pdf f(x) and cdf F(x).

16

Q.7 Answer the following.

- a) Let (X, Y) has $BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Obtain the conditional distribution of X given Y = y.
- **b)** If *X* and *Y* are jointly distributed with probability density function (p.d.f.). $f(x,y) = 24xy, x \ge 0, y \ge 0$ and $x + y \le 1$ Find.
 - 1) Marginal distributions of *X* and *Y*.
 - 2) Conditional distribution of *Y* given X = x.
 - $3) \quad E(Y/X = x)$

Seat No.					Set P					
M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)										
Day & [Date: Th	ursday, 16-0	Estimation 2-2023	The	ory Max. Marks: 80)				
Time: 0	3:00 PM	l To 06:00 Pl	M							
Instruc	tions: 1 2 3) Question n) Attempt an) Figure to ri	o. 1 and 2 are comp y three questions fro ght indicate full mark	ulsory om Q. <s.< td=""><td>/. No. 3 to Q. No. 7.</td><td></td></s.<>	/. No. 3 to Q. No. 7.					
Q.1 A) Multi 1)	i ple choice Which of th a) MLE al c) MLE is	questions. e following statemei ways exists always unbiased	nts is b) d)	10 correct MLE is always unique None of the above is true)				
	2)	Let X ₁ , X ₂ b a) sufficie b) not suff c) Minima d) comple	e iid Poisson (θ) van nt statistic for θ ficient statistic for θ I sufficient statistic fo te sufficient statistic	riables or θ for θ	s. Then $X_1 + 2X_2$ is					
	3)	$\begin{array}{l} \text{If } T_n \text{ is suffi} \\ \frac{\partial \log L}{\partial \theta} \text{ is a fu} \\ \text{a)} \theta \text{ only} \\ \text{c)} \text{both } T_n \end{array}$	cient statistic for θ b nction of and θ	ased b) d)	on random sample of size n , then T _n only none of the above					
	4)	The denom a) lower b c) amoun	inator of Cramer-Ra ound t of information	o ined b) d)	quality gives upper bound none of the above					
	5)	Let T_n be a a) T_n^2 is u b) $\sqrt{T_n}$ is c c) e^{T_n} is c d) $3T_n + 4$	n unbiased estimato nbiased estimator o unbiased estimator o unbiased estimator o is unbiased estimator o	or of θ . f θ^2 of $\sqrt{\theta}$ of e^{θ} ator of	. Then 3θ + 4					
	6)	Conditional a) Prior di c) Loss fu	distribution of rando stribution nction	om va b) d)	riable θ given $X = x$ is called Posterior distribution Bayes risk					
	7)	If T_1 is sufficient then an implication of the formula $E(T_1T_2)$ c) $E(T_1/T_2)$	cient statistic for θ a proved estimator of θ	nd T ₂) in te b) d)	is an unbiased estimator of θ , rms of its efficiency is $E(T_1+T_2)$ $E(T_2/T_1)$					
	8)	Let $I(\theta)$ be an unbiase a) $\geq \frac{[\Psi'(\theta)]}{I(\theta)}$	the Fisher information d estimator of $\Psi(\theta)$, $\frac{(\theta)^2}{(\theta)}$	on on then b)	θ , supplied by the sample. If <i>T</i> is the variance of <i>T</i> will be $\leq \frac{[\Psi'(θ)]^2}{I(θ)} $					
		c) $\geq \frac{1}{I(\theta)}$		d)	$\leq \frac{1}{I(\theta)}$					

06

16

16

16

16

16

9) Which of the following is a non-informative prior?

a)
$$\pi(\theta) = 1$$
 b) $\pi(\theta)$

c)
$$\pi(\theta) = \sqrt{I/(\theta)}$$
 d) All the above

10) Let, X_1, X_2 random sample of size 2 from $N(0, \sigma^2)$ then moment estimator of σ^2 is _____.

 $= 1/\theta$

a)
$$\frac{X_1^2 + X_2^2}{2}$$

c) $X_1 + X_2$
b) $\frac{X_1 + X_2}{2}$
d) $X_1 X_2$

B) Fill in the blanks.

- 1) If $E_{\theta}(T) \neq \theta$ then T is _____ estimator of θ .
- Bayes estimator of a parameter under squared error loss function is of posterior distribution
- 4) Method of scoring is used in _____ estimation.
- 5) If prior and posterior distributions belongs to the same family of distributions then such family is called _____.
- 6) Based on random sample of size n from $N(0, \sigma^2), \sigma^2 > 0$, MLE of σ^2 is _____.

Q.2 Answer the following

- a) Define sufficient statistic and minimal sufficient statistic.
- **b**) Define Fisher information in a single observation and in n iid observations.
- c) Define MLE. State and prove the invariance property of MLE.
- d) State and prove Basu's theorem. Illustrate its applicability with example.

Q.3 Answer the following.

- a) State and prove Neyman-Fisher factorization theorem.
- **b)** Let $X_1, X_2, ..., X_n$ be a random sample from $U(0, \theta), \theta > 0$ distribution. Show that $X_{(n)}$ is sufficient statistic for θ , but $X_{(1)}$ is not sufficient statistic.

Q.4 Answer the following.

- a) State and prove Cramer-Rao inequality with necessary regularity conditions.
- **b)** Let $X_1, X_2, ..., X_n$ be iid Poisson (λ) random variables. Obtain C-R lower bound for unbiased estimator of λ .

Q.5 Answer the following.

- a) Define UMVUE. State and prove Lehmann-Scheffe theorem.
- **b)** Obtain UMVUE of p(1-p) based on a random sample of size n from B(1,p) distribution.

Q.6 Answer the following.

- a) Define maximum likelihood estimator (MLE). Describe the method of maximum likelihood estimation for estimating an unknown parameter.
- **b)** Let $X_1, X_2, ..., X_n$ be iid $U(0, \theta), \theta > 0$ Find:
 - 1) Moment estimator θ
 - 2) MLE of θ

16

Q.7 Answer the following.

- a) Define Bayes estimator. Describe the procedure of obtaining Bayes estimator.
- **b)** Let $X_1, X_2, ..., X_n$ be random sample from $B(1, \theta)$ distribution and prior density of θ is $B_1(\alpha, \beta)$. Assuming squared error loss function, find Bayes estimator of θ .

			(STATISTICS) Statistical Comput	ting
Day & Time:	Date: 03:00 I	Friday, 17-02-2023 PM To 06:00 PM		Max. Marks: 80
Instru	ctions	: 1) Q. Nos. 1 and 2 2) Attempt any thi 3) Figure to right i	2 are compulsory. ree questions from Q. N indicate full marks.	lo. 3 to Q. No. 7
Q.1	A) F i 1)	II in the blanks by Let $X \sim U(0,1)$ a $Y = F_X(.)$ then a) U (0,1) c) N (0,1)	choosing correct alternative follows b) d)	ernatives given below. 10 htive distribution function. If Exp (1) Cauchy (0,1)
	2)	Which of the fo from a statistica a) Acceptance	llowing method is used al distribution? e - Rejection method	for generating random numbers

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022

- b) Inverse transform method
- Monte Carlo methods C)
- d) All the above

Seat

No.

In Simpson's $\frac{1^{rd}}{3}$ rule, the numbers of intervals are _____. 3)

- Even a) Odd b)
- c) Multiple of 3 only At least 6 d)
- To obtain one observation from bi-variate Poisson distribution, we 4) need to draw Poisson random numbers.
 - a) One Two b)
 - c) Three d) Four
- 5) Which of the following numerical methods are used to solve f(x) = 0? Trapezoidal rule
 - a) Bisection method
 - c) Secant method
- In Bootstrap method, _____ sampling method is used. 6)
 - a) SRSWOR
- b) SRSWR

Both a) and c)

b)

d)

- c) Stratified sampling d) Systematic sampling
- Rate of convergence to correct root is very high for _____ method. 7)
 - Bisection a) Newton-Raphson b)
 - c) Regula False Euler's method d)
- For $f(x) = -x^2$ with $x_0 = 3$ and $\alpha = 0.5$, the maximum value of the 8) given function using steepest ascent method is
 - a) 1 b) 3
 - c) 0 d) -3
- 9) method fits a quadratic equation using three points for finding approximate root of given function Secant method
 - a) Bisection method b)
 - c) Newton-Raphson method d) Muller's method

SLR-GR-5

Set

- n numbers

		10)	If U_2	$_{1}, U_{2} \sim U(0)$,1) then $\sqrt{-}$	$-2\log(U_1)$	cos(2	$2\pi U_2$) follows			
			a)	Gamma d	istribution		b)	Standard Normal distribution			
			C)	Beta distri	bution		d)	Gamma distribution			
	B)	Fill i	n the	e blanks.					06		
		1)	lf U~	-U(0,1) the	n X = -2	$\log(1-U)$	follo	WS			
		2)	If $Y \sim$	- Gamma (n,1) then,	X = 2Y fo	llows	Chi-square with			
		2)	aegr	ees of free	aom.	haabaiaya	from	comple of size a we get			
		3)	IU BO	re-samn	sampling t Jee	lecnnique	IIOIII	sample of size <i>n</i> , we get			
		4)	FM :	le-samp	s used to f	ind					
		5)	Con	aruential ra	andom nur	nber gene	rator	gives random numbers			
		6)	Let 2	<i>K∼U</i> (0,1) a	and $Y \sim U(0)$	(,1) then d	istribu	ution of $Z = X + Y$ can be			
		,	obta	ined using	· `						
Q.2	Ans	wer th	ie fo	ollowing			.,		16		
	a)	Desci	ibe l	linear cong	ruential m	ethod with	1 SUIta	able example.			
	D)		a pos		of $xe^2 = 2$	by the m	ethoo	f of False position (correct up			
	c)	Desci	rihe '	Rootstran r	nethod						
	d)	What	is co	onvolution	of distribut	tion? Obta	in for	mula for convolution of			
	- /	contir	านอน	s distributio	on.						
Q.3	Ans	Answer the following									
	a)	What	is a		rejection (A R) meth		random number generation?			
		vvrite		algorithm to	generate	random r	umb	ers from $N(\mu, \sigma^2)$ distribution			
	h)	Ohtai	л ап	algorithm	for genera	ating rando	m ni	where from v^2 distribution			
	~,	Obtai	in an	aigonainn	ior genera	ang ranac	///////				
Q.4	Ans	wer th	ne fo	llowing					16		
	a)	What	is E	M algorithr	n? Illustraf	te using a	n exa	mple.			
	b)	Expla	in th	e Bisectior	ו method f	for finding	solut	ion to the equation $f(x) = 0$			
~ -											
Q.5	Ans	Stata		nrovo tho	rocult for (aonoratina	ropo	lom abaanyatiana from Daiaaan	16		
	a)	distrik	anu	prove the		yenerating	Tano				
	b)	l et X	X_{2}	<i>X</i> be a	random s	ample of s	size r	a from the displaced			
	~,	expor	ienti	al with pdf	$e^{-(x-\theta)}$ Ira	(x) the	en she	ow that, the jackknife estimator			
		is unb	biase	ed estimato	or of θ .	,)()					
Q.6	Ans	wer th	ne fo	ollowing					16		
	a)	Let X	~U(0,1)and Y~	U(0,1). De	efine $Z = Z$	X + Y	, obtain the distribution of Z .			
	b)	Obtai	n an	algorithm	to generat	te n rando	m nu	mbers from Binomial (m, p)			
		aistric	JUTIO	n.							
Q.7	Ans	wer tł	ie fr	llowing					16		
_	a)	Obtai	n an	algorithm	to estimat	e universa	al con	stant π using Monte Carlo	. •		
	,	metho	od.	J				<u> </u>			
	h)	Evola	in N	owton-Ran	hson math	had of find	lina e	olution of the equation			

b) Explain Newton-Raphson method of finding solution of the equation f(x) = 0. Write its geometrical meaning.

lf F	⁼ is a σ -field, then which of the follo	owing is not always correct?
a)	F is a field	
b)	F is a class closed under countal	able unions
C)	F is a class closed under comple	ementation
d)	F is a minimal sigma field	
The	he sequence of sets $\{A_n\}$, where A_n	$I_n = \left(0, 2 + \frac{1}{n}\right)$ converges to
a)	(0,2) b)) (0,2]
c)	(0,3) d)) [0,2]

Seat No.					:	Se
	M.Sc.	(Semester	- II) (New) (CBC (STATIS Probability	S) Exa TICS) y Theor	mination: Oct/Nov-202 ry	22
Day & [Time: 1	Date: M 1:00 Al	onday, 20-02 /I To 02:00 P	-2023 M		Max.	Mar
Instruc	tions:	1) Q. Nos. 1 a 2) Attempt an 3) Figure to ri	and 2 are compulso y three questions fr ght indicate full ma	ry. ^r om Q. N rks.	o. 3 to Q. No. 7	
Q.1 A) Fill 1)	in the blank If $\{A_n\}$ is de a) lim inf c) both (a	s by choosing corrections by choosing sequence A_n a) and (b)	e of sets, b) d)	then it converges to lim sup $\{A_n\}$ None of the above	
	2)	If for two in $P(A \cup B) =$ a) 0.68 c) 0.52	dependent events . 	A and <i>B,</i> b) d)	P(A) = 0.2, $P(B) = 0.4$, the 0.55 0.68	en
	3)	If $x \in A$ imp a) $A \subset B$ c) $A = B$	blies $x \in B$, then	b) d)	$B \subset A$ All of these	
	4)	If events A is correct? a) $P(A \cap A)$ b) $P(A \cup A)$ c) $P(A \cup A)$ d) $P(A \cap A)$	and B are independ B) = P(A) + P(B) $B) = P(A) + P(B) - B$ $B) = P(A) * P(B)$ $B) = P(A) - P(B)$	dent eve - <i>P(A)</i> * I	nts, then which of the follov $P(B)$	ving
	5)	lf <i>X_n</i> is a de random va a) r th mea b) probat c) r th mea d) r th mea	egenerate random v riable to X_n , then { an and in probability bility and in distribut an, in probability and an, almost sure, in p	variable f X _n } conv v ion d in distri probabilit	for all n and X is identical erges to X in ibution y and in distribution	
	6)	A class F is implies a) A ∩ A c) both (a	said to be closed u $B \in F$, for all $A, B \in F$ a) and (b)	under fini 	ite intersection, if $A, B \in F$ $A^{C} \in F, B^{C} \in F$ None of these	

Ρ et

SLR-GR-7

7)

8)

larks: 80

06

16

16

16

16

16

- 9) A class F is said to be monotone class, if _____.
 - a) It is a field
 - b) If it is closed under monotone operations
 - c) Both (a) and (b)
 - d) Either (a) and (b)

10) Indicator function is a _____.

- a) Simple function
- c) Arbitrary function

B) Fill in the blanks.

- 1) If F(.) is a distribution function for some random variable, then $\lim_{n \to -\infty} F(x) = ___.$
- 2) Convergence in probability implies _____ convergence.
- A class closed under complementation and finite union is called as _____.

b)

d)

Elementary function

All of these

- 4) If $A \subset B$, then $P(A) _ P(B)$.
- 5) The convergence in ______ is also called as a weak convergence.
- 6) Expectation of a random variable X exists, if and only if _____ exists.

Q.2 Answer the following

- a) Define mixture of two probability measures. Show that mixture is also a probability measure.
- b) Prove or disprove: Arbitrary intersection of fields is a field.
- c) Write a note on Lebesgue measure.
- d) Write a note on characteristic function of a random variable.

Q.3 Answer the following

- a) State and prove monotone convergence theorem.
- **b)** Prove that if $\{B_n\}$ converges to B, then $P(B_n)$ also converges to P(B).

Q.4 Answer the following

- a) Discuss limit superior and limit inferior of a sequence of sets. Find the same for sequence $\{A_n\}$, where $A_n = \left(0, 3 + \frac{(-1)^n}{n}\right)$, $n \in N$
- **b)** Prove that an arbitrary random variable can be expressed as a limit of sequence of simple random variables.

Q.5 Answer the following

- a) Prove that collection of sets whose inverse images belong to a σ -field, is a also a σ -field.
- **b)** Prove that inverse image of σ -field is also a σ -field.

Q.6 Answer the following

- a) Prove or disprove:
 - 1) Convergence in distribution implies convergence in probability
 - 2) Convergence in probability implies convergence in distribution
- **b)** Define expectation of simple random variable. If *X* and *Y* are simple random variables, prove the following:
 - 1) E(X + Y) = E(X) + E(Y)
 - 2) E(cX) = c E(X), where c is a real number
 - 3) If X > 0 a.s., then E(X) > 0

Q.7 Answer the following

- a) Prove that expectation of a random variable X exists, if and only if E|X| exists.
- b) State and prove Borel-Cantelli lemma.

tate is also called as b) Binomial state d) None of these	
natrix is	
er of states	
i, P _{ii} = 1, then state i is called as b) absorbing state d) None of above	
	Page 1 of 2
	Page 1 of 2

Max. Marks: 80 Time: 11:00 AM To 02:00 PM 2) Attempt any Three from Q. 3 to Q. 7 3) Figures to the right indicate full marks. A) **Choose Correct Alternative.** 10 Which of the following are class properties? 1) a) Persistency b) Periodicity c) Transientness d) All of these Let $\{X_n, n \ge 0\}$ be a mark chain with state space $\{0, 1, 2\}$ and tpm 2) 10.5 0 0.51 0.8 Which of the following is true? $P = [0.1 \quad 0.1]$ 0 8.0 0.2 a) State 1 is ergodic b) State 0 and 1 are communicative c) All states are recurrent d) State 1 is transient 3) To find n-step transition probabilities, _____ are used a) Newton equations b) Sterling's equations c) Chapman-Kolmogorov equations d) Lebesque equations If $\{N(t)\}$ is a counting process, then N(0) =4) a) 0 b) 1 c) 10 d) 2.71 The collection of all possible states of a stochastic process is called as 5) a) State Space b) Time Space c) Chain space d) All of these 6) A non-null recurrent aperiodic s a) Transitive state c) Ergodic state A column sum of a stochastic m 7) a) Always one b) Always equal to the numbe c) Is always 3 d) May or may not be 1

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)

Stochastics Processes Day & Date: Tuesday, 21-02-2023

Seat

No.

Instructions: 1) Question 1 and 2 are compulsory.

Q.1

- In a Markov chain, if for a state 8)
 - a) finite state
 - c) complete state

Set

SLR-GR-8

	SLR-GR-8
If $\{N(t)\}$ is a poisson process, then the inter-arrival times follow	

		 a) beta distribution of second kind b) Poisson distribution b) exponential distribution 	
	10)	 The process {X(t), t > 0}, where X(t) = number of COVID patients in a city at the end of nth day, is an example of stochastic process. a) discrete time continuous state space b) discrete time discrete state space c) continuous time continuous state space d) continuous time discrete state space 	
	B)	 Fill in the blanks 1) If probability 'p' of positive jump is 0.5 for a random walk, then it is called as 2) If period of a state is one, then the state is called as 3) A finite Markov chain which contains only one communication class is 	06
		4) For a persistent state 1, the utimate first return probability $P_{ii} = ___1$ 5) In a Markov chain, if for a state i, $P_{ii} = 1$, then state i is called as $___$. 6) Yule-Furry process is also called as $___$.	
Q.2	Ans a) b) c) d)	wer the following. Discuss first return probability for a state. Write a note on counting process. What is transition probability matrix? Define and illustrate Markov chain. Show that initial distribution and TPM specifies the Markov chain completely.	16
Q.3	Ans a) b)	wer the following. Describe gambler's game. If a gambler starts the game with initial amount, 'i', find his winning probability. Prove or disprove: Periodicity is class property.	08 08
Q.4	Ans a)	wer the following. Define stationary distribution of a Markov chain. Find the same for a Markov chain with state space {1,2,3}, whose tpm is $ \begin{bmatrix} 1/3 & 2/3 & 0 \\ 1/3 & 1/3 & 1/3 \\ 2/5 & 1/5 & 2/5 \end{bmatrix} $	08
	b)	Prove that persistency is a class property.	08
Q.5	Ans a) b)	wer the following. Define pure birth process and obtain its probability distribution. Define branching process. With usual notations, obtain its mean and variance.	08 08
Q.6	Ans a)	wer the following. If {N(t)} is a Poisson process, then for s < t, obtain the distribution of N(s), if it is already known that N(t)=k.	08
	b)	Calculate the extinction probability for branching process.	08
Q.7	a)	Define stochastic process. Discuss its classification based on state space and time space.	08

9)

b) Establish the equivalence between two definitions of Poisson process. **08**

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov - 2022 (STATISTICS)

Theory of Testing of Hypotheses

Day & Date: Wednesday, 22-02-2023 Time: 11:00 AM To 02:00 PM

Seat No.

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 A) Fill in the blanks by choosing correct alternatives given below.

- 1) Let *X* has a $N(\mu, \sigma^2)$ distribution where both μ and σ^2 are unknown. Then the simple hypothesis is _____.
 - a) $H_0: \sigma = 5$ c) $H_0: \mu = 5, \sigma = 1$ b) $H_0: \mu = 10$ d) $H_0: \mu \neq 5, \sigma = 4$
- 2) In order to obtain a most powerful test, we
 - a) minimize the level of significance
 - b) minimize the power
 - c) minimize the level of significance and fix the power
 - d) fix the level of significance and maximize the power

3) In testing $H_0: \sigma = \sigma_0$ in $N(0, \sigma^2)$ the critical region based on n observations is $\sum_{i=1}^n X_i^2 < k$. For which alternative hypothesis does this provide UMP test?

- a) $\sigma \neq \sigma_0$ b) $\sigma = \sigma_0$
- c) $\sigma < \sigma_0$ d) $\sigma > \sigma_0$
- For testing simple versus simple hypotheses MP and LRT tests are _____.
 - a) the same
 - b) different
 - c) not comparable
 - d) equivalent in size but not with respect power
- 5) If in Wilcoxon's signed-rank test, sample size is large, the statistic T^+ is distributed with mean _____.
 - a) n(n+1)/2 b) n(n+1)/4
 - c) n(2n+1)/4 d) n(n-1)/4
- 6) If k = 2 then Kruskal-Wallis H test reduces to _____
 - a) Kolmogorov-Smirnov test b) Wilcoxon signed-rank test
 - c) Mann-Whitney U test
- d) none of these
- 7) Family of *Cauchy* $(1, \theta)$ distribution _____
 - a) has MLR property
 - b) belong to one parameter exponential family
 - c) has mean θ
 - d) does not have MLR property

SLR-GR-9

Max. Marks: 80

Set | P

							-3
		8)	A no a) c)	onparametric version of the pa Mann-Whitney test sign test	arame b) d)	tric analysis of variance is Kruskal-Wallis test Wilcoxon signed-rank test	
		9)	The a) c)	area of critical region depend size of type-I error value of statistic	ls b) d)	size of type-II error number of observations	
		10)	A siz a) b) c) d)	ze α test is said to unbiased if it has maximum power in the size and power are equal power is smaller than size size of the test does not exc	e class	$\underline{}_{s}$ of all size α tests s power	
	B)	Fill i 1)	n the To of hypo	blanks. otain a critical region (or cut o thesis, we need the distributio	ff poir on of t	nt) in testing a statistical est statistic under	06
		2) 3)	In like rande asym In tes	elihood ratio test, under some om variable – $2 \log \lambda(x)$ (when optotically distributed as sting independence in a 2 × 3	e regu ere λ(conti	larity conditions on $f(x, \theta)$ the x) is a likelihood ratio is ngency table, the number of	
		4) 5) 6)	degre The s Let X quan Gene	ees of freedom in χ^2 distributi statistic H in Kruskal-Wallis te X_1, X_2, \dots, X_n be iid $N(\mu, \sigma^2)$, w tity for confidence interval of eralized NP lemma is used to	on is st is a here a u is const	$_{}^{-}$ upproximately distributed as	<u></u> .
Q.2	Ans a)	wer th Expla	he fol ain the	l lowing e terms: i) Randomized test ii) Non	randomized test. Give one	16
	b) c) d)	Desc Desc State	ribe V ribe p one	Wald-Wolfowitz run test. Divotal quantity method to obtain sample U statistic theorem.	ain co	nfidence interval of parameter θ .	
Q.3	Ans a)	wer the Defin	h e fol ie mo α for t	l lowing st powerful (MP) test. Explain testing simple hypothesis aga	the n inst s	nethod of obtaining MP test of imple alternative.	16
	D)	$H_1: \sigma$ μ is k	$\sigma = \sigma_1$	$(> \sigma_0)$ based on a random satisfies of size α in $(> \sigma_0)$ based on a random satisfies α	ample	of size <i>n</i> from $N(\mu, \sigma^2)$, where	
Q.4	Ans a)	wer tł Show testin	he fol v that ng one	l lowing for a family having MLR prop e sided hypotheses against o	erty, f ne sid	here exists UMP test for ed alternative.	16
o -	b)	Let X UMP	, X ₂ , size	, X_n be a random sample of α test for testing $H_0: \theta \le \theta_0$	rawn again:	from $U(0, \theta)$ distribution. Find st $H_1: \theta > \theta_0$.	4.0
Q.5	Ans	wer ti	ne tol	liowing			16

- wer the following Describe likelihood ratio test (LRT). Show that LRT for testing simple hypothesis against simple alternative is equivalent to Neyman-Pearson test. a)
- Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from $N(\theta, \sigma^2), \sigma^2$ is known. Obtain shortest length confidence interval for θ . b)

Q.6 Answer the following

- a) Define (i) UMA confidence interval and (ii) UMAU confidence interval. State and prove the result useful in obtaining UMA confidence interval using suitable test.
- b) Discuss the use of chi-square test in goodness of fit problem.

Q.7 Answer the following

- a) Define (i) similar test and (ii) test having Neyman structure. State the result connecting similar test with Neyman structure.
- **b)** Stating the hypothesis, explain two sample Wilcoxon-Mann-Whitney test and state mean of the test statistic.

Seat	
No.	

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS) Sampling Theory

Day & Date: Thursday, 23-02-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 73) Figure to right indicate full marks.

Q.1 A) Fill in the blanks by choosing correct alternatives given below.

- 1) The most important factor in determining the sample size is
 - a) The availability of resources b) Purpose of survey
 - c) Heterogeneity of population d) None of the above

2) In which of the following situation(s) cluster sampling is appropriate?

- a) When the units are situated for apart
- b) When sampling frame is not available
- c) When all the units are not easily identifiable
- d) All the above
- 3) To have minimum $var(\bar{y}_{st})$, one has to choose a large sample using cost per unit of survey provided
 - a) n is fixed, S_j is small and C_j is small
 - b) n is fixed, S_j is small and C_j is large
 - c) n is fixed, S_j is large and C_j is small
 - d) n is fixed, S_i is large and C_i is large
- 4) Cluster sampling is efficient than simple random sampling without replacement if the intraclass correlation coefficient ρ is,
 - a) $\rho > 0$ b) $\rho < 0$
 - c) $\rho = 0$ d) $\rho = 1$
- 5) If the size values associated with 5 population units are 23, 18, 36, 9 and 14 and a random number selected is 44 then which population unit will you select using Cumulative total method in the probability proportional to size sampling?

a)	4	b)	3
C)	2	d)	5

- 6) Systematic random sampling is more efficient than stratified random sampling if,
 - a) $\rho_{wst} = 0$ b) $\rho_{wst} > 0$ c) $\rho_{wst} < 0$ d) $\rho_{wst} = 1$
- 7) In cluster sampling in usual notations, the relation between S^2 , S_w^2 and S_b^2 is,
 - a) $(NM 1)S^2 = N(M 1)S_w^2 + (N 1)S_b^2$
 - b) $(NM 1)S^2 = M(N 1)S_b^2 + (N 1)S_b^2$
 - c) $(N-1)S^2 = M(N-1)S_w^2 + S_b^2$
 - d) $(NM 1)S^2 = S_w^2 + (N 1)S_h^2$

Max. Marks: 80

- 8) A population was divided into clusters and it was found that within cluster variation was less than the variation between the clusters. If a random sample of units was selected from each cluster then the sampling procedure used is,
 - a) Multistage sampling
- b) Stratified sampling
- c) Cluster sampling
- d) Systematic sampling
- 9) Probability Proportional to Size sampling is more efficient than simple random sampling with replacement in usual notations if,

a)
$$COV(X, \frac{y^2}{x}) < 0$$

b) $COV(X, \frac{y^2}{x}) > 0$
c) $COV\left(X, \frac{y^2}{x}\right) = 0$
d) $COV(X, \frac{x^2}{y}) > 0$

10) f \overline{y} is sample mean per element in two stage sampling, when a simple random sample of *n* first stage units are drawn from *N* first stage units and *m* second stage units drawn from *M* second stage units with replacement at both stages then $V(\overline{y})$ is,

a)
$$V(\bar{y}) = \frac{N-1}{Nn}S_1^2 + \frac{M-1}{M}S_2^2$$

b) $W(\bar{y}) = \frac{N-1}{Nn}S_1^2 + \frac{M-1}{M}S_2^2$

$$V(\bar{y}) = \frac{M}{N} S_1^2 + \frac{M}{Mm} S_2^2$$

c)
$$V(\bar{y}) = \frac{N-1}{Nn}S_1^2 + \frac{M-1}{Mm}S_2^2$$

d) $V(\bar{y}) = \frac{N-1}{Nn}S_1^2 + \frac{M-1}{Mnm}S_2^2$

B) Fill in the blanks or true or false.

- 1) More heterogeneous is the population _____ is the sample size.
- 2) In cluster sampling, the variance within clusters is _____ between cluster variance.
- If an investigator select districts from a state, Panchayat samities from districts and farmers from Panchayat samities, then such sampling procedure is known as _____
- 4) Estimation of sample size for a stratum subject to the prefixed value of $var(\bar{X}_{st})$ in stratified sampling is called _____ allocation
- 5) If information is not available on certain sampling units then it is called as _____.
- 6) When the population consists of units arranged in a sequence or deck, one would prefer _____.

Q.2 Answer the following

- a) Explain the following concepts with respect to random to sampling.
 - i) Probability sampling
 - ii) Population
 - iii) Sample unit
 - iv) Sampling frame
- **b)** If a simple random sample without replacement of size *n* clusters is drawn from the population of *N* clusters each with same size *M*, then derive an unbiased estimator of population mean with its variance in terms of intra class correlation coefficient.
- c) If a simple random sample of size n is drawn from a population of N units. Discuss when regression estimator is more precise than ratio estimator assuming sample size n is large with justification.
- d) Explain Midzuno sampling design and obtain first order inclusion probability under Midzuno sampling design.

16

16

Q.3 Answer the following

- a) In stratified random sampling suppose the total cost of sampling is $= \sum_{h=1}^{k} C_h n_h$, where C_h is the average cost of surveying a unit in the hth stratum. Determine the sample size, n_h , allocated to hth stratum such that n_h is proportional to population stratum size, N_h for a given cost of survey. Is estimator $\bar{y}_{st} = \sum_{h=1}^{k} W_h \bar{y}_h$ remains unbiased for population mean? Justify your answer. Obtain the mean square error of \bar{y}_{st} under proportional allocation for given cost function.
- **b)** Explain the Neyman allocation, in case of stratified random sampling. Derive the condition on stratum size for which variance of an unbiased estimator of population mean is minimum when sample size is fixed. Hence obtain the minimum variance of an unbiased estimator of population mean.

Q.4 Answer the following

a) In a linear systematic random sampling of size n show that

$$var(\bar{y}_{sys}) = \frac{N-n}{nN} S_{wst}^2 \left[1 + (n-1)\rho_{wst}\right]$$

where is variance among units that lie in the same stratum and is correlation between units that are in the same systematic sample. Hence show that systematic sampling is more precise than stratified random sampling if $\rho_{wst} < 0$.

b) Explain circular systematic random sampling with an illustration. Show that mean of circular systematic random sample is an unbiased estimator of population mean.

Q.5 Answer the following

- a) Explain Lahiri's method to obtain probability proportional to size sample of size n. Show that, inclusion probability of ith unit is proportional to its size variable.
- b) In case of probability proportional to size (PPS) sample drawn with replacement, show that Hansen-Hurwitz estimator is an unbiased estimator of population total. Obtain variance of Hansen-Hurwitz estimator.

Q.6 Answer the following

- a) Define Hartley and Ross estimator of population ratio. Show that it is unbiased
- **b)** Obtain variance of an unbiased estimator \bar{y} of population mean when sample is selected without replacement in first-stage as well as in second-stage. Also obtain estimated variance.

Q.7 Answer the following

- a) Determine the optimum allocation value n' of first-phase sampling and n_h^* of second-phase so as to minimize variance of \bar{y}_{std} , an unbiased estimator of population mean, for specified cost, in double sampling.
- **b)** What do you mean by unit non-response? Discuss the effect of it on the estimation of population mean.

16

16

16

2) 3)	 Attempt any three questions from Q Figure to right indicate full marks.). NC	o. 3 to Q. No. 7
Cho 1)	An estimator T_n is said to weakly co a) $P_{\theta}\{ T_n - \theta > \varepsilon\} = 1$ b) $\lim_{n \to \infty} P \theta\{ T_n - \theta > \varepsilon\} = 1$ c) $\lim_{n \to \infty} P \theta\{ T_n - \theta > \varepsilon\} = 0$ d) all the above	onsis	tent for θ if
2)	Consider the following statements: 1. Joint consistency implies margin 2. Marginal consistency implies joi Which of the above statements is / a a) Only 1 b c) both 1 and 2 c	nal c int c are t o) d)	consistency. onsistency. crue? Only 2 neither 1 nor 2
3)	 Which one of the following is true for distribution by the MLE a) unbiased but not consistent b) consistent but not unbiased c) both consistent and unbiased d) neither consistent nor unbiased 	or es d	timation of θ for $U(0, \theta)$
4)	For a distribution belonging to one p estimator based on sufficient statistic a) maximum likelihood b c) both (A) and (B) c	bara ic is b) d)	meter exponential family, -— CAN for <i>θ</i> . Moment neither (A) nor (B)
5)	In a random sample of size <i>n</i> from <i>I</i> reported to be 1.5. The variance of the of case of \sqrt{n} ($\overline{X}n^2 - \theta^2$) is given bya) 10 begin{array}{c} & b \\ c & b \\ c & b \\ c & b \\ c & c \\ c &	N(<i>θ</i> the a D) d)	 ,1) distribution, MLE of θ was asymptotic normal distribution <u>-</u>. 9 1
6)	Let $X_1, X_2,, X_n$ be iid with $E(X_i^2 = 1)$ distribution of \overline{X}_n is a) $N(0, \frac{\sigma^2}{n})$ b	Var(5)	$X_i) = \sigma^2$ then asymptotic $N(0, \sigma^2)$
	C) /V(U,1) C	<i>.</i>)	$N(0,\frac{1}{n})$
7)	If T_1 and T_2 are consistent estimator a) ARE $(T_1, T_2) = 1$	rs of c)	θ then we prefer T_1 to T_2 if ARE $(T_1, T_2) > 1$

2)	Consider the following statemer
	1. Joint consistency implies m

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS) **Asymptotic Inference**

Day & Date: Monday, 13-02-2023

Seat

Q.1 A)

No.

Time: 11:00 AM To 02:00 PM

SLR-GR-12

Set Ρ

Max. Marks: 80

10

c) ARE $(T_1, T_2) < 1$ None of these d)

- 8) A sequence of estimators T_1, T_2, \dots, T_n of $\phi(\theta)$ is said to be best asymptotically normal (BAN) if it satisfies the condition _____.
 - $\sqrt{n} [T_n \phi(\theta)] \sim N(0, \sigma^2)$ as $n \to \infty$ a)
 - b) T_n is consistent
 - T_n has minimum variance as compared to the variance of any C) other estimator is T_n^*
 - d) all the above

9) The variance stabilizing transformation for Poisson population is

- Logarithmic a) square root b)
- tanh-1 sin⁻¹ C) d)

Bartlett's test is used to investigate the significant difference between 10) of normally distributed populations.

- proportions a) b) means d) none of these
- c) variances

B) Fill in the blanks.

- 1) Let X_1, X_2, \dots, X_n be iid from poisson (θ). CAN estimator of $P_{\theta}(X = 0)$ is _____
- Exponential family is _____ than the Cramer family. 2)
- If an estimator T_n is consistent for θ then $\Psi(T_n)$ is consistent for $\Psi(\theta)$ if 3) Ψis function.
- Asymptotic distribution of LRT statistic is ____ 4)
- Variance stabilizing transformation was introduced by _ 5)
- For *Laplace* $(\theta, 1)$ distribution, the asymptotic variance of \overline{X}_n is 6)

Q.2 Answer the following

- State Cramer regularity conditions. a)
- Show that sample mean is consistent estimator of population mean b) whenever population mean is finite.
- Describe Rao's score test. State its asymptotic distribution. C)
- Based on random sample of size *n* from Poisson (θ), obtain variance d) stabilizing transformation of the estimator.

Q.3 Answer the following

- Define a consistent estimator for a vector parameter. Show that joint a) consistency is equivalent to marginal consistency.
- Let X_1, X_2, \dots, X_n be *iid* $U(0, \theta)$, computing the actual probability show that b) $X_{(n)}$ is consistent estimator of $U(0, \theta)$.

Q.4 Answer the following

- Define CAN estimator for a real parameter θ . State and prove invariance a) property for a CAN estimator.
- Let X_1, X_2, \ldots, X_n be *iid* exponential with location θ . Examine whether $X_{(1)}$ is b) CAN for θ .

Q.5 Answer the following

- Define BAN estimator. Show that sample distribution function at a given a) point is CAN for the population distribution function at the same point
- Let X_1, X_2, \dots, X_n be a random sample of size n from the distribution having b) $pdf f(x; \mu, \lambda) = \frac{1}{\lambda} \exp\left[-\left(\frac{x-\mu}{\lambda}\right)\right], x \ge \mu, \lambda > 0.$ Obtain moment estimator of (μ, λ) and its asymptotic variance-covariance matrix.

16

06

16

16

16

Q.6 Answer the following

- What is variance stabilizing transformation? Illustrate an application of variance stabilizing transformation in constructing large sample confidence intervals.
- **b)** Based on random sample of size *n* from exponential distribution with mean θ , obtain variance stabilizing transformation for MLE of θ . Obtain $100(1 \alpha)$ % confidence interval for θ based on the transformation.

Q.7 Answer the following

- a) Derive Bartlett's test for homogeneity of variances of several normal populations.
- **b)** Let $X_1, X_2, ..., X_n$ be *iid* B $(1, \theta)$. Let $\Psi(\theta) = \theta(1 \theta)$. Obtain CAN estimator for $\Psi(\theta)$. Discuss its asymptotic distribution at $\theta = \frac{1}{2}$.

		Wullivaliate /	- 11a	19313	
ay me	& Date : 11:00	e: Tuesday, 14-02-2023 0 AM To 02:00 PM		Max. Marks:	: 80
str	uctior	 ns: 1) Q. Nos.1and 2 are compulsory. 2) Attempt any Three questions from 3) Figures to the right indicate full results. 	om Q nark	.3 to Q.7 s.	
.1	A) 1)	Choose Correct Alternative. Let $\underline{X} = (X_1, X_2, X_3)$ is a random vector are 0.6, 0.4 and 0.2. Then proportion principal component is a) 0.2 c) 0.3333	r wit of va b) d)	h Var(X) = \sum . Eigen values of \sum ariation explained by the first 0.5 0.6666	10
	2)	Let \underline{X} be a random vector with of variances of p variables in \underline{X} will be lef a) increase trace(Σ) c) Does not affect trace(Σ)	covai ead te b) d)	riance matrix Σ . A decrease in $\Sigma_{}^{O}$. Decrease trace(Σ) Nothing can be said	
	3)	Let p dimensional vector \underline{X} has $N_p(\mu, \underline{X} = (\underline{X}_{(1)}, \underline{X}_{(2)})$ in q and p-q component variance-covariance matrix of $\underline{X}_{(2)}$ give a) $\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ b) $\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$ c) $\Sigma_{12} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ d) $\Sigma_{21} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$	Σ) di ent s ren <u>X</u>	stribution. Let us partition ub vectors. Then conditional (1) is	
	4)	Which of the following statistical tech subgroups?a) Factor analysisc) Cluster analysis	niquo b) d)	es identifies homogenous Multivariate analysis of variance Discriminant analysis	
	5)	Let $\underline{X}_1, \underline{X}_2, \underline{\qquad}, \underline{X}_n$ be a random samp distribution with mean vector μ and comean vector $\underline{\overline{X}}$ is a) $N_p(\mu, \frac{1}{n} \Sigma)$ c) $N_p(\mu, \frac{1}{n-1} \Sigma)$	le of ovari b) d)	size n from p-variate normal fance matrix Σ . The distribution of $N_p(\mu, \Sigma)$ $N_p(\frac{1}{n}\mu, \frac{1}{n}\Sigma)$	
	6)	is a clustering procedure wh cluster a) Divisive clustering c) Agglomerative clustering	ere b) d)	all objects start out in one giant Non-hierarchical clustering Single linkage clustering	
	7)	If V has N (u, ∇) distribution than line	or or	mbination $7 - 2$ V has	

Seat No.

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS) Multivariate Analysis

Da Tir

Q.

- If <u>X</u> has $N_p(\mu, \Sigma)$ distribution then linear combination Z = a X has _____ 7) distribution.
 - a) $N_p(\mu, \Sigma)$
 - c) $N(a'\mu, a'\Sigma a)$
- b) $N_p(\mu, a\Sigma a')$
 - d) $N(a'\mu a, a'\Sigma a)$

SLR-GR-13

Set P

06

16

08

- The mean vector of $(X_1 + X_2, X_1 X_2)$ is (10,0) then mean vector of 8) $(X_1, 2X_1 - X_2)$ is _____.
 - a) (5,10)
 - b) (10,0) d) (5,5) c) (10,5)
- 9) For a multivariate normal random vector, the variance-covariance matrix is always .
 - a) symmetric b) square matrix
 - c) non-negative definite d) All of these
- Let A has $W_p(n, \Sigma)$ distribution and B is a $(q \times p)$ matrix then distribution of 10) BAB' is ____
 - a) $W_{\rm p}(n, \Sigma)$

c) $W_n(n, B\Sigma B')$

- b) $W_q(n, \Sigma)$ d) $W_q(n, B\Sigma B')$

B) Fill in the blanks

- A _____ is a graphical device for displaying clustering results. 1)
- As the distance between two populations increases, misclassification 2) error _____. The _____ principal component explains least variation of the data.
- 3)
- At the start of divisive clustering, we assume total _____ clusters. 4)
- Partitioning clustering uses _____ approach of clustering. 5)
- With usual notations, Fisher's best discriminant function is given by 6)

Q.2 Answer the following.

- Describe ECM rule in discriminant analysis. 1)
- Obtain moment generating function of multivariate normal distribution. 2)
- Define variance-covariance matrix. State its properties. 3)
- Show that two p-variate normal vectors $\underline{X_1}$ and $\underline{X_2}$ are independent if 4) and only if $cov(\underline{X_1}, \underline{X_2}) = 0$

Answer the following. Q.3

- State multivariate normal density. Find mean vector and variance-**08** a) covariance matrix for this density.
- Find maximum likelihood estimator of Σ based on a random sample from **08** b) multivariate normal distribution $N_{\rm p}(\mu, \Sigma)$.

Answer the following. Q.4

- a) If $\underline{X} \sim N_p(\mu, \Sigma)$, then find the distribution of the following:
 - 1) $\underline{a'}X$, where \underline{a} is a p-dimensional vector of constants.
 - 2) AX, where A is matrix of order $m \times p$
- b) Differentiate between hierarchical and non-hierarchical clustering methods. 08 Explain, in detail, k-means clustering

Q.5 Answer the following.

- Explain the idea of discriminant analysis. What are the potential errors 08 a) involved in it? Obtain the classification rule for the case of two populations with densities $f_1(x)$ and $f_2(x)$.
- Derive the density of multivariate normal distribution **08** b)

Q.6 Answer the following.

Q.7

a)	Describe canonical variable and canonical correlations. State and prove any two properties of canonical variables.	08
b)	Describe agglomerative clustering in detail. Illustrate with the help of example using complete linkage method.	08
a)	Discuss principal components analysis. How it can be used as a dimension reduction technique?	08
b)	Define: 1) Distance matrix 2) Single linkage	08

- 2) Single linkage
 3) Complete linkage
 4) Average linkage

Page	1	of	2
------	---	----	---

Set

Max. Marks: 80

10

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)

Planning and Analysis of Industrial Experiments

Day & Date: Wednesday, 15-02-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Question no. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7.

3) Figure to right indicate full marks.

Q.1 A) Multiple choice questions.

- The error degrees of freedom in one-way classification model 1) $Y_{ii} = \mu + \alpha_i + \epsilon_{ii}$; $i = 1, 2, \dots, v, j = 1, 2, \dots, n_i$ and assumptions on errors are followed; are
 - a) *n*−1 b) v-1
 - d) c) n-vv - n
- In a 2² factorial experiment with, the contrast due to interaction effect 2) AB is
 - a) [(a) + (ab) + (1) (b)] c) [(1) + (ab) - (a) - (b)]
- b) [(ab) + (a) - (1) - (b)]d) [(a) + (ab) + (1) + (b)]
- 3) A BIBD is always
 - b) connected
 - a) disconnected c) orthogonal d) complete
- Which of the following is two-way ANOCOVA model with single covariate? 4)
 - a) $Y_{ii} = \mu + \alpha_i + \gamma z_{ii} + \epsilon_{ii}$
 - b) $Y_{ii} = \mu + \alpha_i * \beta_i + z_{ii} + \epsilon_{ii}$
 - c) $Y_{ii} = \mu + \alpha_i + \beta_i + \gamma z_{ii} + \epsilon_{ii}$
 - d) $Y_{ii} = \mu + \alpha_i + \beta_j z_{ij} + \epsilon_{ij}$

In a 2⁶ experiment, number of two - factor interaction effects are 5)

- a) 6 b) 32 63
- d) c) 15
- In a RBD with 5 treatments and 4 blocks, the number of experimental 6) units in each block are
 - b) 4 a) 6
 - c) 5 d) 19
- In resolution IV design all main effects are _____. 7)
 - a) Strongly Clearly estimable
 - b) Clearly estimable
 - c) not clearly estimable
 - d) not estimable
- The rank of C matrix is _____. 8)
 - a) v+1 b) v - 1 v - 2 c) v d)

06

16

16

16

- In one way ANOVA model, the error sum of squares are estimates 9) of a) within treatment variation b) between treatment variation
 - c) total variation d) none of these
- In a 3² experiment, main effects has degrees of freedom. 10) 4
 - a) 2 c) 6

Fill in the blanks: B)

Replication, randomization and are three basic principles of 1) design of experiments.

b)

d)

9

- In a factorial experiment _____ and _____ effects are more important. 2)
- In single replicate design error has _____ degrees of freedom. 3)
- In total confounding _____ effect is confounded in _____ replicates. 4)
- In a 2^{5-1} fractional factorial experiment with defining relation I = ABCD, 5) it resolution design.
- The total number of effect in 2⁵ experiment are 6)

Q.2 Answer the following

- a) Define a connected block design. Show that RBD is a connected design.
- **b)** Write down lay out of 2³ experiment in two replicates.
- c) Define BIBD. Show that in a BIBD (v, b, r, k, λ), NN' = [{r λ }]_v + λ E_{vv}].
- d) In one-way ANOVA model; obtain the least square estimates of parameters.

Answer the following. Q.3

- Obtain reduced normal equations for estimating treatment effects in general a) block design.
- b) Obtain the least square estimates of parameters in the following model - $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, i = 1, 2, \dots, v, j = 1, 2, \dots, b. k = 1, 2, \dots, r. \varepsilon_{iik} \sim N(0, \sigma^2)$

Q.4 Answer the following.

- a) Derive the necessary and sufficient condition for orthogonality of a given block design.
- **b)** In general block design state and prove the properties of Q, where $O = T - NK^{-\delta} B$

Q.5 Answer the following.

- a) Obtain two blocks of 2⁵ factorial experiments using suitable generator
- b) Derive 1/4 fraction of 2⁶ experiment and write its consequences

Answer the following. Q.6

- a) Define resolution of design and minimum aberration design. Give illustrative example of each.
- **b)** In a connected block design prove that rank (C) = v 1 and hence rank of estimation space is v + b - 1.

Q.7 Answer the following.

- a) Prove that dual of a symmetric BIBD is also a symmetric BIBD.
- Derive the test for testing hypothesis of equality of all treatment effects in b) one-way classification model.

16

16

Multiple choice questions. In simple linear regression model $Y = \beta_0 + \beta_1 X + \epsilon$, β_0 and β_1 are 1) respectively . a) slope and intercept b) error and slope c) intercept and slope intercept and error d) 2) In a multiple linear regression model with $\varepsilon \sim N(0, \sigma^2 I)$, the distribution of residual vector e is . a) $N(0, H\sigma^2)$ b) $N(0, (I-H)\sigma^2)$ $N(0, (X'X)^{-1}\sigma^2)$ c) $N(0, \sigma^2 I)$ d) 3) Which one of the statement is true regarding residuals in regression analysis? a) Mean of residuals is always zero b) Mean of residuals is always less than zero c) Mean of residuals is always greater than zero d) There is no such rule for residuals 4) To test significance of an individual regression coefficient in multiple linear regression model is used. a) F test b) t test χ^2 test c) Z test d) The coefficient of determination (R²) is the square of correlation 5)

Time: 11:00 AM To 02:00 PM

Q.1 A)

IS:	1) Question no. 1 and 2 are compulsory.
	2) Attempt any three questions from Q. No. 3 to Q. No.
	3) Figure to right indicate full marks.

Regression Analysis Day & Date: Thursday, 16-02-2023

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)

Instructions: 1) Question no. 1 and 2 ar

o. 7.

SLR-GR-15

Max. Marks: 80

Seat No.

10

Page 1 of 3

Set

- coefficient between (where Y is response) Y and its predicted value
 - a) Y and hat matrix
 - b) c) regressors d) none of these
- 6) Backward elimination process begins with the assumption that _____.
 - a) no regressors are in the model
 - b) some regressors are in the model
 - c) all regressors are in the model
 - d) none of these

7) Multicollinearity is concerned with .

- a) correlation among predictors
- b) correlation among error terms
- c) correlation between response and predictors
- d) none of these

- 8) Orthogonal polynomials are used to fit a polynomial model of _____.
 - a) first order in one variable
 - b) second order in two variables
 - c) any order in two variables
 - d) any order in one variable
- 9) Logistic regression model is an appropriate model when response variable is distributed as _____.
 - a) Poisson b) Binomial
 - c) Normal d) Gamma
- 10) If a response variable in a GLM follows Binomial distribution, then _____ link function is suitable.
 - a) $\log \theta$ b) $-\log \theta$
 - c) $1/\theta$ d) $\log(\theta/1-\theta)$

B) Fill in the blanks.

- 1) In a multiple linear regression model with *k* regressors, the distribution of (SS_{Reg}/σ^2) is _____.
- The proportion of variation explained by the regression model is measured by _____.
- 3) $E(C_p / Bias = 0) =$ _____
- 4) The largest condition index of (X' X) is defined as _
- 5) In usual notations, $a(\emptyset)$ for normal distribution is always equal to _____.
- 6) The joint points of pieces in polynomial fitting are usually called ______.

Q.2 Answer the following

- a) Discuss variance stabilizing transformation and its use.
- **b)** With usual notations, show that $Cov(\hat{y}, e) = 0$
- c) Discuss Variance inflation factor (VIF) method for detection of multicollinearity.
- **d)** Discuss the logistic regression model. Give a real-life situation where this model is appropriate.

Q.3 Answer the following.

- a) Define multiple linear regression model and obtain the least squares estimates of its parameters.
- **b)** In the usual notations, outline the procedure of testing a general linear hypothesis $T\beta = 0$.

Q.4 Answer the following.

- a) Explain the concept of non-linear regression model. Discuss least squares method for estimation of parameters for non-linear regression model.
- **b)** Describe forward selection method for variable selection and state its limitations.

Q.5 Answer the following.

- a) State the autocorrelation problem. Explain Durbin-Watson test for detecting autocorrelation. What are its limitations?
- **b)** Explain the residual plots. Outline the procedure of construction of normal probability plot and procedure for checking normality assumption.

06

16

16

Q.6 Answer the following.

- a) Define kth order polynomial regression model in one variable. Describe orthogonal polynomial to fit the polynomial model in one variable.
- **b)** Define a one parameter natural exponential family. Show that the $B(n, \theta), \theta \in [0,1]$ is member of natural exponential family.

Q.7 Answer the following.

- a) Derive the maximum likelihood estimators of parameters of a logistic regression model with one covariate.
- **b)** Define 'Deviance statistic'. Find it when data comes from normal distribution with mean μ and variance σ^2 .

Set M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS) **Data Mining**

Day & Date: Monday, 20-02-2023

Time: 03:00 PM To 06:00 PM

Seat

No.

Instructions: 1) Q. Nos.1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7
- 3) Figure to right indicate full marks.

Q.1 A) Choose the correct alternatives from the options.

- The part of the entire data, which is used for building the model is 1) called as
 - a) Training data
 - b) Testing data c) Irrelevant data d) Residual data

Which one is example of case based learning? 2)

- a) Decision Tree c) Genetic algorithm
- b) K-Nearest neighbor d) Neural networks
- A 100% efficient decision tree has 3 independent variables and 1 3) class label, each with two categories, then maximum possible number of end nodes (at extreme bottom) is .
 - a) 2 b) 4
 - c) 8 d) 16
- Looking for combinations of items purchased together is called . 4)
 - a) market data analysis
 - b) market basket analysis
 - c) marketing data analysis
 - d) Combo analysis
- 5) Which of the following is a type of activation function?
 - a) Linear b) Non-Linear
 - c) Sigmoid d) All of these
- Naive Bayesian classifier uses 6) tool.
 - a) information gain b) Probability
 - c) Both (a) and (b) d) None of these

10

SLR-GR-17

Max. Marks: 80

- 7) Task of inferring a model from unlabeled training data is called
 - a) supervised learning
 - b) unsupervised learning
 - c) Reinforcement learning
 - d) None of these

The things that customers actually purchase are known as _____.

- a) Items b) Support
- c) Transaction d) Function
- 9) Support vector machine is _____.
 - a) unsupervised learning
 - b) supervised learning
 - c) reinforcement learning
 - d) genetic algorithm
- 10) Which one is non-hierarchical clustering algorithm?
 - a) Agglomerative clustering
 - b) Divisive clustering
 - c) k-means clustering
 - d) All of these

B) Fill in the blanks.

- 1) _____ is the type of machine learning in which machines are trained using well "labelled" training data.
- 2) The _____ algorithm of supervised learning is known as 'Lazy learning algorithms.
- 3) In data mining, ANN stands for _____.
- 4) SVM is an abbreviation for _____.
- 5) With usual notations, the formula for accuracy is $\frac{m}{P+N}$
- 6) Unlike regression problem, the type of class label in classification problem is _____.

Q.2 Answer the following.

- a) Discuss, with illustration, the concept of supervised learning.
- b) What are the advantages of unsupervised learning?
- c) Discuss accuracy and precision of a classifier.
- d) Describe the problem of imbalanced data.

Q.3 Answer the following.

- a) Discuss Bayesian classifier. Also explain why it is called as naive classifier.
- b) Describe decision tree classifier in detail.

16

16

Q.4	 Answer the following. a) Discuss the working mechanism of ANN. b) Discuss logistic regression classifier in detail. 				
Q.5	Ans a) b)	swer the following. What are the advantages and disadvantages of supervised learning? Discuss confusion matrix in detail.	16		
Q.6	Ans a) b)	swer the following. Discuss the different metrics for Evaluating Classifier Performance. Describe supervised learning method. Also explain SVM classifier.	16		
Q.7	Ans a) b)	swer the following. Discuss characteristics of kNN classifier. Describe- 1) Sensitivity of a model	16		

2) Specificity of a model

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (STATISTICS)

Industrial Statistics

Day & Date: Tuesday, 21-02-2023 Time: 03:00 PM To 06:00 PM

Seat No.

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three guestions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Fill in the blanks by choosing correct alternatives given below. A)

The control limits of the p and np charts are based on the assumption 1) that the number of nonconforming items follows distribution.

b)

b)

d)

binomial

control limits

action limits

- a) normal
 - Poisson d) geometric C)
- Usually 2σ limits are called as _____ 2)
 - specification limits a)
 - warning limits C)
- Assignable causes are ____ 3)
 - not as important as natural causes a)
 - within the limits of control chart b)
 - also referred to as chance causes C)
 - causes of variation that can be identified and removed d)
- 4) To determine location of a defect, which of the following tool is used?
 - Defect concentration diagram a)
 - Check sheet b)
 - Scatter diagram C)
 - d) Pareto chart

a)

5) Producer's risk is the probability of

- accepting a good lot b) rejecting a good lot a)
- rejecting a bad lot d) accepting a bad lot C)
- Which of these is not a part of magnificent seven of SPC? 6)
 - Single sampling plan Pareto chart b) a) C)
 - Check Sheet d) Scatter Diagram
- The capacity index C_p involves _____ parameter(s) to be estimated. 7)
 - only μ b) only σ
 - C) both μ and σ d) none of these
- Tabular method is used to implement _____ chart. 8)
 - **EWMA** a) CUSUM b)
 - CRL C) Moving average d)

In demerit system, the unit will not fail in service but has minor defects 9) in finish or appearance is classified as _____ defects.

- class A class B a) b)
- C) class C d) class D

SLR-GR-18

Max. Marks: 80

06

Page **2** of **2**

- 10) In most acceptance sampling plans, when a lot is rejected, the entire lot is inspected and all defective items are replaced. When using this technique, the AOQ _____.
 - a) becomes a larger fraction
 - b) becomes a smaller fraction
 - c) is not affected
 - d) none of these

B) Fill in the blanks.

- The control chart designed to deal with the defects or nonconformities of a product is called _____.
- An out-of-control signal given by a control chart when the process is actually in-control is called _____.
- 3) The concept of Six-Sigma was developed by _____ company.
- 4) For the centered process, the relation between capability index C_p and probability of nonconformance p is given by _____.
- 5) V-mask procedure is used to implement _____ chart.
- 6) In the development of \overline{X} and S charts, the distribution of quality characteristic X is assumed to be

Q.2 Answer the following

- a) Explain chance and assignable causes of variation.
- b) Explain Ishikawa diagram with suitable example.
- c) Write a short note on Conforming run length (CRL) chart.
- d) Explain the following terms:
 - 1) Acceptance Quality Level (AQL)
 - 2) Lot Tolerance Percentage Defective (LTPD)

Q.3 Answer the following

- a) Discuss various definitions of 'Quality' and various dimensions of quality.
- **b)** Discuss the various steps involved in the construction of \overline{X} and S charts.

Q.4 Answer the following

- a) Explain the variable sampling plan when upper specification is given and standard deviation is known.
- **b)** Define OC function and ARL of a control chart. Obtain the same for \overline{X} chart assuming normality of process with known standards.

Q.5 Answer the following

- a) Describe double sampling plan for attributes. Obtain AOQ and ASN for the same.
- **b)** Stating the underlying assumptions, explain the construction and operation of a sequential sampling plan for attributes.

Q.6 Answer the following

- a) Stating the assumptions clearly, define index C_p . Interpret $C_p = 1$. Obtain (1α) level confidence interval for C_p .
- **b)** What is CUSUM chart? Explain its construction and operation.

Q.7 Answer the following

- a) Describe the development and operation of Hotelling's T² chart to monitor process mean vector.
- **b)** Explain SIX SIGMA methodology and DMAIC cycle in detail.

16

16

16

16

16

Seat No.					Set	Ρ		
Ν	M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022							
		Re	eliability and Survi	val A	nalysis			
Day & D Time: 03	Day & Date: Wednesday, 22-02-2023 Max. Marks: 80 Time: 03:00 PM To 06:00 PM							
Instruct	t ions: 1 2 3) Q. Nos.1 ar) Attempt any) Figure to rig	nd 2 are compulsory. y three questions from ght indicate full marks.	Q. No	. 3 to Q. No. 7			
Q.1 A) Cho 1)	ose the corr The i^{th} corr a) $\phi(1_i, \underline{x})$ b) $\phi(1_i, \underline{x})$ c) $\phi(1_i, \underline{x})$ d) $\phi(1_i, \underline{x})$	rect alternative. apponent of a system is a system of the system of the system is a system of the system of th	releva	nt if	10		
	2)	A vector \underline{X} is a) $0 \le \phi$ (c) $\phi(\underline{X}) =$	is called path vector if _ $(\underline{X}) \le 1$ = 0	b) d)	$ \phi(\underline{X}) = 1 \phi(\underline{X}) = 0.5 $			
	3)	lf distributio a) hazaro c) –log <i>R</i>	n F is IFRA then d function (t)	is s b) d)	tar shaped. $\log R(t)$ 1/R(t)			
	4)	The minima a) minima c) minima	al path sets of structure al path vectors al path sets	ϕ are b) d)	for its dual. minimal cut sets none of the above			
	5)	Suppose R having relia a) $R(t) =$ c) $R(t) \leq$	(t) is the reliability of set bilities $R_1(t)$ and $R_2(t)$ = $Max\{R_1(t), R_2(t)\}$ = $Min\{R_1(t), R_2(t)\}$	eries s respe b) d)	ystem of two components ctively then $R(t) = Min\{R_1(t), R_2(t)\}$ $R(t) < Max\{R_1(t), R_2(t)\}$			
	6)	In type II ce a) the nu b) the tim c) both ti d) none c	msoring mber of failures is fixed ne of an experiment is f me and number of failu of these	l ixed ires is	fixed			
	7)	Which of th a) lognor c) gamm	e following distribution mal a	has no b) d)	o ageing property? exponential none of these			
	8)	A distribution if a) $\overline{F(t + t)}$ c) $\overline{F(t + t)}$	on function $F(t)$ said to $f(t) \ge \overline{F}(t)\overline{F}(x)$ $f(t) = \overline{F}(t)\overline{F}(x)$	have b) d)	new better than used (<i>NBU</i>) $\overline{F}(t+x) \leq \overline{F}(t)\overline{F}(x)$ none of the above			
	9)	In survival a a) contin c) dichot	analysis, the outcome v uous omous	ariabl b) d)	e is discrete none of the above			

SLR-GR-19

_

- a) right random censoring
- b) type I censoring
- c) type II censoring
- d) both type I and type II censoring

B) Fill in the blanks.

- 1) As the number of components *n* increases, the reliability of parallel system _____.
- 2) Series system of n components has _____ minimal path sets.
- IFRA property is preserved under ______.
- The hazard function ranges between ______
- 5) To find exact confidence interval for mean of exponential distribution under no censoring, the pivotal quantity has _____ distribution.
- 6) A sequence of (2x2) contingency tables is used in ______ test.

Q.2 Answer the following.

- a) Define:
 - 1) Structure function
 - 2) Coherent structure. Illustrate giving one example each.
- **b)** Write a short note on star shaped function.
- c) Explain the following terms:
 - 1) Survival function
 - 2) Random censoring
- d) Write a short note on empirical survival function and its properties.

Q.3 Answer the following.

- a) If failure time of an item has gamma distribution obtain the failure rate function.
- **b)** Define Poly function of order 2 (PF_2). Prove that if $f \in PF_2$ then $F \in IFR$.

Q.4 Answer the following.

- a) Define NBU and NBUE classes of distributions. Prove that $F \in IFRA \Rightarrow F \in NBU$.
- **b)** If failure time of an item has the distribution $f(t) = \frac{\lambda^{\alpha}}{\Gamma_{\alpha}} t^{\alpha-1} e^{-\lambda t}, t > 0, \ \lambda, \alpha > 0$

Examine whether it belongs to IFR or DFR.

Q.5 Answer the following

- a) Obtain the nonparametric estimator of survival function based on complete data. Also obtain confidence band for the same using Kolmogorov-Smirnov statistic.
- **b)** Obtain maximum likelihood estimate of mean of the exponential distribution under type II censoring.

Q.6 Answer the following

- a) Describe Kaplan-Meier estimator and derive an expression for the same.
- **b)** Describe Mantel's technique of computing Gehan's statistics for a twosample problem for testing equality of two life distributions.

16

16

16

16

06

- Q.7 Answer the followinga) Derive Greenwood's formula for an estimate of variance of actuarial estimator of survival function.
 - b) Define:

 - k-out-of- n system.
 Dual of a structure function.
 - Obtain the dual of k-out-of- n system

Set F

Max. Marks: 80

10

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov - 2022 (STATISTICS) Optimization Techniques

Day & Date: Thursday, 23-02-2023 Time: 03:00 PM To 06:00 PM

Seat No.

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 73) Figure to right indicate full marks.

Q.1 A) Fill in the blanks by choosing correct alternatives given below.

- 1) Which of the following is correct?
 - a) A linear programming problem with only one decision variable restricted to integer value is not an integer programming problem.
 - b) An integer programming problem is an LLP with all decision variable are restricted to integers.
 - c) Pure IPP is one where all decision variable are restricted to integers.
 - d) None of the above
- The zero -one programming problem requires _____
 - a) Decision variables to have values either 0 or 1.
 - b) The decision variables have coefficients between 0 and 1.
 - c) All constraints have coefficients between 0 and 1.
 - d) All of the above

a)

- Given a system of m simultaneous linear equations with n unknowns (m<n). The number of basic variables will be _____.
 - a) n b) m
 - c) n-m d) none of the above
- 4) If X'QX is positive semi definite then, it is _
 - Strictly convex b) Strictly concave
 - c) Convex d) Concave
- 5) In two person zero sum game is said to be fair if _____
 - a) The upper value and lower value of the game are not equal
 - b) The upper value is more than lower value of the game
 - c) The upper value and lower value of the game are same and equal to zero.
 - d) None of the above

6) To maintain optimality of current optimum solution for a change Δc_k in the coefficient c_k of non basic variable, we must have _____.

- a) $\Delta c_k = z_K c_k$ b) $\Delta c_k \ge z_K c_k$
- c) $\Delta c_k \leq z_K c_k$ d) $\Delta c_k = z_K$
- If we delete one of the constraint from LP problem then _____.
 - a) Feasible solution space is enlarged
 - b) Feasible solution space is reduced
 - c) It may or may not affect on feasible solution space
 - d) None of these

- 8) Integer linear programming problem means _
 - a) It linear programming problem with additional constraint only one decision variable is integer
 - b) It linear programming problem with additional constraint all or some of the decision variables are integers
 - c) Decision variables takes only 0 or 1 value
 - d) Coefficients in objective function are integers

9) In Gomory's cutting plane method each cut involves introduction of _____.

a) An equality constraints

 $2X_1 + X_2 \le 1$ $X_1 + 4X_2 \ge 6$ $X_1, X_2 \ge 0$

Q.2

Q.3

Q.4

- b) Less than equal to constraint
- c) Greater than equal to constraint

		d)	An artificial variable				
	10)	Whe the a) c)	en all the players of the ga expected pay off of the ga Gain of the game Value of the game	ame follo ame is ca b) d)	w their optimal strategies, then lled Loss of the game None of these		
B)	Fill	in the	e blanks.			03	
	1) Feasible solution to an LPP must satisfied						
	2) 3)	Sado	dle point of the pay off ma	trix is a p	oint satisfied		
C)	Stat 1)	 State whether following statements are true or false. Primal problem has optimal solution then dual problem has optimal collution 				03	
	2) 3)	Basi Nece minii	ic feasible solution to LLP essary and sufficient cond mization LPP to an optimu	is not un ition for a ım is (for	ique. a basic feasible solution to a fall j) $z_j - c_j \le 0$.		
Ans	wer t	he fo	llowing			16	
a) b)	Desc	cribe (graphical method to solve two phase method to solv	LPP. e I PP			
c)	Defi	ne the	e following terms	0 21 1 .			
	1) Convex set						
	∠) 3)	Con	vex combinations				
d)	Ŵrite	e a no	ote on non linear program	ming pro	blem.		
a)	State and prove fundamental theorem on duality.						
b)	Use	simpl	lex method to solve the fo	llowing L	PP	08	
	sub	to .	$\begin{array}{l} X_1 + 3X_2 \\ X_1 \leq 4, \end{array}$				
			$X_2 \leq 3,$				
		X	$X_1 + 2X_2 \le 18,$ $X_1 + X_2 \le 9$				
		X	$X_1 + X_2 \le 0;$ $X_1, X_2 \ge 0;$				
a)	Desc	cribe	simplex method in detail t	o solve L	PP.	08	
b)	Solv	e the	following LPP using two p	hase me	ethod.	08	
	subj	ect to	$z_2 - 3\lambda_1 + 3\lambda_2$				

Q.5	a) b)	Explain Gomory's cutting plane method to solve all IPP. Explain in brief the Wolfe's method to solve QPP.				
Q.6	a)	With usual notations for rectangular game problem prove that $\max \min \overline{v} \leq \min \max v$	80			
	b)	Describe how $m X n$ rectangular game problem is converted into a linear programming problem.	08			
Q.7	a)	Solve the game with payoff matrix using graphical method. $ \begin{bmatrix} 2 & 7 \\ 3 & 5 \\ 11 & 2 \end{bmatrix} $	08			
	b)	Solve the following LPP using Big M method $Max Z = 2x_1 + 5x_2$	08			
		Subject to the constraints:				
	$3x_1 + 2x_2 \ge 6,$ $2x_1 + x_2 \le 6,$					
		$x_1, x_2 \ge 0.$				