0]					
Seat No.								Set	Ρ	
	Μ.	Sc. (\$	Seme	ester	- I) (New) (((CH Inorgan	CBCS) Ex IEMISTR ic Chemi	cami Y) istrv	ination: Oct/Nov - 2022		
Day 8 Time:	k Da 03:	te: Mo 00 PM	nday, To 0	13-02 6:00 P	-2023 M			Max. Marks	: 80	
Instru	uctio	o ns: 1) 2 3) Q. N) Attei) Figu	os. 1 a mpt an re to ri	and. 2 are con by three questi ght indicate fu	npulsory. ons from C Ill marks.). No	. 3 to Q. No. 7		
Q.1	A)	Fill i 1)	n the Cd ²⁺	blank is iso	s by choosin electronic with	g correct a	alteri	natives given below.	10	
			a)	Cu+			b)	Au ⁺		
			C)	Zn ²⁺			d)	Ag ⁺		
		2)		is I	not used as a	moderator.				
		,	a)	Hea	vy water		b)	Water		
			C)	Grap	ohite		d)	Boron		
		3)	The	oxidat	ion state of Cr	$r = -10^{-1}$ in $Cr_2 O_7 2^{-1}$	- ion	is .		
		,	a)	+5		2 /	b)	+6		
			c)	+7			d)	+4		
		4)	a)	is t slow	the function of down neutro	^r coolant. n	b)	control the reaction		
			C)	exile		eacior	u)	none of these		
		5)	The a)	colour – nd	of the d-block $(n + 1)$ trans	c elements ition	is du b)	e to nd $- (n + 1)p$ transition		
			C)	nd –	nd transition		d)	nd - (n + 1)d transition		
		6)	The	percer	ntage p-chara	cter in sp ³ h	nybrio	dization is		
			a)	50			b)	33		
			c)	75			d)	25		
		7)	 Zn²⁺ complexes are atypical of d-block complexes is general" answer below is correct and supports this statement. a) Zn²⁺ complexes are paramagnetic b) Zn²⁺ complexes tend to be colourless, unless the ligand contains a chromophore. c) Zn²⁺ complexes are always octahedral 							
			d)	Zn ²⁺	is one of sev	eral commo	on ox	idation states of Zn		
		8)		se	ries correctly p	places the l	igano	ds in order of increasing		
			neph	nelaux	etic effect?	< U. O.	L)			
			a)	Br	$< U < NH_3 < C = C = C = C = C = C = C = C = C = C$	< H ₂ 0	d)	$I < Br < H_2 U < [UH]$		
			0)	r-<	$< \Pi_2 U <$	ип3	u)	$1 < C_1 < \Pi_2 U < e_1$		
		9)	The Cr(C	spin o 0)∠ is	nly magnetic r	noment val	lue (ii	n Bohr magneton units) of		
			a)	4.90			b)	2.84		
			c)	5.92			d)	0		

- 10) A half-life is _____.
 a) constantly changing
 b) the time for one-half of an unstable nuclei to decay
 c) half of the lifetime of an unstable nucleus
 d) independent of the rate constant for decay

	B)	Fill in the blanks OR Write true/false	06
	,	1) The EAN for iron in $Fe(CO)_5$ is	
		2) The geometry of SF_4 molecules is	
		3) Amaterial, large domains of magnetic dipoles are aligned in	
		the same direction.	
		4) Graphite and beryllium can be used as in a nuclear plant.	
		5) Diamond is an example of solids.	
		6) A pi- donor ligand is donatesto the metal center in an interaction that involve a filled ligand orbital and an empty metal orbital.	
02	Δns	wer the following	16
Q.2	a)	How will you distinguish the intrinsic and extrinsic semiconductors?	10
	⊆, b)	What is carbon dating? Explain it with suitable example.	
	c)	Explain the Bent rule with suitable example.	
	d)	Explain why $[FeF_6]^{3-}$ is almost colorless whereas $[CoFe]^{3-}$ is colored.	
	,		
Q.3	Ans	wer the following	
	a)	Explain in detail need of Walsh diagram with examples.	10
	b)	What are the rectifiers? Explain its construction and working.	06
04	۸ne	wer the following	
Q.4	2) 2)	Explain in detail ligand field energy parameter	08
	a) b)	State and explain Jahn-Teller theorem. Show schematically the splitting of	08
	~)	d-orbitals in d^7 case for octahedral and tetrahedral system.	00
Q.5	Ans	wer the following	
	a)	What is cross section? Give the relation between cross section and rate of	08
		reaction.	
	b)	Write the postulates of VSEPR theory. Explain the structure of CIF3	08
		molecule.	
06	Ane	wor the following	
હ.0	A115	What are nuclear reactions? Discuss the nuclear fission reaction with	08
	aj	suitable examples	00
	b)	Give in detail explanation of metal carbonyl structure-I ow nuclear carbonyl	08
	~)	structure.	•••
Q.7	Ans	wer the following	
	a)	Write the preparation, properties & structures of mono, di & trinuclear	08
		carbonyl complexes.	
	b)	Explain the origins of MLCT and LMCT absorptions in the electronic spectra of d-block metal complexes. Give examples to illustrate your answer.	08

Seat	
No.	

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov - 2022 (CHEMISTRY) **Organic Chemistry - I**

Day & Date: Tuesday, 14-02-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Fill in the blanks by choosing correct alternatives given below. A)

- Enantiotropic hydrogens are 1)
 - two hydrogens attached to a chiral carbon a)
 - two hydrogens on same side of the double bond b)
 - two hydrogens on same side of the cycloalkane C)
 - two hydrogens attached to a carbon with two different groups d)
- 2) Astereoselective reaction produces .
 - Only one stereoisomer a)
 - More percent of one stereoisomer b)
 - A racemic mixture C)
 - A meso product d)
- 3) Select the correct statement for $S_N 2$ reaction from the following option.
 - It follows second order kinetics a)
 - No intermediate is involved in S_N2 reaction b)
 - C) It is one-step reaction
 - All of the mentioned d)

a)

6)

- 4) Which of the following reactions are favored by polar aprotic solvent? S_N2 reactions
 - S_N1 reactions b)
 - C) Both S_N1 and S_N2 reactions None of the mentioned d)
- 5) Which of the following structure can show tautomerism?

- In Fullerene, pentagons are present in their structure. 7)
 - a) 8 C) 16

SP³

SP

a)

C)

12 b)

b)

d)

SP²

SP² and SP³

20 d)

Max. Marks: 80

06

16

- 8) Ketene on reaction with ammonia gives
 - ester carboxylicacid a) b)
 - C) amide d) ketone
- If the introduction of polar substituent(X) enhances the value of 9) equilibrium constant, then $rho(\rho)$ value is
 - Positive a) C)
 - Zero
- 10) Among the following, which carbocation is most stable?
 - a) Triphenyl methyl Allyl C)
- b) Benzyl d) Tropylium

Write True or False. B)

- Naphthalene is a nonalternant aromatic hydrocarbon. (True or False) 1)
- 2) Bicyclic crown ethers are called as Cryptands. (True or False)
- 3) Generally, +I effect stabilises the carbanion. (True or False)
- The separation of a racemic modification into its constituent enantiomers 4) is known as resolution. (True or False)
- [12] annulenes are antiaromatic whereas [18] annulenes are 5) aromatic. (True or False)
- The best leaving group enhances the rate of SN reactions. 6) (True or False)

Q.2 Answer the following.

- Explain the concept of Hard and Soft acids and bases. a)
- Explain the optical activity due to helicity. b)
- What are cryptands? Give two examples. C)
- Describe ambient nucleophile with proper example. d)

Answer the following. Q.3

- What are crown ethers? Give suitable example, methods of preparation and 10 a) applications of crown ethers. 06 b) Explain Neighbouring group (NGP) participation by π electrons with
- example.

Q.4 Answer the following.

Give Huckles rule and explain aromaticity in annulenes. 08 a) Discuss in detail the formation, stability and reactivity of carbanion 80 b) intermediate.

Q.5 Answer the following.

- Write a note on Aromaticity in benzenoid and non-benzenoid compounds. 80 a)
- Explain in detail Kinetic and Thermodynamic control of the reaction with 80 b) example.

Q.6 Answer the following.

- Explain stability of different forms of 1,2 and 1,4 dimethyl cyclohexane. 08 a) 08
- Explain Optical activity in case of allenes. b)

Q.7 Answer the following.

- Discuss the role of cross-over experiments in the determination of the 08 a) mechanism of organic reactions.
- b) Write a note on Electrophilic substitution accompanied by double bond **08** shifts.

- Negative b) d)
 - Either positive or negative

	Μ	.Sc.	(Sem	ester - I) (New) (CBCS (CHEMIS)	S) Exam STRY)	nination: Oct/Nov-2022	
				Physical Che	emistry	- 1	
Day Time	& Da e: 03:0	te: We D0 PM	edneso 1 To 06	day, 15-02-2023 6:00 PM		Max. Marks	: 80
Instr	uctio	o ns: 1 2 3) Q. N 2) Atter 5) Figu	os. 1 and. 2 are compulsor mpt any three questions fro re to right indicate full mark	ry. om Q. No (s.	. 3 to Q. No. 7	
Q.1	A)	Cho 1)	ose c In ar	orrect alternative.	m work, t	he process must be entirely	10
			a) c)	 irreversible adiabatic	b) d)	reversible spontaneous	
		2)	All ga a) c)	ases behaves ideally as $P \rightarrow 1$ $P \rightarrow \infty$	 b) d)	$\begin{array}{l} P \to 0 \\ P \to -1 \end{array}$	
		3)	(<i>δT /</i> a) c)	$\delta P) s = (/\delta S)p$ δG δV	b) d)	δN δH	
		4)	Albe scier a) c)	rt Einstein has been award htific work. Special theory of relativit Photoelectric effect	ed the No y b) d)	obel prize for the Brownian motion of a particle All of the above	
		5)	In Gi a) c)	rand canonical ensemble T Ρ μ	, V and _ b) d)	remains constant. T E	
		6)	The stand a) c)	probability of selecting a ca dard deck of 52 cards is 13/52 4/52	ard of the b) d)	King of square from a 1/52 2/52	
		7)	The as a) c)	mathematical statement of S=k In W S=k/In W	Boltzmar b) d)	nn-Planck equation is given S=k N In W S=In W/k	
		8)	The fracti a) c)	fugacity of a solute in dilute ion. This statement belong Henry's law Planck's law	e solution s to b) d)	i is proportional to its mole Raoult's law Boyle's law	
		9)	Whic a) b) c) d)	ch of the following condition $\Delta H_{mixing} = 0$ $\Delta V_{mixing} = 0$ Raoult's Law is obeyed Formation of an azeotrop	n is not sa bic mixtur	atisfied by an ideal solution?	

Seat No.

SLR-GF-3

Page 1 of 2

Set P

06

16

10)	According to Planck's equation, the energy of a electromagnetic wave
	is given as

a)	E = hv	b)	$E = hc/\lambda$
C)	$E = h\lambda$	d)	both a) and b)

B) Fill in the blanks OR Write True/False.

- 1) The quantization concept was given by the scientist
- 2) The activity of a substance in its purest form is always taken as zero. [True/False]
- 3) The entropy of a substance at absolute zero temperature is _____.
- 4) Chemical potential is a partial molar quantity. [True/False]
- 5) The most probable configuration is that configuration which has lowest microstates. [True/False]
- The zero-point energy for a particle in one dimensional box is given as _____.

Q.2 Answer the following.

- a) Write on wave-particle duality hypothesis.
- b) Derive Maxwell's thermodynamic relations.
- c) Explain Excess thermodynamic functions.
- d) What is black body? Give Planck's quantum mechanical approach towards the distribution of its energy.

Q.3	Ans a) b)	wer the following. Derive the expression for Gibbs' phase rule. Give its applications. Explain in detail microcanonical and canonical ensemble.	16
Q.4	Ans a) b)	wer the following. Define fugacity. Discuss fugacity determination by graphical method. Derive the expression $n_i = e^{-(\alpha + \beta \epsilon i)}$. Give the significance of the terms α and β .	16
Q.5	Ans a) b)	wer the following. Describe classical and quantum mechanical approach for photoelectric effect. Discuss the freezing point depression method for determination of activity coefficient.	16
Q.6	Ans a) b)	wer the following. Explain how third law of thermodynamics can be used in the estimation of absolute entropy of a gas at 298 K. Define microstates and Configurations. Explain them with suitable examples.	16
Q.7	Ans a) b)	wer the following. Derive Schrodinger time independent wave equation. Derive Gibbs-Duhem equation. Mention various applications of this equation.	16

				Analytical (Chemistry	/ -
Day Time	& Da : 03:0	te: Th 00 PN	ursday 1 To 0	y, 16-02-2023 6:00 PM	-	Max. Marks: 80
Instr	uctio	o ns: 1 2 3) Q. N 2) Attei 3) Figu	os. 1 and. 2 are compuls mpt any three questions re to right indicate full m	sory. from Q. No. arks.	3 to Q. No. 7
Q.1	A)	Fill 1)	in the a) c)	blanks by choosing co in which voltage range +2.3 to -3.3 V +2.3 to -3.0 V	p rrect alterr ge DME can b) d)	natives given below.10be applied in polarography.+2.4 to -3.3 V+2.4 to -3.0 V
		2)	Text a) c)	-styling feature of MS wo Word Color Word Art	ord is b) d)	 Word Font Word Fill
		3)	Syst a) c)	ematic errors occur due Overuse of instrument Both a) and b)	to s b) d)	Careless usage of instruments Human sight
		4)	Stan a) c)	dard deviation of popula $\Omega \ \sigma$	tion is deno b) d)	ted by ω _ Σ
		5)	for fu a) c)	of the following forms Ill polarization. Potentiometry Coulometery	s of electroc b) d)	hemistry seek to obtain condition Voltammetry Electrogravimetry
		6)	Supe a) c)	erscript, subscript, strike Font Face Font Effects	through is k b) d)	nown as Font Style Font Format
		7)	Mea a) c)	surement which is close Accurate Precise	to true value b) d)	e is Average Error
		8)	Spec a) b) c) d)	of the following is the ctroscopy. Radiation is absorbed and excited to higher s Medium absorbs radia Colour is measured Colour is simply obser	e principle of by non-exci states tion and trai	f Atomic Absorption ted atoms in vapour state nsmitted radiation is measured
		9)	ʻICP [°] a) b) c)	's principle is similar to w Flame emission spect Fourier transforms spe Atomic emission spect	which of the tooscopy ectroscopy proscopy	following

M.Sc. (Semester - I) (New) (CBCS) Examination: Oct/Nov-2022 (CHEMISTRY)

Seat No.

d)

Absorption spectroscopy

Set

SLR-GF-4

Ρ

		10)		is capil	ary constant ir	n Ilkovic eq	juation.			
		,	a)	$m^{1/3}.t^{1/6}$	5	b)	$m^{3/2}.t^{1/6}$			
			C)	$m^{2/3}.t^{1/6}$		d)	None of above			
	B)	Eill i	n tha i	nlanke		-		90		
	ы)	1)	In Atc	mic absor	ntion spectros	conv	is the generally used	00		
		''	radiat	ion source		copy,				
		2)		l samples	are introduced	l into the IC	CP spectrometer using			
		3)	The a	uxiliary el	ectrode in pola	rography i	s	·		
		4)	Linea	r rearessi	on analysis is					
		5)	The le	east squar	e method is	<u> </u>				
		6)	Half-v	vave poter	ntial (E _{1/2}) is					
Q.2	Ans	wer th	ne folle	owing				16		
	a)	Write	a note	e on CHEN	/I DRAW.					
	b)	Write	a note	on applic	ations of polar	rography.				
	C)	Expla	iin Lea	st Square	method.					
	d)	Expla	iin the	difference	between AAS	and FES.				
0 2	Anc	war th	o foll	owing						
Q.3	A115 2)	Discuss in brief average deviation and standard deviation								
	a) h)	Discu	iss in c iss the		s instrumentati	ion nature	of titration curves of	00		
	5)	Ampe	eromet	rv		ion, nature		00		
		/ unp								
Q.4	Ans	wer th	ne folle	owing						
	a)	Discu	uss in c	detail varic	ous types of err	rors observ	ved in measurement.	08		
	b)	Discuss the principles and instrumentation of ICP.								
Q.5	Ans	nswer the following								
	a)	What	are el	ectroanaly	tical technique	es? Explair	n the polarography principle	08		
	L)	and v	vorking	J. 		atation of A		00		
	D)	Discuss the principles and instrumentation of AAS. 08								
0.6	Δns	wer th	ne foll	owina						
4.10	a)	What	is san	nplina. exr	lain the techni	ique used f	for sampling of gases and	08		
	•••	solida	3.							
	b)	Defin	e prec	ision and a	accuracy. Expl	ain the ana	alytical methods used for	08		
	,	deter	minatio	on of the a	iccuracy.					
Q.7	Ans	wer th	ie folle	owing						
	a)	Adva	ntages	and disa	dvantages of D	ME.		08		
	b)	Discl	iss the	use of po	wer point and	excel in ch	iemistry.	80		

No.					Oct	•
	M.Sc. (Semester	- II) (New) (CBCS) (CHEMISTF	Exam RY)	nination: Oct/Nov-2022	
			Inorganic Chem	istry	- 11	
Day & Time:	Date: Mo 11:00 AM	nday, 20-02 To 02:00 P	2-2023 PM		Max. Marks:	80
Instru	ctions: 1 2 3) Q. Nos.1 a) Attempt ar) Figure to r	and 2 are compulsory. ny three questions from ight indicate full marks.	Q. No.	3 to Q. No. 7	
01	۵) Cho	ose Correc	t Alternative (MCO)			10
	1)	In which _ a) Heg c) reve	furnace the roast geler furnace erberator furnace	ing of : b) d)	zinc ore is carried out. blast furnace sintered	10
	2)	is	the electronic configurat	ion of	Ce ⁴⁺	
	,	a) [Xe] c) [Xe]	4f ⁰ 4f ⁸	b) d)	[Xe] 4f ⁶ [Xe] 4f	
	3)	ca	talyst is used in wacker	proces	SS.	
		a) PdC		b)	HCORh (PPh ₃) ₃	
		c) Rh[l	12CO2] ⁻	d)	HCo(CO)4	
	4)	Solid SO3	exists as			
		a) Plar	ne triangular structure	b)	Bent structure	
		c) Line	ear structure	d)	Cyclic trimer structure	
	5)	of	the following reacts with	haem	noglobin in the blood to form	
		carboxyna	emogiobin.	b)	CO_{2}	
		a) 00 c) H ₂ C	O_3	d)	HCOOH	
	6)	of	the following (Wij's read	ent) is	used for estimation of iodine	
	,	number of	fats and oils.	,		
		a) IBr		b)	ICI	
		C) I⊢3		d)	IF	
	7)	of	the following lanthanoid	ion is	paramagnetic.	
		a) Ce ⁺	+	b)	YD ²⁺ Eu2+	
	0)			u)	Eu	
	8)	Stability of		ases w		
		a) F~I c) F~ <h< td=""><td>120-NH3 120<nh3< td=""><td>d)</td><td>None of these</td><td></td></nh3<></td></h<>	120-NH3 120 <nh3< td=""><td>d)</td><td>None of these</td><td></td></nh3<>	d)	None of these	
	0)	, , , , , , , , , , , , , , , , , , ,	talvet is used in Ziegler	and N	atta catalveis	
	3)	a) PdC		b)	RhCl ₂	
		c) NiC	l ₂	d)	TiCl ₄	
	10)	XeF ₆ on co	omplete hydrolysis gives	:_		
	,	a) Xe		b)	XeO ₂	
		c) XeC)3	d)	XeO4	

Seat

Set P

	B)	Fill in the blanks OR Write True/False.	06				
		1) What is difference between myoglobin and hemoglobin?					
		2) Use the VSEPR model to predict the structures of					
		(a) H₂Se, (b) [BH4]⁻, (c) NF₃, (d) SbF₅					
		3) Why the lanthanide ions are coloured?					
		4) What would you expect to form when?					
		 a) Sn is heated with concentrated aqueous NaOH; 					
		b) SO ₂ is passed over PbO ₂					
		5) What is Hapticity of ferrocene?					
		6) What is difference between calcination and roasting process?					
Q.2	Ans	wer the following.	16				
	a)	Give detailed description of oxoacids of Sulphur.					
	b)	What are the organometallic compounds? Discuss their classification.					
	C)	Explain electrolytic refining of zinc.					
	d)	Write note on photosynthesis PS I and PS II.					
Q.3	Ans	wer the following.	16				
	a)	Discuss synthesis, structure and properties of silicates, carbides, silicones,					
		phosphazenes.					
	b)	What is Monsanto acetic acid process? Discuss the catalytic cycle involved it.					
Q.4	Ans	wer the following.	16				
	a)	Discuss in detail in hydroformylation.					
	b)	What are the Actinides? How are they separated?					
Q.5	Ans	wer the following.	16				
	a)	Explain factors affecting stability constant referring to the properties of metal					
	b)	How is copper extracted? What are its properties and uses?					
06	۸ne	wer the following	16				
Q.0	All3 a)	Discuss the classical methods of senaration of lanthanides	10				
	b)	Discuss the role of metal ions in biological processes.					
07	٨٣٥	wor the following	16				
Q.1	A115' 2)	Mer the following. Describe in details the preparation, properties of the overside of nitrogon	10				
	aj	nhoenhorous and halogen					
	b)	Finishe all metric determination of formation constant					

b) Explain the pH metric determination of formation constant.

Seat No.							Set	Ρ
	М.\$	Sc. (S	emester	r - II) (New) (CBCS) Ex (CHEMISTR)	cami Y)	nation: Oct/Nov - 20)22	
				Organic Chemis	try -	II		
Day & Time:	. Dat 11:(te: Tue 00 AM	sday, 21-0 To 02:00 I	02-2023 PM		Max.	Marks	: 80
Instru	ictio	o ns: 1) 2) 3)	Q. Nos. 1 Attempt a Figure to	and. 2 are compulsory. any three questions from Q right indicate full marks.	. No.	3 to Q. No. 7		
Q.1	A)	Fill ii 1)	n the blan 2-Butanor reaction	Iks by choosing correct a ne can be converted into 2	a ltern -metl	atives given below. nyl but-1-ene by		10
			a) Ma c) Wit	nnich tting	b) d)	Benzoin Perkin		
		2)	Nitration or reaction.	of nitrobenzene with HNO3	and	H ₂ SO ₄ involves		
			a) ele c) nuc	ctrophilic addition cleophilic substitution	b) d)	electrophilic substitution radical substitution		
		3)	Electron of position in a) me	donating substituent direct n monosubstituted aromati eta	s inco c ring b)	oming electrophile to system. para ortho/para		
		4)	Amides of main proc a) est c) oxi	f carboxylic acids on oxida duct. ters mes	d) tion/c b) d)	Iehydration give nitriles isocyanate	as	
		5)	Benzoyl c a) CH c) Gila	chloride can be converted i l₃MgBr aman reagent	nto b b) d)	enzaldehyde by LiAlH₄ Ruthenium tetraoxide		
		6)	unsaturat a) Ma c) Per	eaction involves addition o ed carbonyl compounds. annich rkin	f nucl b) d)	eophile to alpha-beta Knovenagel Micheal		
		7)	a) SN c) SN	nechanism involves format I ¹ I ^{Ar}	ion of b) d)	E carbocation as an interr E2 Elcb	nediate	e.
		8)	Addition c	of HBr to 1-butene in prese nechanism.	ence o	of benzoyl peroxide invol	ves	
			a) cat c) ani	ionic	b) d)	both cationic or anionic		
		9)	m	nechanism involves base ii	n rate	determining step of the		
			a) E1 c) SN	1	b) d)	E2 SN ^{Ar}		

06

16

16

- a) aldehydes
 - c) acid chlorides

b) esters d) amides

B) Write True/False

- 1) Sharpless asymmetric epoxidation works for benzyl alcohols.
- 2) Thallium (III) nitrate is reducing agent.
- 3) Lindlard catalyst is used for selective reduction of alkynes to alkenes.
- 4) Polar solvent increases the rate of SN¹ reaction.
- 5) Pyrolytic elimination is always syn elimination.
- 6) Ethylene oxide on reduction with H_2 in presence of Pd will give ethanol.

Q.2 Answer the following

- a) Write a note on Pyrolytic elimination reaction.
- **b)** Write a note on applications of Thallium (III) nitrate in oxidative transformations.
- c) Write reactions of addition of Grignard reagent to ester and ketone.
- d) Write a note on Michael addition reaction.

Q.3 Answer the following

b)

lodobenzen diacetate.

- a) Write a note on SN¹ mechanism with respect to effect of substrate structure, leaving group and attacking nucleophile on reactivity.
- **b)** Write addition reactions of Organo zinc and Organo lithium reagent to carbonyl compounds.

Q.4	Ans a) b)	wer the following Write mechanism of Perkin and Stobbe reaction. Write a note on E1 mechanism with respect to effect of substrate structure, attacking base, the leaving group and the solvent.	16
Q.5	Ans a) b)	wer the following Write mechanism of Knovenagel and Mannich reaction. Explain concept of <i>ortho/para</i> directing and <i>meta</i> directing group with respect to phenol and nitrobenzene respectively.	16
Q.6	Ans a) b)	wer the following Explain nitration, sulphonation of benzene with mechanistic details. Write a note on Wittig reaction and Aldol condensation.	16
Q.7	Ans a)	wer the following Mention one catalyst for reduction of alkenes, alkynes, aromatic ring and aldehyde functional group give one example of each catalyst.	16

Write examples of oxidation reactions with Ruthenium tetraoxide and

C)	infinite	d)	finite
In the a) c)	SSA, if I is intermediate form [I] = 0 all of these	ed the b) d)	en, d[I]/dt = 0 None of these
Typic a) c)	al lifetime for phosphorescenc milliseconds nanoseconds	e emi b) d)	ission is microseconds picoseconds
Which a) b) c) d)	n of the following laws are the Grothus-Draper and Stark-Ei Raoult's and Dalton's law Raoult's and Henry's law Lambert's and Beer's law	princi nsteir	ple laws of photochemistry? h law
The g a) c)	round state of molecular oxyg singlet triplet	en is b) d)	doublet quartet
Whicł a) c)	n of the following electrodes ca platinum calomel	an be b) d)	used as a reference electrode? cadmium silver
			Page 1 of 2

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov - 2022 (CHEMISTRY)

Physical Chemistry – II

Day & Date: Wednesday, 22-02-2023 Time: 11:00 AM To 02:00 PM

Q.1

A)

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

increases

zero

 CH_4

zero

infinite

half integer

H₂O vapors

remains constant

phosphorescence

delayed Fluorescence

Order of a chemical reaction may be

molecule.

a) C)

a)

C)

a)

C)

a)

C)

a)

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Fill in the blanks by choosing correct alternatives given below.

phenomenon represents radiative transition.

Which of the following gas is not a green house gas?

The activity of pure metal is generally taken as

Fluorescence intensity with presence of hetero atoms in the

b)

d)

b)

d)

b)

d)

b)

d)

b)

d)

decreases

doesn't affect

fluorescence

all of these

all of these

integer

 CO_2

unity

finite

O₃

Seat No.

SLR-GF-8

Set

Max. Marks: 80

Ρ

	B)	 Fill in the blanks OR Write true/false Order of a reaction may be zero, integer and half integer. (True/False) Molecularity and order of a chemical reaction is always same. 				
		 3) All photophysical pathways are radiative. (True/False) 4) One Einstein of energy = hv. 5) Lead accumulator is an example of storage cell. 6) Hydrogen gas electrode is an example of an indicator electrode. (True/False) 				
Q.2	Ans ^r a) b) c) d)	wer the following Write on different possible electronic transitions. Explain Ozone decomposition reactions. Illustrate Gouy-Chapmann model of electrical double layer. With suitable examples discuss photooxidation reactions.	16			
Q.3	Ans a) b)	wer the following Using steady state approach, discuss thermal decomposition of ethane. Using Franck-Condon principle, discuss shapes of absorption bands.	16			
Q.4	Ans a) b)	wer the following Illustrate the influence of ionic strength on the rates of ionic reactions. Write on Excimer and exciplex formation and their emission features.	16			
Q.5	Ans ^a a) b)	wer the following Give an account of various photophysical processes using Jablonski's diagram. Explain excitation energy transfer mechanism by giving suitable examples.	16			
Q.6	Ans ^a a) b)	wer the following Illustrate Stern's model of electrical double layer. With the help of steady state approximation, discuss kinetics of hydrogen- halogen reaction.	16			
Q.7	Ans ^r a) b)	wer the following Discuss kinetics of bimolecular quenching process. Describe the method of determination of dissociation constant of monobasic acid using emf data.	16			

		((ORGANIC	CHÉMIST	RY)		
				Advanced Org	anic Chem	listry – I		
Day Time	& Dai : 11:(te: Mo 00 AN	nday, I To 02	13-02-023 2:00 PM			Max. Marks: 80)
Instr	uctio	o ns: 1 2 3) Q. N) Atter) Figu	os. 1 and. 2 are component of the component of the compon	ulsory. Is from Q. No marks.	. 3 to Q. No. 7		
Q.1	A)	Fill	in the	blanks by choosing	correct alter	natives given bel	low. 1(D
	,	1)	In Es hydr a) b) c) d)	schenmoser fragmenta azine give and alkenes and carbony alkynes and carbony alkanes and carbony alcohols and carbon	ltion ∝, β —ep /l compounds /l compounds /l compounds yl compounds	oxy ketones and a	aryl sulphonyl	
		2)	The low t a) c)	base catalyzed [2,3] – emperature. Ethers Allylethers	witting rearra b) d)	Allyl alcohols	_occur at	
		3)	R- C	HO D C Bry Ph3, Zn	R- 3-6			
			a) c)	E^{\oplus} E^{\oplus} then n –Buli	b) d)	n –Buli then E^{\oplus} n –Buli + E^{\oplus}		
		4)	Julia a) c)	Olefination can be use Monosubstituted Trisubstituted	ed to prepare b) d)	Disubstituted All three		

Na, Etypleneglyco).

Ozone is a very electrophilic molecule.

Soft nucleophile and 1,4 addition

Soft nucleophile and 1,2 addition

Hard nucleophile and 1,4 addition

Hard nucleophile and 1,2 addition

b)

d)

b)

d)

Organocopper reagents are _____ and give _____ addition reaction

 NH_2NH_2

All three

1,3-polar None of these

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022

5)

6)

7)

3

TsNHNH₂

Non polar

in Michael Addition.

1, 3-dipolar

KCN

a)

C)

a)

C)

a)

b)

C)

d)

Seat

No.

Set

SLR-GF-10

Ρ

- Factor/s favouring the formation of the kinetic enolate is/are _____. 8)
 - Aprotic solvent a)
 - b) Strong base
 - Oxophilic cations and low temperature C)
 - All three d)
- 9) Secondary and tertiary leaving groups should not be used as alkylating agents in alkylation of ketone enolates because of
 - their poor reactivity a)
 - possible competition with elimination reaction b)
 - their high reactivity C)
 - both a) & b) d)
- 10) The ideal use of Tiffeneau- Demjanove rearrangement reaction is for the synthesis of _____ membered rings.
 - Four a) c) Five
 - b) Eight d) Three

CH2 = CH Sm (n-Bu)3

B) Predict the product.

()

1)

2)

3)

06

CH2 CH2

5) 00

PPA, 60-1000 8 6) 3-02020 OH

Q.2	Ans a) b) c) d)	swer the following Explain the mechanism of Shapiro reaction with suitable example. Explain the reaction mechanism of Brook rearrangement reaction. Discuss alkylation of enolates stabilized by two functional groups. Give the synthetic applications of polyphosphoric acid.	16
Q.3	Ans	swer the following	
	a)	Discuss with suitable examples application of complex metal hydride reagents.	08
	b)	Explain reaction mechanism of Hofmann rearrangement and give its various applications.	08
Q.4	Ans	swer the following	
	a)	Explain with suitable examples generation of specific enolates by different methods other than depretonation method	08
	b)	Discuss various applications of periodic acid with suitable examples & give its mechanism.	08
Q.5	Ans	swer the following	
	a)	Discuss with suitable examples reaction mechanism and applications of	08
	b)	Give reaction mechanism and applications of Mistunobu reaction.	08
Q.6	Ans	swer the following	
	a)	Discuss reaction mechanism and applications of Wagner-Meerwien	08
	b)	Explain generation & alkylation of dianions with suitable examples.	08
Q.7	Ans	swer the following	
	a) b)	Explain reaction mechanism of Negeshi and Kumada reaction. Discuss applications and reaction mechanism of DCC.	08 08

Seat No.			Set	Ρ			
	ov-2022						
Day & I Time: 1	Day & Date: Tuesday, 14-02-2023 Time: 11:00 AM To 02:00 PM						
Instruc	Instructions: 1) Question Nos.1 and 2 are compulsory.2) Attempt any three questions from Q. No. 3 to Q. No. 7.3) Figure to right indicate full marks.						
Q.1 A	A) Cho 1)	a) Oxarane b) Oxorane	·	10			
	2)	c) Oxane d) Oxirane					
	2)	$\frac{SO_3/H_2SO_4}{Br_2, Na_2CO_3} ?$					
		a) N b) N Br					
		c) () () () () () () () () () () () () ()					
	3)	The major product formed in the following reaction is PhCOCI ? Petrol/ -20 °C	·				
		a) N Ph b) N Ph					

Ph

Ph

Ph

CI

Me

Ph

Ph

Pł

Ph

4) The product formed in the following reaction is _____

5) Which compound is most basic?

6) The major product formed in the following reaction is: _____.

7) Which is the main product of the following reaction?

8) Which is the most probable main product of the following reaction?

- Piperazine is an organic compound that consists of a _____ membered ring containing two _____ atoms at opposite positions in the ring.
 - a) four, nitrogen
- b) four, oxygen
- c) six, nitrogen
- d) six, oxygen
- 10) Which is the main product of the following reaction?

B) a) Fill in the blanks.

- 1) 1,4-diazine is also known as _____.
- The number of nitrogen atoms in the pyrazine heterocyclic moiety are _____.
- 3) Azetidine is _____ liquid having _____ structure.

b) True or False.

- The base catalysed cyclocondensation of malonamides with carboxylic esters leads to 6-hydroxypyrimidin-4(3*H*)-ones is known as Remfry-Hull synthesis.
- 2) The suffix 'ole' is used for six membered unsaturated ring.
- 3) The reaction of 4-chloropyridine with sodium ethoxide is an example of addition reaction.

03

16

	a)	How are 1,3-dicarbonyl compounds used for the synthesis of isoxazoles and pyrazoles?	
	b) c)	How could one prepare 2-bromo-, 3-bromo- and 3,4-dibromothiophenes? Name three types of compound which will react with 4,5-diamino-pyrimidines to produce purines. Explain reactions of each for synthesis of purines	
	d)	Discuss different methods for synthesis of aziridines and thiiranes.	
Q.3	Ans a)	swer the following. What is the regeoselectivity of nitartion, halogenations and sulphonation reactions of indoles?	16
	b)	At which positions do benzofuran and benzothiophene reacts most readily with electrophiles? Give reason of each.	
Q.4	Ans a)	swer the following. Which ring synthesis method and what reactants would be appropriate for the synthesis of a pyrrole, unsubstituted on the ring carbons, but carrying	16
		CH(Me)(CO ₂ Me) on nitrogen?	
	b)	How one can prepare imidazoles and thiazoles from α -halo-carbonyl compounds? Give mechanism in details.	
Q.5	Ans	swer the following.	16
	a)	How to prepare pyridones from 1,3-dicarbonyl compounds? Discuss in details with mechanism.	
	b)	What is the reactivity of pyridine towards nucleophilic substitution reaction? Discuss regioselectivity?	
Q.6	Ans	swer the following.	16
	a)	At which positions do quinoline and isoquinoline react most readily with nucleophiles? Why these positions?	
	b)	How could one convert.1) isoquinoline into 2-methyl-1-isoquinolone2) quinoline into 2-cyanoquinoline?	
Q.7	Ans a) b)	swer the following. What are the different methods for synthesis of pyrimidine? Discuss Baldwin ring closure rules for the formation of 3, 4, 5 and 6 membered rings.	16

Q.2 Answer the following.a) How are 1.3-dicarbonyl compounds used for the synthesis of isoxazoles and

- Huckel system b) Mobius system
- c) Both a) and b)

a)

- d) Cyclic system
- 6) If the highest occupied molecular orbital has m-symmetry the process will be
 - a) Conrotatoryc) Both a) and b)
- b) Disrotatoryd) Cyclic
- 7) Which reaction conditions appropriate for following transformation?

10) Following reaction is an example of _

a) Cycloaddition reactionb) Sigmatropic reactionc) Group transfer reactiond) Chelotropic reaction

06

16

16

16

16

B) Fill in the blanks.

- If the highest occupied molecular orbital has C₂-symmetry the process will be _____.
- 2) N-haloamines having hydrogen on δ carbon are substrates for _____ reaction.
- 3) Following reaction is an example of _____

- 4) Di- π Methane rearrangement given by β , γ unsaturated ketone is known as _____.
- 5) _____ is the value of first energy level (E_1) in monocyclic conjugated system.
- 6) The photochemical [2+2] cycloaddition of a carbonyl group with an olefin to give an _____.

Q.2 Answer the following.

- a) Draw moleculrar orbital diagram of 1,3,5- hexatriene and slow HOMO and LUMO at thermal condition?
- b) Predict the product with mechanism?

$$+ N_3 COOC_2 H_5 \xrightarrow{\text{Light}} ?$$

- c) Define the following term:
 - 1) Conrotation
 - 2) Disrotation
- d) Write note on: Reactivity index

Q.3 Answer the following.

a) Assign coefficient and calculate charge density in following?

b) Discuss stereochemistry of [3,3] sigmatropic rearrangement under thermal and photochemical conditions?

Q.4 Answer the following.

- a) Explain Norrish type-I reaction with suitable examples?
- b) Define group transfer reaction and explain with suitable examples?

Q.5 Answer the following.

- a) Discuss aza-di- π methane rearrangement and give its mechanism?
- **b)** With the help of FMO method, show that 1,3 dipolar cycloaddition reaction is thermally allowed process?

Q.6 Answer the following.

a) Calculate Huckels delocalization energy and arrange the following molecules by decreasing order of stability.

b) Give the mechanism of the chelotropic cycloaddition reactions with suitable examples.

Q.7 Answer the following

- a) Discuss photochemistry of azides and diazo compounds?
- b) Explain Woodward-Hofmann rule for electrocyclic reactions?

16

Day & Da Time: 03	ate: Mo :00 PN	day, 20-02-2023 Max. Marks: 80 To 06:00 PM
Instructi	i ons: 1 2 3	Q. Nos. 1 and. 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7 Figure to right indicate full marks.
Q.1 A)	Fill 1)	the blanks by choosing correct alternatives given below.10A reaction which predominantly produces one of several possible structural (position) isomers is calleda)Stereoselective reaction b)Regioselective reaction c)c)Enantioselective reaction d)All of these
	2)	Which of (a)-(d) is the correct product for the following reaction?
		a) Br b) EtOOC
		c) EtOOC d) Br COOEt
	3)	Vention the conditions for deprotection of following protected amine.
		a) HCl b) NH ₂ NH ₂ / EtOH c) NaOH d) None of these
	4)	Which combination of reagents is appropriate for following transformation?
		 a) 1) HO-CH₂-CH₂-OH, H⁺ 2) LiAlH₄, Et₂O, H₃O⁺ b) 1) NaBH₄, MeOH 2) LiAlH₄, Et₂O, 3) H₃O⁺ c) 1) LiAlH₄, Et₂O, 2) H₃O⁺ d) 1) NaBH₄, MeOH
	5)	The transformation of a terminal or 1,2-disubstituted alkene to a <etone (ii),="" a="" action="" and="" catalytic="" co-<="" of="" palladium="" td="" the="" through="" water,="">oxidant is known asa)Wacker oxidationb)Suzuki coupling</etone>

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (ORGANIC CHEMISTRY)

Advanced Organic Chemistry-II

Seat

No.

SLR-GF-14 Set P 6) Conversion of one functional group into another functional group is known as _____.

?

- a) Reduction
- b) Oxidation
- c) Functional group interconversion
- d) None of these
- 7) Which of the following act as umpolung reagent?
 - a) 1,3-Dithianes b)
 - c) Alkynes d) All of the above
- 8) Choose correct product

Cyanide

- d) None of these
- 9) The major product formed in the following reaction.

10) Mention suitable condition for deprotection of following protected carbonyl compounds.

- b) Hg(ClO₄)₂/ MeOH-CHCl₃
- d) All of above

B) Fill in the blanks.

- 1) The molecule to be synthesised is known as _____
- 2) An imaginary bond breaking corresponding to the reverse of real reaction is known as _____.
- 3) The process of addition of Hydrogen-Boron bond to C-C, C-N and C-O double bond as well as triple bond is known as
- 4) Coupling reaction between halide and alkene in the presence of Pd(0) complex is known as _____.
- 5) Addition of borane to alkene follow _____ rule.
- 6) A group whose use makes possible to react a less reactive functional group selectively in the presence of a more reactive group is known as _____.

Q.2 Answer the following

- a) Discuss the principle of protection of alcohols?
- **b)** Outline the retrosynthetic analysis and design synthesis of the following target molecules.

- c) Discuss the guidelines for choosing suitable disconnections?
- d) Discuss Stille coupling reaction with suitable examples?

Q.3 Answer the following 16 Discuss the principle of protection of carbonyl compounds with suitable a) examples. Explain cyclization reactions with suitable example. b) Q.4 Answer the following 16 Explain synthetic utility of silane complexes. a) Explain various protecting groups for alkenes and alkynes. b) Answer the following 16 Q.5 What is umpolung? Explain with suitable examples. a) Explain regioselectivity in hydroboration reactions. b) Answer the following Q.6 16 Explain role of Co₂(CO)₈ in organic synthesis. a) Suggest synthesis for the following compounds, using disconnection approach. b) COOH

Q.7 Answer the following

ΓМ

a) Define organoboranes. Explain the role of organoboranes in asymmetric synthesis.

TM

TM

b) Explain Suzuki coupling reactions with mechanism.

16

			IVIOQ	ern Orga		emistry			
& Da e: 03:	te: Tues 00 PM T	sday, 2 Го 06:0	1-02-2023 0 PM					Max. Marks: 80)
ructio	ons: 1) (2) / 3)	Questic Attemp Figure	on no. 1 ar t any three to right ind	nd 2 are con e questions licate full ma	npulsory from Q. arks.	/. No. 3 to Q. N	No. 7.		
A)	Multip 1) I	o le cho Predict	ice questi the produ	i ons. ct of the foll	owing r	eaction		10	D
		Et + S−Ar	н Даг' *	0 H ₂ N NH ₂	MW, 5- Solven	10 min t free ?			
	ć	а) ні но́			b)		e t		
		с) но ⁻			d)		t Ar		
	2) I	Predict	the production $\mathbf{R}^2 + \begin{pmatrix} \mathbf{C} \\ \mathbf{R}^2 \end{pmatrix}$	ct of the foll ^N	owing re Nano Z 100 °C	eaction			
	á	a) R R ²⁻			b)	R ¹ CN			
		C) R R ¹⁻			d)		2		
	3) .	Predic	t the prod + ~	uct of the fo	H ₂ N	NH ₂ Etol	5-10 min H, 3 mL °C	?	
	ä	a)			b)		0		
		c)			d)				

Seat No.

M.Sc. (Semester-IV) (New) (CBCS) Examination: Oct/Nov-2022 (ORGANIC CHÉMISTRY)

Day Time

Instr

Q.1

SLR-GF-15

Set P

- surface _____ improves to enhance thermal stability of the material.
 - a) Texture b) Morphology
 - c) Hydrophilicity d) Hydrophobicity

06

B) True or False

- 1) The Bais voltage applied during electrochemical synthesis of MOF is 12-19 V.
- 2) The synthesis involves reactions that include multiple chemical conversions between, substrates, reagents and catalysts which are performed in a single vessel are called Multicomponent reactions.
- An increase in the number of benzene rings in organic linker could 3) affect the pore size of metal organic frameworks.
- The addition of Br₂ with olefins is not stereospecific reaction. 4)
- The chiral catalyst approach for asymmetric synthesis always gives 5) product with 100% ee.
- The poly-substituted 2-amino-thiophene is the product of Ugi reaction. 6)

Q.2 Answer the following.

a) What is the product in the following reaction and give its mechanism?

$$\begin{array}{c} O \\ R^{1} \\ OH \end{array} + \begin{array}{c} R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{4} \end{array} + \begin{array}{c} O \\ G^{2} \\ C^{2} \\ R^{4} \end{array} + \begin{array}{c} O \\ G^{2} \\ C^{2} \\ C^{2} \\ R^{5} \\ R^{5} \\ C^{2} \\ R^{5} \\ R^{5} \\ C^{2} \\ R^{5} \\ C^{2} \\ R^{5} \\ R^{5} \\ C^{2} \\ R^{5} \\ R^{5} \\ R^{5} \\ C^{2} \\ R^{5} \\$$

- b) Define sterospecific reaction? Why addition of bromine and electrophilic eposxidation with alkene are distereospecific?
- Write the product of the following Strecker MCR with mechanism. C)

Q.3 Answer the following.

- a) Define stereoselective reaction? Explain stereoselectivity of epoxidation with mCPBA and vanadyl reagent?
- **b)** How MCRs are useful for synthesis of heterocycles using Aldol reaction?

Q.4 Answer the following.

Define chiral Pool? Explain the following transformation with a) stereochemistry.

b) What is Jacobson-katsuki epoxidation and Shi epoxidation? Comment on the stereoselectivity with three examples of each.

Q.5 Answer the following.

- a) What is the mechanism of Ugi and Gewald reaction? Write different applications of each.
- b) What is Felkin Ahn Model? Discuss in details and give justification for the major product of following reaction. 0

Ph
$$H$$
 H H H H H_3O+ Major [?]

?

16

16

16

Q.6 Answer the following.

- a) How SAMP/RAMP chiral auxiliary useful in the asymmetric synthesis? Discuss their applications in enatioselective synthesis
- **b)** What are the functionalized MOFs? Explain in detail the methods involved in MOF Functionalization.

Q.7 Answer the following.

- a) What are the synthetic routes to metal organic frameworks? Explain solvothermal and solid-state methods of MOF synthesis with suitable diagram.
- **b)** How to confirm the structure of synthesized MOF? Explain the ways for MOF analysis in detail.

Soat					Г						
No.					Set	Ρ					
M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (ORGANIC CHEMISTRY) Chemistry of Natural Products											
Day & I Time: 0	Date: We 3:00 PM	dnesday, 22-02-2 To 06:00 PM	2023		Max. Marks	80					
Instruc	tions: 1) 2 3	Q. Nos. 1 and 2 Attempt any Thr Figures to the rig	are compulsory. ee questions from ght indicate full ma	Q.No rks.	o.3 to Q.No.7.						
Q.1 A) Cho 1)	bse the correct a Steroids are cha a) 1,2-cyclor b) Phenanth c) 1,2-cyclor d) Diel's hyd	alternative. aracterized by the p pentenophenanthre rene pentenoanthrucene rocarbon	orese ene	nce of ring system.	10					
	2)	Trans C/D ring f a) bile acids c) toad poise	usion occurs in ons	b) d)	cardiac glycosides all three						
	3)	In cis-Decalin, tv a) a,a c) a,e	vo rings are fused	throu b) d)	igh bonds. e,e none of these						
	4)	Reserpine forms contains a) -COOH c) -NH ₂	s a monoacetyl der _ group.	ivativ b) d)	re which indicates that it -OH /ਸ-ਮ						
	5)	Strychnine a) Strychnin c) Strychnin	kmnDy nacetone ? olic acid onic acid	b) d)	Strychninolone Glycollic acid						
	6)	51- OPP	2	I	1=1040						
		a) Hydrolysis c) Hydrolysis	s s, oxidation	b) d)	oxidation reduction						
	7)	Folic acid is sen a) sunlight c) water	sitive to	b) d)	acid sunlight and high temperature						
	8)	Mifepristone is a hormone a) Progester c) Androster	a 19-norsteriod that one one	bloc b) d)	ks the action of the female Estrone all three						

		9)	Synth shikir a) c)	nesis of benzene ring nic acid route. proteins carbohydrates	fromb) d)	in living organism is kn fats none of these	own as		
		10)	Inges phos a) c)	sted pyridoxine is conv phate. intestine liver	verted in the b) d)	to pyridoxal stomach kidney			
	В)	Fill i 1) 2) 3) 4) 5) 6)	n the The vi Tyrosi Steroi Camp Frede Misop treatm	blanks. it. B ₂ occurs in nature in on de carboxylation ds are isolated from _ tothecin is a pentacyo ricamycin A is prostol is a stable deriv nent of ulcer.	as gives clic a _ agent. vative for	 Ikaloid having anti tumo , that is used for the	06 or activity.		
Q.2	Ansv a) b) c) d)	 Answer the following. a) Discuss the synthesis of testosterone from cholesterol. b) Explain the conversion of strychnine to malonic acid and glycolic acid. c) Explain the biosynthesis of mevalonic acid from acetic acid. d) Discuss the biochemical role of vit B6. 							
Q.3	Ansv a) b)	 Answer the following. a) Discuss the synthesis of strychnine. b) Discuss the synthesis of Biotin. 							
Q.4	Ansv a) b)	wer th Discu Discu	ne foll uss the uss the	owing. e constitution of Andro e biosynthesis of quine	osterone. oline and isod	quinoline group.	16		
Q.5	Ansv a) b)	wer th Expla Discu	ne foll ain the uss the	owing. formation of ring A, ri synthesis of Folic Ac	ing C and ring cid from guan	g B of taxes. idine.	16		
Q.6	Ansv a) b)	wer th Discu role.	ne foll uss Ha	owing. arries-Folker's synthes	sis of vit. B6 a	and explain its biochemi	16 ical		
Q.7	Ansv a) b)	wer th Expla Discu	ne foll ain the uss the	owing. biosynthesis of trypto conformations of per	ophan by shik rhydroanthrad	kimic acid pathway. cene.	16		

Seat									Set	Ρ
NO.		o (6	000	otor			Evon	vination: Oct/N	ov 2022	-
	IVI.30	C. (3	eme	ster	(ORGA) (New (ORGA Medi	NIC CHEN	=xan IISTF nistr	RY) Y	00-2022	
Day & Time: (Date: 03:00	: Thu PM	rsda To 6:	y, 23-0 00 PM	2-2023				Max. Marks	: 80
Instruc	ction	s: 1) 2) 3)	Q. N Atter Figu	os. 1 a npt an re to ri	nd. 2 are co y three que ght indicate	ompulsory. stions from Q full marks.	Q. No.	3 to Q. No. 7		
Q.1 #	A) (Choc 1)	ose c Antir a) b) c) d)	orrect neoplas Alkyla Antim Alkyla None	alternative stic agents a ting agents etabolites ting agents of these	e. (MCQ) are classified & Antimetab	l into _ oolites			10
	2	2)	Tolb and a) c)	utamid carbox Amine Aldeh	e gets oxidi ylic acid. yde	zed extensiv	ely to b) d)	the corresponding Thiol Alcohol		
	3	3)	An A a) c)	Acyclov Anti-ir Antidi	ir is nflammatory abetic	drug. /	b) d)	Antiviral Anti-histamine		
	2	4)	Antir a) c)	netabo Cance Covid	lites usually er	y employed ii	n the f b) d)	reatment of Hepatitis Fever		
	Ę	5)	a) c)	_ is ca Jaund Cance	aused by ge lice er	nus plasmoc	lium. b) d)	Fever Malaria		
	6	6)	Pher a) c)	nelzine Antide Antihi	is a drug w epressant stamine	hich shows ₋	b) d)	activity. Antineoplastic Antiviral		
	7	7)	Insul a) c)	lin is ai Kidne Pancr	n essential l y eas	hormone pro	ducec b) d)	l by the Lungs Liver		
	8	8)	The a) c)	penicil Mono Tribas	lins are all s basic sic	strong	acids b) d)	Dibasic none of these		
	Q	9)	Para a) c)	o-nitro p-nitro	ol can be sy ophenol ophenol	nthesized fro	om b) d)	m-nitrophenol None of these		
		10)	a) c)	is u Lidoca Aspiri	used in the t aine n	treatment of	rheum b) d)	natoid pains. Diclofenac Insulin		

	В)	Write 1) 2) 3) 4) 5) 6)	All the penicillins gives the different amines and same aldehyde. Halothane and Thiopental are local anaesthetics. Abbreviation of NSAIDs is Non-steroidal Anti-inflammatory drugs. Penicillin and Cephalosporin are classified under broad spectrum antibiotics. Clotrimazol is in the class of antifungal medication. Tolbutamide and Glipizide are oral hypoglycaemic agents.	06
Q.2	Ans a) b) c) d)	wer th Expla Expla Expla Expla	ne following. in the mechanism of action of metformin. in classification of penicillin. in the synthesis of sulfaoxazole. in antianginal activity of Nifedipine.	16
Q.3	Ans a) b)	wer tł Expla Expla	ne following. in the SAR and synthesis of chloroquine. in the SAR and synthesis of captopril.	16
Q.4	Ans a) b)	wer th Expla Expla	ne following. in the synthesis and mechanism of action of sulfacetamide. in synthesis and mechanism of action of Ibuprofen.	16
Q.5	Ans a) b)	wer th Expla Expla	ne following . in classification of antimetabolites. in the synthesis and mechanism of action of propranolol.	16
Q.6	Ans a) b)	wer th Expla Expla	ne following . in the SAR and mechanism of action of diphenylhydramine in the SAR and mechanism of action of Ampicillin.	16
Q.7	Ans a)	wer th Expla	ne following . in anaesthetic activity for halothane and thiopental.	16

b) Define and classify the NSAIDs.
Seat No.						Set	Ρ
	M.S	c. (S	emester - Unit C	III) (New) (CBCS) E INDUSTRIAL CHE Operation in Chemic	xam MIST cal E	ination: Oct/Nov - 2022 IRY ngineering	
Day & Time:	Date 11:0	e: Mor 0 AM	nday, 13-02- To 02:00 PN	2023 M		Max. Marks	: 80
Instru	ctio	ns: 1) 2) 3)	Q. Nos. 1 a Attempt any Figure to rig	nd. 2 are compulsory. y three questions from C ght indicate full marks.). No.	3 to Q. No. 7	
Q.1	A)	Fill in 1)	the blanks Separation a) Extra c) Distil	s by choosing correct of sugar from sugar bee action lation	alterr ets usi b) d)	natives given below. Ing hot water is a Leaching Evaporation	10
		2)	Substance a temperature a) Hygro c) Solva	absorbs moisture from t e but does not dissolve i oscopic substances ates	he atr n it. T b) d)	nosphere at ordinary hese are called as Crystal Hydrate None of the above	
		3)	The system a) Chlor b) Ethar c) Carb d) None	that forms maximum bo roform - Acetone nol - Acetone on Disulphide - Acetone of the above	oiling -	azeotrope is:	
		4)	The function a) Preve b) Accu c) Incre d) Incre	n of spiral agitator in Sw ent the accumulation of mulate crystal on coolin ase the rate of crystalliz ase the rate of cooling	ensor the cr g surf ation	n-Walker is to ystal on cooling surface ace	
		5)	Distribution called a) Mixin c) Crus	of two separate phases lg hing	b) d)	omly through one another is Agitation Conveying	
		6)	The ball mil a) Com c) Impa	I, works on the principle pression ct	of b) d)	Attribution Impact and Attrition	
		7)	Factors that a) Solve c) Temp	t affect the rate of leach ent perature	ing ar b) d)	e Particle size All of these	
		8)	The unit 'Ma a) Dista b) Num c) Num d) Num	esh' is used to measure ince between adjacent v ber of opening per linea ber of opening per linea ber of opening per linea	vire r inch r cm r mete	 er	

SLR-GF-24

Γ

06

- 9) Internal floating head possess _____ advantage over fixed tube heat exchanger.
 - a) Eliminates differential expansion
 - b) Tube bundle is removable for inspection
 - c) Tube bundle is removable for mechanical cleaning from outside
 - d) All of the above
- 10) Which one of the following is not a batch dryer?
 - Agitated vacuum dryer b) Tray dryer
 - c) Rotary dryer d) Pan dryer

B) Write True / False

a)

- 1) Filter aids used in filtration should be Chemically inert.
- 2) Crystallization involves Only mass transfer.
- 3) On adding acetone to methanol some of the hydrogen bonds between methanol molecules break and it forms maximum boiling azeotropes.
- 4) A propeller is an axial-flow impeller.
- 5) In stage-type extractors, the two phases are allowed to mix together so as to reach equilibrium and then are separated before being passed countercurrent to each other.
- 6) In the Dodge jaw crusher, the movable jaw is pivoted at the bottom.

Q.2	Ans a) b)	wer the following What is volume and Longitudinal Strain? What are different methods of supersaturation? Explain Supersaturation achieved by evaporation.	16
	d)	Explain working of Dorr thickener with neat labelled diagram.	
Q.3	Ans a) b)	wer the following Explain with schematic diagram Rotary drum filter. Draw neat labeled sketch and explain working of Blake Jaw crusher.	16
Q.4	Ans a) b)	wer the following Explain with schematic diagram working of Kettle reboiler. Discuss Bubble cap and valve plate used in distillation column.	16
Q.5	Ans a) b)	wer the following Explain the process of Steam distillation with respect to suitable example. Explain with neat labeled diagram multiple effect evaporator.	16
Q.6	Ans a) b)	wer the following Discuss construction and working of Oslo cooling crystallizer. Explain with schematic diagram Stress-Strain relationship.	16
Q.7	Ans a)	wer the following Draw schematic diagram of Pulse column and explain operation process.	16

b) Draw neat labeled sketch and explain working of Bollman Extractor.

Date: Tu 1:00 AN	ate: Tuesday, 14-02-2023 :00 AM To 02:00 PM						
tions: 1	1) Q. Nos.1 and 2 are compulso 2) Attempt any three questions 3) Figure to right indicate full ma	ory. from Q. No. 3 to Q. No. arks.	7				
) Fill 1)	in the blanks by choosing co To calculate the D.V.S. from	prrect alternatives give the mixed acid, the ana	e n below. Iysis formula				
	a) $D.V.S = \frac{S}{EN/R+W}$	b) $D.V.S = \frac{1}{EN}$	W 1/R+W				
	c) $D.V.S = \frac{R}{EN/S+W}$	d) $D.V.S = \frac{S}{R+1}$	<u>-</u> -W				
2)	Substance which are introduce down or stop the reaction a) Inhibitors c) Catalyst	ced in a polymerization b) Initiators d) Accelerator	reaction to slow rs				
3)	For what production are Sulfo a) Detergents c) De-emulsifying	onates and Sulphates us b) Emulsifying d) All of the m	sed?) nentioned				

Time: 1

Seat

No.

Instruct

Q.1 A elow.

Unit Processes in Chemical Technology Day & D Max. Marks: 80

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov - 2022 (INDUSTRY CHEMISTRY)

> Sandmeyer's reaction a)

Substitution reaction C)

- d) All of the mentioned
- $(CH_3)_2 CHOH$ b)
- d) $CH_3COOC(CH_3)_3$

Nucleophilic

 $Cl_2CH - CHCl_2$ b)

Neutral

- ClCH = CHCld)
- The nitrating agent is a reactant. 6)

 $(CH_3CO)_2O + (CH_3)_3COH \rightarrow$

CH₃COOCH₃

 $CH_3COOC_2H_5$

 $ClCH_2 - CH_2Cl$

 $Cl_2CH - CH_2Cl$

 $C_2H_2 + 2Cl_2 \rightarrow$

4)

5)

a)

C)

a)

C)

a)

C)

9)

- Electrophilic a) b) All of the mentioned C)
 - d) None of the mentioned

b)

b)

- Permanganate can be used as an oxidizing agent for which 7) compound?
 - Alkaline a) C)
 - Acid solutions d) All of the mentioned
- What effect does removal of water has on esterification? 8)
 - Increase reaction
 - Completes reaction d)
 - Which type of reaction do we use for the production of Fluorobenzene?
- b) Addition reaction Rearrangement reaction d)

Decrease reacting

Acts as catalyst

- 10

06

16

10) Predict the product

B) Fill in the blanks OR Write True/False.

1) Primary nitramines cannot be prepared by the direct nitration of primary amines. (True/False)

- Cellulose acetate is used in manufacturing of photographic films. (True/False)
- During emulsion polymerization particle size decreases. (True/False)
- 4) _____ reaction of polymerization proceeds step-wise.
- 5) IUPAC name of DDT is _____
- 6) _____ process equipment is safer for the nitration reaction.

Q.2 Answer the following.

- a) Describe in brief the polyamides.
- **b)** Discuss in brief the manufacturing process of chlorobenzene.
- c) Describe the Schmid nitrator.
- d) Discuss the mechanism of aromatic sulphonation.

Q.3 Answer the following.

Q.4

a)	How is vinyl chloride manufacture? What are its physical and chemical properties?	08
b)	Describe in detail the manufacturing process of vinyl acetate.	08
Ans	swer the following.	
a)	Discuss in detail the use of Woodward Reagent with respect to Alkene, also	08

a) Discuss in detail the use of Woodward Reagent with respect to Alkene, also summarize the stereochemical aspect.

 b) Discuss the Baeyar Villiger reaction and the Mechanism with respect to 08 Acetophenone.

Q.5 Answer the following.

- a) Explain with the flow chart the manufacturing process of 08 monochlorobenzene from ethylene.
- b) What is sulphonation? What are the working up procedures for sulphonation 08 process?

Q.6 Answer the following.

a)	Write notes:			
-	1) Alkyd resins and	2)	Epoxy resins	10
b)	What is nitration? Discuss in	brief nitratii	ng agents.	06

- Q.7 Answer the following.
 a) What is oxidation? Explain in brief different types of oxidative reactions.
 b) Describe in detail the manufacture of polyethylene. 80 80

Seat No.					Set	Ρ
	М.\$	Sc. (S	emester - III) (New) (C (INDUSTRI/ Instrumer	CBCS) Exar AL CHEMIS ntal Analysi	mination: Oct/Nov-2022 TRY) is- I	
Day & Time:	Dat 11:0	e: We 00 AM	lnesday, 15-02-2023 Го 02:00 PM	•	Max. Marks	3: 80
Instru	ctio	ns: 1) 2) 3)	Q. Nos. 1 and. 2 are comp Attempt any three question Figure to right indicate full	oulsory. ns from Q. No marks.	o. 3 to Q. No. 7	
Q.1 /	A)	Choo 1)	se correct alternative. In GC-MS, the gas molecu high-energy beam a) proton c) electron	ules exiting the b) d)	e GC are bombarded by a neutron all of these	10
		2)	The plate theory concept v and in 1941. a) Martin & Synge c) John & John	vas adapted to b) d)	o chromatography by Lewis & Mark Sara & John	
		3)	At the end of voltammetric a) current c) temperature	analysis, the b) d)	plot is of potential versus pressure both a) and b)	
		4)	The electrode whose poter a) indicator c) auxillary	ntial is varied b) d)	with time is counter all of these	
		5)	In linear sweep voltammet measured while the potent reference electrode is swe a) diagonally c) linearly	ry, the current tial between th pt in t b) d)	t at a working electrode is ne working electrode and a time. radially all of these	
		6)	In D.C. polarography, drop cathode. a) silver c) mercury	bping b) d)	electrode is used as a gold platinum	
		7)	Arrange the following in the frequency.	e increasing of	order of C=O stretching	

(I)>(II)>(III) (II)>(III)>(I) (|||)>(||)>(|) (||)>(|)>(|||) b) a) c) d)

- Nephelometry is concerned with measure of the intensity of _____ 8) light as a function of concentration.
 - a) scattered
 - b) reflected C) d) absorbed
- 9) In turbidimetry, the intensity of transmitted light is measured in a line

transmitted

- i.e. _____° to the incident light. 120 b) 180 a)
- 90 C) d) 60
- 10) A proton H_b is coupled to four equivalent proton H_a. The relative intensity of lines in the signal $H_{\rm b}$ is
 - 1:4 b) 1:4:6 a) C) 1:4:6:4:1 d) 1:4:6:4

Write True or False. B)

- Nephelometry is used to analyze the colloidal system. 1)
- The output of polarography is chromatogram. 2)
- The potential of reference electrode is set constant in voltammetry. 3)
- The mobile phase in LC-MS is gas. 4)
- The residual current in D.C. polarography is due to the reduction of 5) analvte.
- H₂S is used as a carrier gas in gas chromatography. 6)

Q.2 Answer the following.

- Write any four applications of ionic conductors with examples. a)
- Enlist the differences between classical D.C. polarography and b) voltammetry.
- How many ¹³ C NMR resonances are predicted for the following compound? C)

Define chromatography and discuss its types. d)

Q.3 Answer the following.

- 16
- An organic compound of molecular formula C₁₂H₁₅O₂N shows the following a) features:

IR (KBr) ¹HNMR

: 1670cm⁻¹; : 8.0 δ (d, 1H, J=12.1 Hz); 7.7 δ (d, 2H, J=8.0 Hz); 6.8δ (d, 2H, J=8.0Hz); 5.8δ (d, 1H, J=12.1 Hz); $3.8\delta(s,3H); 3.0\delta(s,6H)$

Predict the structure

An organic compound of molecular formula C₈H₈O₂ shows the following b) features:

IR (KBr)	:	1740cm ⁻¹ ; 3200-3300cm ⁻¹ (broad)
¹ HNMR	:	3.89 δ (s,3H); 6.88 δ (dd, 1H, J=7.2 Hz and J=1.5 Hz);
		6.90 δ (s,1H, broad); 7.41-7.49 δ (m, 2H);
		7.88 δ (dd,1H, J=8.0 Hz and J=2.0Hz);

Predict the structure

06

Q.4	Ans a) b)	wer the following. Explain in detail principle, working and applications of nephelometry with neat labelled diagram. Discuss membrane and enzyme electrodes with necessary mechanism.	16
Q.5	Ans a) b)	wer the following. Discuss D.C. polarography with neat labelled diagram. Describe cyclic voltammetry in detail and how it is useful for analysis of metal ions.	16
Q.6	Ans a)	wer the following. Write the principle, instrumentation, working and applications of gas chromatography.	16
	b)	Explain plate theory of chromatography and write the applications of LC-MS in various industries.	
Q.7	Ans a) b)	wer the following. Discuss with illustration programmed temperature chromatography. Explain gas sensors in detail with diagram.	16

e: 03:0	U PIVI	10 06:			
ructio	ns: 1) 2) 3)	Q. No Attem Figure	s. 1 and. 2 are compulsory. pt any three questions from (e to right indicate full marks.	Q. No.	3 to Q. No
A)	Fill ii 1)	n the b Which stainle	lanks by choosing correct of the following is the primar ess steel alloy?	altern y elen	natives giv nent used f
		c)	Chromium	d)	Zirconium
	2)	How n	nuch SiO ₂ does Pyrex contair	ו?	
	,	a) c)	70.3% 80.5%	b) d)	73% 91%
	3)	Which a) c)	of the following is not a proc Extrusion Heat treatment	ess in b) d)	volved in g Forming a Finishing
	4)	Which a) c)	of the following is a property Low strength Resistant to corrosion	of ce b) d)	ramics? Low meltir Bad insula
	5)	Which a) c)	of the following is not a step Powder pressing Alloying	in ma b) d)	king ceram Sintering Vitrificatio
	6)	Which a) c)	of the following is not a pest BHC DDT	icide? b) d)	Ephedrine Aldrin
	7)	Which	of the following raw material ration of acetic acid?	obtai	ned from p
		a)	Acetone	b)	Phosphori
				- • •	

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (INDUSTRIAL CHEMISTRY) **Chemical Industries**

Day & Date: Monday, 20-02-2023 Time: 03:00 PM To 06:00 PM

Seat

No.

Inst

Q.1 given below.

- ed for making
- in glass production?
- - elting point
 - sulation
- ramics?
 - ation
 - rine

n petroleum can be in horic acid

- Ethylene Tartaric acid C) d)
- Carbamates employed as insecticides are 8)
 - a) Phenyl carbamates C)
 - Thiocarbamates b) Ziram d) Dithiocarbamates
- 9) In which of the below, it is not necessary to remove existing paint to apply a new one?
 - Aluminium paints a) Oil paints C)
- Cement paints b) d) Enamel paints
- Which of the below is most commonly used resin in commercial 10) varnishes?
 - Alkyd a)

C)

- Polyurethane
- Phenolic b)
- d) Satin Gloss

Ρ

10

Max. Marks: 80

Set

- - ig and shaping
 - ng

	в)	 Solvents contain high levels of polyunsaturated fatty acids. (True/False) Anticorrosive paint is black in colour. (True/False) Concentration of ores is also known as ore-dressing. (True/False) is the chief ore of aluminum. Driers in varnish are used as Pigments which are variant of organic days are called vat dyes. 	06
Q.2	Ans a) b) c) d)	wer the following Describe the purification of bauxite ore by Baeyer process. Explain the classification of dyes on the basis of their application. Give the synthesis of Malathion. Explain in brief the purpose of alloying.	16
Q.3	Ans a) b)	wer the following Describe in detail the extraction of Iron from its ore. Write the chemical reactions that take place during the setting and hardening of cement and explain.	16
Q.4	Ans a) b)	wer the following Describe in detail the manufacturing process of the whiteware. Discuss with flow diagram manufacture of paints and their applications.	16
Q.5	Ans a) b)	wer the following Discuss manufacturing process, properties and applications of Aldrin. Give the synthesis of Ziram and Zineb.	16
Q.6	Ans a) b)	wer the following What are petrochemicals? Give an outline of chemicals derived from ethylene. Describe the manufacturing processes of zinc oxide.	16
Q.7	Ans a)	wer the following What are dyes? Explain the preparation, properties and applications of any one dye.	16

b) Explain in short the refining of crude oil.

Seat No.					Set	Ρ	
	M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (INDUSTRIAL CHEMISTRY) Pollution Monitoring and Control						
Day & Time:	Dat 03:0	e: Tue 0 PM	sday, 21-02-2023 Го 06:00 PM	0	Max. Marks	: 80	
Instru	ictio	ns: 1) 2) 3)	Q. Nos. 1 and. 2 are compulsory Attempt any three questions fror Figure to right indicate full marks	′. n Q. No. s.	3 to Q. No. 7		
Q.1	A)	Choo 1)	se correct alternatives. Which of the following is not a gr a) O ₂ c) water vapor	reenhous b) d)	se gas? CO ₂ methane	10	
		2)	The Water (Prevention and Con year of a) 1980 c) 1974	trol of Po b) d)	Ilution) Act is passed in the 1973 1975		
		3)	Section 16 of Water act 1974 pro a) Functions of Central Boar c) Cognizance of offences	ovides d b) d)	State Water Laboratory None of these		
		4)	appoints chairman of Ce a) Central Government c) State Government	entral Pol b) d)	llution Control Board. Citizens Governor of the State		
		5)	 in water is estimated by a) dissolved oxygen c) iodide 	Winkler b) d)	method. cyanide molecular nitrogen		
		6)	Phenolic compounds as an eme firstly by and a) WHO, US-FDA c) US-EPA, EU	rging pol b) d)	lutant have been enlisted by MHRA, EU IP, ANVISA		
		7)	The head office of Central Pollut a) Mumbai c) New Delhi	ion Cont b) d)	rol Board is at Chennai Hyderabad		
		8)	Heavy metals ions are known to a) toxic c) carcinogenic	be very b) d)	non-poisonous both a and c		
		9)	In removal of chromium by reduc a) Cr ⁺³ c) Cr ⁺⁶	ction met b) d)	hod, Cr ⁺⁶ is converted to Cr ⁺⁷ Cr ⁺⁸		
		10)	The red colour of the soil is due a) anthracite c) bituminous coal	to b) d)	 hematite lignite		

- Write True/False.
 1) The CPCB plays an important role in the abatement and control of pollution in the country.
 2) Sodium is a heavy toxic metal for human body.
 - 3) The BOD limit as per MINAS for distilleries is 100 mg/L.
 - 4) Melt processing is used for polymer recycling.
 - 5) Alum is used as flocculating agent in water treatment.
 - 6) Steam gas stripping method is used for removal of phenols.

Q.2 Answer the following.

B)

- a) Explain the sedimentation process for waste water treatment.
- **b)** Explain the sources of phenolic residues in the environment.
- c) Give an account on reduction method of chromium removal.
- d) What is water pollution and explain the sources of water pollution.

Q.3 Answer the following.

- a) Explain in detail Air (Prevention and Control of Pollution) Act 1981, its implication and application in industrial pollution control.
- **b)** Describe in detail with necessary diagrams the ion exchange and biological methods for removal of phenolic residues.

Q.4 Answer the following.

- a) Discuss any two tertiary treatment methods for waste water treatment with diagrams.
- **b)** Explain the nature of gaseous and liquid industrial effluents? Discuss how CO, SO₂ and NO_x are analyzed in the air sample?

Q.5 Answer the following.

- a) Discuss in detail removal of chromium by lime coagulation and reverse osmosis method.
- **b)** Explain in detail toxic effects of mercury and its removal from gaseous and liquid streams.

Q.6 Answer the following.

- a) What is soil pollution? Explain analysis of soil for the factors like moisture content, pH and phosphorus.
- **b)** Explain analysis of water for the factors of free acids, bases, dissolved oxygen and chloride.

Q.7 Answer the following.

- a) Discuss the methods used for the recycling of plastic polymers. What are the important products obtained from recycled plastic polymeric materials?
- b) What is water management? Explain briefly IS-2296, IS-3360 and IS-3307.

16

16

16

16

16

						SLR-GF-30
Seat No.						Set P
	М.S	Sc. (S	Semester Nane	- IV) (New) (CBCS) (INDUSTRIAL CHE omaterial and Its C	Exan EMIS ⁻ harao	nination: Oct/Nov-2022 TRY) cterization
Day & Time:	Dat 03:0	e: We 0 PM	dnesday, 22 To 06:00 P	2-02-2023 M		Max. Marks: 80
Instru	ctio	ns: 1) 2) 3)	Q. Nos.1 a Attempt an Figure to ri	nd 2 are compulsory. by three questions from a ght indicate full marks.	Q. No.	. 3 to Q. No. 7
Q.1	A)	Choo 1)	An importa An importa a) large b) big s c) shini d) none	t options. Int physical property of r surface to volume ratic trength ng in colour of these	hanom	10 naterials is
		2)	Nanomater a) fuel c c) catal	rials have large applicat cell ysis	ions ir b) d)	n medicine all of these
		3)	Nanotechn size range a) 1 to c) 1 to	ology is the synthesis a from 100 mm 100 nm	nd apı b) d)	plication of material having 1 to 100 cm 1 to 100 μm
		4)	In zero dim nano range a) one c) three	nensional nanomaterial, e.	b) d)	dimension is outside the two no
		5)	CVD stand a) Cher c) Cher	s for nical Vapor Deposition nical Vapor Degradation	b) n d)	Chemical Volume Deposition none of these
		6)	SEM belon a) photo c) elect	igs to the family of o-emission ron	spo b) d)	ectroscopies. photo-absorption none of these
		7)	For constru- between th a) $2n \lambda/c$ (n +	uctive interference to take two waves should be $^{\prime 2}$ 1/2) λ	ke plac b) d)	ce, the path difference - (n-1/2) λ (2n - 1/2) λ XX
		8)	The number a) 2 c) 3	er of atoms present in si	mple o b) d)	cubic cell is 1 4
		9)	tech to tempera a) DSC c) Both	nnique is used to measu ture in terms of differen a) and b)	re cha tial po ^r b) d)	ange in enthalpy with respect wer. DTA None of the above

06

16

16

16

16

16

16

- 10) DTA curve is plotted in between _
 - a) Change in heat vs Pressure
 - b) Change in heat vs Volume
 - c) Change in heat vs Temperature
 - d) Change in heat vs Gibbs free energy

B) Write True/False.

- 1) In nanotechnology, SEM can be used to study the surface phenomenon of the materials.
- 2) Nano-sensors are highly selective towards their target side.
- 3) Electrodeposition method is not used for synthesis of nanomaterial.
- 4) Nano-devices are small enough to enter into the cell.
- 5) A infinite regular arrangement of lattice point in three dimension in which every lattice points has identical surrounding is called as space lattice.
- 6) Unwanted material remain as it is after decomposition of sample Residual temperature in TGA.

Q.2 Answer the following.

- a) What are zero-, one-, two-, and three-dimensional nanomaterials?
- **b)** Explain some properties and applications of nano-sensors.
- c) Describe the basic principle of TGA analysis.
- d) Find the Miller index of a plane making intercept 1/3a, 2/3b, and 1c and draw plane.

Q.3 Answer the following.

- a) Describe in detail the electrodeposition and spray pyrolysis methods with neat labeled diagram for the synthesis of materials.
- **b)** Explain the chemical bath deposition and chemical vapor deposition methods for the synthesis of nanomaterials.

Q.4 Answer the following.

- a) Explain in detail the principle, construction, working and applications of scanning electron microscopy (SEM).
- **b)** Explain the principles with labeled diagrams of x-ray photoelectron microscopy (XPS) and transmission electron microscopy (TEM).

Q.5 Answer the following.

- a) Explain in detail the applications of nanomaterials in agriculture and electronics Industries.
- **b)** Explain in brief Czochralski method for the preparation of gallium and indium.

Q.6 Answer the following.

- a) What is destructive interference phenomenon? Derive Bragg's equation.
- **b)** Derive a diffraction pattern equation for a cubic system.

Q.7 Answer the following.

- a) Give the principle of DTA & describe the factors affecting on DTA analysis.
- **b)** Describe in details the instrumentation of DSC analysis.

Set

Ρ

No. M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov - 2022 (INDUSTRIAL CHEMISTRY) Industrial Management and Material Balance

Day & Date: Thursday, 23-02-2023 Time: 03:00 PM To 06:00 PM

Seat

Instructions: 1) Q. No. 1 & 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to 7.
- 3) Figures to the right indicate full marks.

Q.1 A) Choose the correct alternatives from the options.

- 1) Following is not the substrates used for ethanol production?
 - a) Starch containing substrate
 - b) Juices from sugarcane or molasses or sugar beet
 - c) Waste product from wood or processed wood
 - d) Fats containing substances
- 2) The renewable source of energy is _____
 - a) Coal b) Solar Energy
 - c) Wind energy d) Ocean tides
- A Solution contains 20 mole % B (Y_B = 0.20) Calculate the molar flow rate of B in 500 moles solution /min stream _____.
 - a) 200mols B/min b) 100mols B/min
 - c) 250mols B/min d) 300mols B/min
- 4) Researchers use the _____ method to choose the sample members of a population at regular intervals. It requires the selection of a starting point for the sample and sample size that can be repeated at regular intervals. This type of sampling method has a predefined range, and hence this sampling technique is the least time-consuming.
 - a) Simple random sampling
 - b) Cluster sampling
 - c) Systematic sampling
 - d) Stratified random sampling
- 5) Integral type of balance usually applied to a _____.
 - a) Continuous process b) Batch process
 - c) Semi batch process d) Both b) and c)
- 6) Which statement is wrong with respect to Industry University Collaborative Relationships?
 - a) Society get benefitted
 - b) University get benefits, as it procures infrastructural facility available with industry
 - c) It stimulate companies' internal research and development programs
 - d) When university researchers develop a patent, sponsored by industry the university often gains the first right to license the product

Max. Marks: 80

16

06

- 7) _____ institute offers SSI, a technical Consultancy, Calibration and testing of Electrical, Electronic equipment.
 - a) NSIC b) IDEMI
 - c) SIDO d) CITD
- 8) Acetone is incompatible with _
 - a) Concentrated nitric and sulphuric acid mixtures
 - b) Water and sulphuric acid mixtures
 - c) Concentrated nitric and water mixtures
 - d) All of the above
- 9) _____ financial Institution provide assistance to SSI to enable them a well-run export-oriented units to acquire ISO 9000 series certification.
 - a) SIDBI b) Commercial Bank
 - c) IDBI d) NABARD
- 10) A solution contains 30% by mass NaOH, calculate the total solution flow that contains 30Kg- NaOH /sec _____.
 - a) 125Kg-mols solution /sec
 - b) 100Kg-mols solution /sec
 - c) 100Kg solution /sec
 - d) 125Kg solution /sec

Q.1 B) Fill in the blanks / Write True or False.

- When manufacture is carried out by the owner himself with the help of his family members or relatives or a few wage earners, it is said to be a Cottage or Household Industry. (True/False)
- 2) 'Selection of Product' is a parameter towards establishing Small scale Industry. (True/False)
- 3) Organic peroxide are shock sensitive chemicals. (True/False)
- 4) $\Delta U + \Delta E_k + \Delta E_P = Q + W$ is not the final energy balance equation. (True/False)
- 5) Work done on the process fluid by a moving part within the system is called as flow work. (True/False)
- Applied research is aimed at a fuller, more complete understanding of the fundamental aspects of a concept or phenomenon. (True/False)

Q.2 Answer the following.

- a) Explain Biofuel and its economy
- b) Explain in brief Bypass stream and Purge stream
- c) Why is research and development (R&D) important?
- d) Write a short note on Role of Small Scale Industry.

Q.3 Answer the following.

- a) Discuss in details manufacturing process of Bio Diesel.
- b) What is Fuel Cell? Explain in Detail working of Hydrogen-Oxygen Fuel Cell.

16

16

16

16

Q.4 Answer the following.

- a) A binary mixture consists of 35 % benzene and 65 % toluene are continuously fed to the distillation column at a rate of 1000 kg/hr. whereas, the distillate flow rate was 10% from the feed flow rate. The distillate (top product) contains 85 % benzene. Calculate quantity and compositions of the waste stream.
- b) Discuss with example the X and R bar chart with respect to sample size five for quality determination.

Q.5 Answer the following.

- a) Define Patent. What is the procedure to obtain Patent?
- b) What is Incineration? State advantages of incineration process

Q.6 Answer the following.

- a) Two methanol-water mixtures are contained in separate flasks. The first mixture is 40.0 wt % methanol, and the second is 70.0 wt % methanol. If 200 g of the first mixture is combined with 150 g of the second, what will be the mass and composition of the resulting mixture?
- b) Discuss in detail the Export-Import Regulation.

Q.7 Answer the following.

- a) Define quality control. Explain its importance
- b) Discuss the typical research program steps involved to minimize the risk associated with a new product.

No.											
	М.	Sc. (Seme	ster	IV) (O) - INDU: Ch	ld) (CB STRIAL emical	CS) Ex CHEN Indus	kan //IS trie	nination: Oct/Nov TRY) es	-2022	
Day & Time	& Dat : 03:0	e: Mo 00 PM	nday, 2 To 06:	20-02- 00 PN	-2023 M				Ν	lax. Marks	s: 80
Instr	uctio	ns: 1) 2) 3)) Q. No:) Attem) Figure	s. 1 a pt an <u>y</u> e to rię	nd. 2 are y three q ght indica	e compuls uestions ate full ma	sory. from Q. arks.	No	. 3 to Q. No. 7		
Q.1	A)	Cho (1)	ose co What a) T b) T c) T d) T	rrect is a v o obs o adl o pro o rec	alternat ehicle in scure sumere to s ovide shimuce crace	ive. paint use fface urface ne to surf ck on surf	ed for? ace face				10
		2)	Which separa a) C c) F	of th ation? Chrom Pyrolu	e followi nite site	ng canno	t be cor b) d)	ncer I	ntrated by electromag Magnetite Zinc blende	netic	
		3)	How is a) F c) F	s ore- Froth Hand	dressing Flotation picking	of iron d	one? b) d)	ľ	Magnetic separation By wetting		
			Which a) E c) E	ı form Blowir Drawiı	ing meth Ig Ig	iod is use	ed for th b) d)	e pi F (roduction of hollow gla Pressing Casting	asses?	
			The te super- a) M b) C c) E d) C	emper -coole /leltin Glass Boiling Crysta	ature at ed liquid g point transition g point illine terr	which a r to rigid gl n tempera iperature	non-crys ass is _ ature	stall	ine material transform 	is from a	
		6)	In how a) 3 c) 2	v mar 3 2	iy layers	is oil pair	nt applie b) d)	ed to	o a surface? 1 I		
		7)	Driers a) F c) A	in va Reduc Accele	rnish are ers erators	e used as	: b) d)	F	Retarders Dxidizers		
		8)	Paint : a) C c) F	shoul Corros Ieat	d provide sion	e resistar	ice to: b) d)	S	Sound Warping		
		9)	The po attack a) E c) A	esticio is DDT Aldrin	de used 	in founda	tions of b) d)	bui E E	Idings for preventing t BHC Endosulphan	termite	

Set

Set P

		10)	Whic prep a) c)	ch of the follow aration of acet Acetone Ethylene	ving raw mater tic acid?	rial ob b) d)	tained from petroleum can be in Phosphoric acid Tartaric acid	
	B)	Writ(1) 2) 3) 4) 5) 6)	e True Cem a) Cellu from a) Air p a) The lesse The insee	e or False / Fi ent paints req True ulose acetate i petroleum. True ollution is caus True farming er production o is the most pesticio cts) are	II in the bland uire a smooth s end product sed mainly du g is in which th of waste. commonly use des is used in	ks. surfad b) is pro b) e to a b) ere is ed bas killing	ce to be applied on. False oduced by ethylene obtained False grochemical waste. False less use of chemicals and se for making Whiteware. aquatic pests (including	06
Q.2	Ans a) b) c) d)	Swer the following. Give important application of borosilicate glass. Discuss in Fluorescent brightening agents. Give the synthesis and application of Aldrin. How are ceramics classified? What are the basic raw materials used in ceramics?						
Q.3	Ans a) b)	wer tl Desc Discu	h e fol ribe ir iss th	l lowing . n the details th e manufacturir	e extraction o ng process of	f alum stainle	iinum from its ore. ess steel.	16
Q.4	Ans a) b)	wer tl Menti exam What Benz	h e fol ion th ples. are p ene.	l lowing . e main constit petrochemicals	uents of paint ? Give an out	. Wha line of	t are their functions? Give f chemicals derived from	16
Q.5	Ans a) b)	wer tl Expla Expla	he fol ain in ain in	l lowing . detail the man detail the man	ufacturing pro ufacture of W	cess o hite w	of glass. are in details.	16
Q.6	Ans a) b)	wer tl Expla Write harde	he fol ain in the c ening	l owing . detail the blasi chemical reacti of cement and	t furnace proc ons that takes I explain.	ess fo s place	r the extraction of iron. e during the setting and	16
Q.7	Ans a)	wer tl Give	he fol the sy	l lowing. ynthesis and a	pplication of [Dimeth	nyl carbamate.	16

b) Give the synthesis and application of Dimethoate.

	M.S	Sc. (S	Semeste	r - III) (New) (Cl POLYMEF	BCS) E> R CHEM	cam ISTI	ination: Oct/No RY	v - 2022	
			Fund	amentals of Fe	edstocl	ks a	nd Polymers		
Day Time	& Dat : 11:0	e: Mo 00 AM	onday, 13- l To 02:00	02-2023 PM				Max. Marks: 8	0
Instr	uctio	ns: 1 2 3) Q. Nos.) Attempt) Figure to	1 and. 2 are compo any three question o right indicate full	ulsory. Is from Q marks.	. No.	3 to Q. No. 7		
Q.1 A)		Fill i 1)	w. 1	0					
		2)	Which m a) Et b) Et c) Et d) Et	of PET polymer? cid					
		3)	Which of of HDPE a) M c) Ti	f the following meta by Philips process olybdenum oxide tanium oxide	al oxide u s?	sed a b) d)	as a catalyst for the Calcium oxide Chromium oxide	e synthesis	
		4)	In the Ny indicates a) In b) In c) In d) In	ylon 6, 10 what doe ? dicate number of c dicate number of c dicate number of c dicate number of c dicate number of c	es the sec carbon ato carbon ato carbon ato carbon ato	cond oms i oms i oms i oms i	number added ont n n repeating unit n diacid n polymer	o nylon	
		5)	What is t bed cata a) Al b) Al c) Al d) Al	the role of centrifug alytic cracking meth lows to pass only v lows to pass nothin lows to pass only o lows to pass only o	gal separa nod? vapours ng catalyst p carbon	ator o articl	called cyclone in th	e moving	
		6)	Polymer a) Po	s of aldehyde are o olyacetals	commonly	/ tern b)	ned as? Polyketals		

- Polyols All of these C) d) Gasoline fraction obtained in Refining of crude oil is known as? 7)
 - Reformed gasoline a) c)
- Cracked gasoline b) Straight run gasoline None of these d)

Set

Ρ

Seat No.

06

16

- To avoid crosslinking a)
- To control the molecular weight b)
- To make polymer more flexible C)
- To avoid the side reactions d)
- 9) What is the role of chain transfer agent in polymerization?
 - To increase the polymerization rate a)
 - To control the molecular weight b)
 - To increase the molecular weight C)
 - To initiate the polymerization d)

10) Why, thermal activation is difficult in Solid phase polymerization?

- Polymerization is restricted to low temperature a)
- Monomer may undergo melting b)
- Photo or radiation activation is used C)
- All of these d)

B) Fill in the blanks Or Write True/False.

- Monomer containing double bond will under goes condensation 1) polymerization. (True/False)
- Polymers which can reshaped into high & tough utility articles by 2) application of heat and pressure are called as Plastics. (True/False)
- 3) Knocking characteristics of fuel used in petrol engine are expressed in terms of Cetane number. (True/False)
- Poly(1-phenylethylene) is IUPAC name of commercial 4) polymer.
- Hexamethylene diamine with monomer is required for the 5) synthesis of Nylon 6,6?
- Polymers of _____ are commonly termed as Polyketals. 6)

Q.2 Answer the following

- Explain the gas phase polymerisation with one suitable example. a)
- Explain the preparation of PMMA by bully polymerization. b)
- C) Discuss the structure - properties relationship in linear, branched and crosslinked polymers.
- Describe nomenclature of polymers based on trade names. d)

Q.3 Answer the following

- Discuss in detail on classification of polymers with suitable examples. 10 a) Write on synthesis, properties and applications of poly(formaldehyde) b) 06
- polymer.

Q.4 Answer the following

- Discuss the manufacturing and properties of LDPE and HDPE. a)
- Give an account on any one renewable resource as building blocks towards b) 06 polymer industries.

Q.5 Answer the following

- Discuss the interfacial and phase transfer catalysed interfacial **08** a) polymerisation techniques. 08
- Describe the use of propylene as a feedstock for polymer industry. b)

Q.6	Ans a) b)	wer the following Discuss the refining process of crude oil in details. Explain in detail about IUPAC Nomenclature of polymers with examples.	08 08
Q.7	Ans a) b)	wer the following Discuss the use of Xylene as a building block towards polymer synthesis. Explain the Emulsion polymerisation method in detail.	08 08

Seat No.					Set	Ρ
Ν	l.Sc. (S	emester - Aorpholog	III) (New) (CBCS) E (POLYMER CHEN	xam IISTI	ination: Oct/Nov - 2022 RY) try of Polymers	
Day & D Time: 1	ate: Tue 1:00 AM	esday, 14-02- To 02:00 PM	-2023 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max. Marks	: 80
Instruct	t ions: 1) 2) 3)	Q. Nos. 1 ar Attempt any Figure to rig	nd. 2 are compulsory. three questions from C ht indicate full marks.). No.	3 to Q. No. 7	
Q.1 A) Fill ii 1)	h the blanks Three dimenusing a) Visco b) Light c) Vapo d) Ultrac	by choosing correct nsional structure of poly <u></u> metry scattering ur pressure osmometry centrifugation	alterr mer o	natives given below. chain can be estimated	10
	2)	In GPC ana a) mono c) low m	lysis method molecules omer nolar mass polymer	elute b) d)	d first in column are high molar mass polymer mixture	
	3)	Polydispersi a) Mw/M c) Mn/M	ity index is calculated by In Iw	y b) d)	Mv/Mn Mz/Mn	
	4)	Weight aver a) Mw c) Mz	age molecular weight is	b) d)	oted as Mn None of above	
	5)	a) GPC c) Light	ne first molecular weight analysis scattering analysis	: estin b) d)	nation method developed. Viscosity analysis None of above	
	6)	Which meth a) Visco b) End g c) Light d) Meml	od is most accurate mo sity analysis group analysis scattering analysis brane osmometry analy	lecula sis	ar weight estimation method?	
	7)	X-ray spectr a) Melt t b) Cryst c) Glass d) All of	ra of polymer gives infor transition temperature allinity transition temperature above	matic	on about	
	8)	Photostabilis of a) Bright b) Non-s	sers are normally used t colours staining	to pro	tion	

d) All of above SLR-GF-39 Sot D

		9)	Spher a) c)	ulites are Highly oro Only crys	composed o dered lamel talline regio	of lae ons	 b) d)	Amorphous regions Both a) and b)		
		10)	Which a) c)	n polymer i Polyethyle Polycarbo	s biodegrac ene onate	dable po	lymer b) d)	r? Polyurethane Polylactic acid		
	B)	Fill in 1) 2) 3) 4) 5) 6)	n the k Polym Polym Viscos DSC s Ultrac	blanks OR ners do not ners do not ners have sity of poly scans of po entrifugati	t Write true t have cryst t degrade in Tg and Tm. mers gives olymer give on analysis	alline ph enviror (True/F informa s inform of polyr	nase o nment alse) ition a lation ner gi	or crystals. (True/False) t. (True/False) about about ives information about	06	
Q.2	Ans a) b) c) d)	swer the following. Write a note on intrinsic viscosity of polymers. What is LCST behaviour of polymer solutions? Write a note on weight average molecular weight of polymers. With suitable example write down the factors affecting on Tg.								
Q.3	Ans a) b)	swer the following Describe the different transition curves obtained by DSC. Describe in brief theory, working & principle about the X-Ray diffraction instrument with diagram.								
Q.4	Ans a) b)	wer th Desci instru Write using	ne follo ribe in ment v a deta microo	owing brief theor with diagra uiled note v organisms	y, working µ m. vith suitable	principle e examp	abou le on	ut the membrane osmometry biodegradation of polymers	/ 08 08	
Q.5	Ans a) b)	wer th Desc osmo Write	ne follo ribe in metry a deta	owing brief theor instrument iled note c	y, working p t with diagra on depolyme	principal am. erisatior	abou n meth	ut the vapour phase hods of polymers.	08 08	
Q.6	Ans a) b)	wer th Desc exam Write	wer the following Describe in details the various mechanisms of degradation with suitable example. Write a brief note on spherulites in polymers with suitable diagram							
Q.7	Ans a) b)	wer th What exam Write methe	ne follo are bio ples an a note od.	owing odegradab nd applica e on end gi	le polymers tions of it. roup analys	s? Desc	ribe ir ymer	n detailed classification with molar mass estimation	10 06	

<u>110.</u>											
	Μ.	Sc. (Seme	ester - III) (New (POLY) Basic Conc	(CBCS) E MER CHEN epts of Po	Exar /IIST Ivm	nination: Oct/N RY) erization	lov-2022			
Day Time	& Da e: 11:0	te: We 00 AM	edneso To 02	day, 15-02-2023 2:00 PM				Max. Marks: 80			
Instr	uctio	o ns: 1 2 3) Q. N) Attei) Figu	los. 1 and. 2 are c mpt any three que re to right indicate	ompulsory. stions from G full marks.	Q. No	. 3 to Q. No. 7				
Q.1	A)	Cho 1)	ose c Amo polyr	Se correct alternative. Among the below which is used as a catalyst for cationic polymerization?							
			a) c)	AIBN Protonic acids		b) d)	Benzyl peroxide Metal alkoxide				
		2)	High	ly strained, 3-mer initiators.	nbered ring e	poxic	des are polymerize	ed by			
			a) c)	Cationic Neutral		b) d)	Anionic Both a) and b)				
		3)	with a) b) c) d)	is the chemica an olefin. Heck reaction Suzuki reaction ADMET olefinic All of the above	metathesis r	insat eacti	urated halide or all on	kyl halide			
		4)	a) c)	is used as a c Pd Na	oupling agen	t as i b) d)	t has various oxida K Li	tion state.			
		5)	polyc a) b) c) d)	approaches an condensation read Stoichiometric b Quenching Addition of mon All of the above	re used to co ction. palance o functional r	ntrol nono	molecular weight i mers	n linear			
		6)	a) c)	pair of monom Styrene and acr Styrene and acr	iers undergo ylonitrile ylamide	catio b) d)	nic copolymerizati Styrene and ethy None of the abov	on. /I vinyl ether /e			
		7)	Rano a) c)	dom / Ideal copoly $r_1 r_2 = 0$ $r_1 > 1, r_2 > 1$	merization is	obta b) d)	ined when $_$ $r_1 r_2 = 1$ All of the above	-			
		8)	a) b) c) d)	is used as cha Diisopropyl xan Diisopropyl xan Diisobutyl xanth All of the above	in modifier in hate disulfide hate ate disulfide	ı poly Ə	mers.				

Seat No.

		9)	lmpu a) c)	rities present in the Initiators Both a) and b)	e monomer r	nay a b) d)	act as Inhibitors or retarder Catalyst			
		10)	a) c)	is the example Benzyl peroxide Hydrogen peroxid	of redox init de	iator. b) d)	Ferrous ion All of the above			
	B)	Fill in 1) 2) 3) 4) 5) 6)	n the Free In 19 In ab In po with a	blanks. - radical contains a 83 scientis sence of catalyst th is used for the lymers ionized gas is the chemical r an olefin.	n ele t discovered ne order of p microelectro eous molect reaction of u	ectroi I grou oolycc onic f ule st nsatu	n. up transfer polymerization. ondensation reaction is abrication. age is called as urated halide or alkyl halide	06		
Q.2	Ans a) b) c) d)	wer th Expla Discu Expla Expla	 the following. plain free radical polymerization. cuss Heck polymerization method with suitable examples. plain the kinetics of cationic polymerization. plain copolymerization equation and reactivity ratio. 							
Q.3	Ans a) b)	wer th Discu Expla	ie foll iss the iin the	e following. ss the Reactivity of functional groups in step growth polymerization. n the chain transfer reaction.						
Q.4	Ans a) b)	wer th Discu Expla	ne foll iss the in the	owing. e various types of r e Q-e scheme.	edox initiato	rs use	ed in polymerization.	08 08		
Q.5	Ans a) b)	wer th Distin Expla	ie foll iguish iin the	owing. between radical a Suzuki coupling re	nd ionic poly eaction with	rmeriz exam	zation. iple.	08 08		
Q.6	Ans a) b)	wer th Expla Expla	ie foll iin the iin the	owing. Ring opening met copolymerization l	athesis poly behavior.	meriz	ration.	08 08		
Q.7	Ans a) b)	wer th Expla Ring	ie foll iin the openi	owing. Kinetic equation for ng polymerization r	or polyesteri nechanism o	ficatio	on. clic amides.	08 08		

Seat No.		S	et	Ρ
	M.S	c. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (POLYMER CHEMISTRY) Step-growth Polymers	2	
Day & Time:	Date 03:00	: Monday, 20-02-2023 Max. Ma PM To 06:00 PM	irks:	80
Instru	ction	 s: 1) All questions are compulsory. 2) Figures to the right indicate full marks. 3) Use of nonprogrammable calculator is allowed. 		
Q.1	A) 1)	Choose Correct Alternative.The reaction between Bis-phenol-A and Epichilorohydrine givesa) PF resinb) Epoxy resinc) MF resind) UF resin		10
:	2)	 The intermediate formed during the formation of PTT is a) Bis (3-hydroxy propyl) terephthalate b) Tris (3-hydroxy propyl) terephthalate c) Bis (3-hydroxy propylene) terephthalate d) None of these 		
~	3)	The starting materials used for formation of polycarbonate area) COCl2, benzeneb) COCl2, Bis-phenol-Ac) COCl2, Phenold) COCl2, Naphthalene		
4	4)	is the trade name of PBT. a) Celanex b) Cortora c) Sarona d) Dacron		
ę	5)	The PF resin formed by using acid catalyst is called asa) Bakeliteb) Polyamidec) Resoled) Polyimide		
(6)	In the first step of preparation of polyparaphenylene (PPP) polymer catalyst is used. a) CuCl ₂ b) Pd-C c) Ziegler-Natta d) Zn	_	
-	7)	Which of the following is 3GT polymer? a) PTT b) PBT c) PET d) PEN		
8	8)	Glyptal resin is also called asa) UF resinb) MF resinc) Alkyd resind) PF resin		
ę	9)	The crosslinking agent used for Novolac isa) Formaldehydeb) Ammoniac) Hexad) HMDA		
	10)	Terelene belongs to which of the following class of polymersa) Polyamideb) Polyazomethinesc) Polyimidesd) Polyester		

06

B) Fill in the blanks. (Each Question carry one mark)

- 1) GD- amino undecanoic acid gives_____ polymer.
- 2) Base catalysed PF resin gives ____
- 3) The polysulfone obtained from Bis-phenol-A have a trade name _____.
- phenol-A in the presence of polar aprotic solvent.
- 6) _____ polymer will be formed by reacting m-phenylene diamine with IPC.

Q.2 Answer the Following. (Each Question carry four marks)

- a) Define polyester. Give an example of synthesis of aromatic polyester.
- **b)** Explain the direct method of preparation of DMT and give an advantage of use of DMT over terephthalic acid in PET synthesis.
- c) Describe the synthesis and manufacture of PBT with mechanism.
- d) Write a short note on flame retardant epoxy resin.

Q.3 Answer the following. (Each Question carry eight marks)

- a) Write down the synthesis of Glyptal resin and its applications.
- b) Explain the manufacture of Nylon 6,6 by Batch process and continues process.

Q.4 Answer the following. (Each Question carry eight marks)

- a) What is polycarbonate. Explain its Solution & Interfacial polymerisation method.
- **b)** Discuss the formation of PTT polymer.

Q.5 Answer the following. (Each Question carry eight marks)

- a) Define Aramide. Discuss the synthesis of Nomex and its applications.
- **b)** Write down the general structure of polyurethane and discuss the different mechanism of synthesis of ethylene glycol.

Q.6 Answer the following. (Each Question carry eight marks)

- a) Write a short note on synthesis of Polybenzimidazole (PBI).
- **b)** Describe the synthesis of PPP. Explain with suitable example.

Q.7 Answer the following. (Each Question carry eight marks)

- a) Define epoxy resin and describe the synthesis of liquid epoxy resin.
- **b)** Describe the reaction mechanism given by the Marvel in acidic condition for the synthesis of UF resin.

16

16

16

16

16

Seat	
No.	

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (POLYMER CHEMISTRY)

Stereoregular Polymers and Modern Polymerization Methods

Day & Date: Tuesday, 21-02-2023 Time: 03:00 PM To 06:00 PM

a)

C)

C)

Instructions: 1) Question no. 1 and 2 are compulsory.

- 2) Attempt any three guestions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 Choose correct alternative. (MCQ) A)

- Which is the most powerful spectroscopic technique for analysis of 1) stereoregularity in polymers?
 - FT-IR b)
 - NMR d) Mass C)
- The enantiomorphic site control model attributes stereocontrol in 2) isoselective Z-N polymerization is depends on what?
 - Propagating chain a) Terminated chain
- Initiator active site b) None of above d)

UV

- What is NMP in Controlled or Living Radical Polymerization? 3)
 - Nitroxide-Mediated Polymerization a)
 - b) Nitrogen - Mediated Polymerization
 - Nitrogen- Mercury Polymerization C)
 - None of above d)
- 4) Which basic morphological units are observed in block copolymers?
 - Spheres Cylinders b) a)
 - C) Lamellae d) All of these
- How many stereoisomerism will obtain on polymerization of 1, 5) 1-dimethyl ethylene? (R=R')
 - (R = R') Zero
 - a) b) One C) Two
- Why, block copolymer of PS-1,2-PB has been avoided? 6)
 - Relatively high Tg. a) Relatively high viscosity
- b) d) All of these
- What type of polymer one can get by using the Ziegler-Natta initiator 7) in polymerization of propylene?
 - a) Stereo irregular
 - Atactic d) C)
- Among the following which is the function of Co-ordination initiator? 8)
 - Terminate the polymerization a)
 - Retard the polymerization b)
 - Initiates the polymerization C)
 - Inhibit the Polymerization d)

- b) Random
- Stereo regular
- Relatively low Tg.
- d) Three

Max. Marks: 80

- SLR-GF-43

- 9) When the reactivity ratio r1, r2 > 1 what type of copolymer will obtain?
 - Random b) Block a)
 - Alternating Graft C) d)
- 10) Which letters are used in denoting Absolute Configuration?
 - P and Q D and L b) R and S
 - E and Z C) d)

B) Fill in the blanks and write True / False.

Write True/False. a)

a)

- 1) FT-IR will determine the impurity present in block copolymer A-B as (A + B) or in A-B- A as (AB + A + B).
- In terms of the nomenclature used for stereoregular polymers, 2) amylose has Erythrodiisotactic structure.
- Secondary Insertion will occur when the substituted end of the double 3) bond attached to gegenion 'G'.

b) Fill in the blanks.

- The ability of a chemical substance to rotate the plane of polarized 1) light to the right or left is
- 2) The ABS copolymer is prepared by using Co-monomers.
- Simultaneous Reverse and Normal ATRP (SR&NI) was developed to 3) overcome the problems ATRP.

Q.2 Answer the following.

- Explain the observed rate behavior in kinetic of Z-N Polymerization. a)
- Describe the stereoisomerism in polyactaldehyde. b)
- Explain the various properties of block copolymers in brief. C)
- Give an account on advantages of ATRP over commercial free radical d) polymerization.

Answer the following. Q.3

- From practical point of view there is only one disyndiotactic polymer, but two 10 a) diisotactic polymers, explain with suitable example.
- Compare the stereoselective and stereoelective polymerization in chiral 06 b) monomer with suitable example.

Q.4 Answer the following.

- a) Explain the Bimetallic mechanism of Z-N initiators for polymerization of 10 propylene monomer. 06
- Discuss the Co-ordination polymerization of olefins and dienes. b)

Q.5 Answer the following.

- Discuss the various stereoregular structures obtained on polymerization of 80 a) 1-substituted 1,3- butadiene monomer.
- Explain the synthesis, properties and applications of (ABA) triblock co-08 b) polymer.

Q.6 Answer the following.

- Discuss the effect of components of Z-N initiator system in polymerization of 08 a) α -olefins.
- **b)** Discuss the stereoisomerism in polymerization of styrene. 80

Answer the following. Q.7

- What is living / controlled radical polymerization? Explain RAFT 08 a) Polymerization.
- Discuss the synthesis, properties and applications of styrene-butadiene 08 b) dibloc co-polymer.

06

Seat No.				Set	Ρ
I	M.S	c. (S	Semester - IV) (New) (CBCS) Examination: Oct/Nov-2 (POLYMER CHEMISTRY) Selected Topics in Polymers	022	
Day & Time: (Date 03:00	: We PM	ednesday, 22-02-2023 Max To 6:00 PM	. Marks	: 80
Instruc	ction	i s: 1) 2) 3)) Q. Nos. 1 and 2 are compulsory.) Attempt any three questions from Q. No. 3 to Q. No. 7) Figure to right indicate full marks.		
Q.1 A	4)	Choo 1)	ose correct alternative. Crack growth is minimum for a) SBR b) CR c) NBR d) NR		10
		2)	Antimony oxide is an additive which impartsa)Flame resistanceb)Heat resistancec)Conductivityd)Weather resistance		
		3)	The inorganic rubber among the following isa) Nitrile rubberb) Butyl rubberc) Silicone rubberd) Chloroprene rubber		
		4)	The cotton plant is composed of about of cellulose andof water.a) 93% and 5 %b) 89% and 7%c) 90% and 8%d) None of these		
		5)	is used as cigarette filters.a)Celluloseb)Silkc)cellulose etherd)cellulose acetate		
		6)	The electron beam induces crosslinking ofa)PEb)PVCc)PCd)All of these		
		7)	Which of the following is used for making rechargeable batteriesa)Polypyrrolb)Polyesterc)Polyanilined)Polyacrylonitrile	?	
		8)	Polymer matrix composites are used as components ina) mri- scannerb) x-ray couchesc) surgical target toolsd) all of these		
		9)	polymer blend has two glass transition temperatures.a)Missibleb)Solublec)Immisibled)Insoluble		
		10)	Which of the compound is used in plastic surgery & pipes used fmedical purposes?a) silicone fiberb) silicone fluidc) silicone rubberd) silicone resin	or	

	В)	Fill in the blanks. 0 1) polymers can not be recycled. 0 2) polymer are used to locate blockages in veins & arteries. 0 3) The polymer which conducts electricity is known as polymers. 0 4) is the process of adding certain positive or negative impurities in polymer to conduct electricity. 0 5) is the IUPAC name of the monomer of polychloroprene. 0 6) catalyst is used for hydrogenation of polystyrene. 0	6				
Q.2	Ans a) b) c) d)	swer the following. Explain the Cellulose modification. Discuss the polymers in tissue engineering. Write note on waste management of polymers. Explain the physical properties and chemistry of natural rubber.					
Q.3	Ans a) b)	swer the following. Explain in detail the role of additives in rubber. Explain the Classification of polymers and it recycling processes.					
Q.4	Ans a) b)	wer the following. Discuss the Hydrogel and stimulli sensitive hydrogel. Explain the PE modification by halogenations and epoxidation.	6				
Q.5	Ans a) b)	wer the following. Explain the controlled release drug delivery polymer systems. Explain in detail composites and nanocomposites.	6				
Q.6	Ans a) b)	wer the following. Explain the Advantages of Polymer Reagents and Catalysts. Explain the Manufacturing and physical properties of synthetic rubber SBR.	6				
Q.7	Ans a) b)	wer the following. Explain the blowing agents, lubricants, mould release agents. Explain the Polymers used in medicine and give its biomedical applications.	6				

Seat				Sat	D	
No.				Set	Г	
M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov - 2022 (POLYMER CHEMISTRY)						
		Processing Tec	hnology and Pol	ymer Properties		
Day & I Time: 0	Date: Thu 3:00 PM	ırsday, 23-02-2023 To 06:00 PM		Max. Marks	3: 80	
Instruc	(1) 2 3	Q. Nos. 1 and. 2 and Attempt any three Figure to right indic	e compulsory. questions from Q. No cate full marks.	o. 3 to Q. No. 7		
Q.1 A	A) Fill i 1)	n the blanks by ch Blow molding prod a) Pipes and w	oosing correct alte ucts are ire coating b)	rnatives given below. bottles	10	
		c) syntax tank	& car bumper d)	all of the above		
	2)	a) cotton c) wool	iral fiber. b) d)	jute all of the above		
	3)	are rheolog a) Viscosity c) Molecular w	gical aspects in polyr b) eight d)	ner Processing. Elasticity all of the above		
	4)	Maxwell model give a) Only viscosi c) Electricity	es information about ty b) d)	Only elasticity Viscoelasticity		
	5)	Polymers have pho a) Insulation c) Optical activ	oto elastic properties b) ity d)	due to Elasticity Polarization		
	6)	Polymers are norm a) completely f b) incompletely c) completely f d) All of the abo	rs are normally electrical insulators because it posses ompletely filled valance bonds and empty conduction bonds completely filled valance bonds and full field conduction bonds ompletely filled valance bonds and full field conduction bonds Il of the above			
	7)	The yellowness inc a) White to yell c) White to cre	dex is measure of ow b) am d)	colour change. White to Brown White to Black		
	8)	Superabsorbent po a) Lime powde c) Slush powde	olymer (SAP) is also r b) er d)	called as Snow powder Detergent powder		
	9)	a) Orientation I c) filler content	ect % elongation at th evel b) d)	ne break. temperature All of the above		
	10)	The highest point of a) Weak streng c) Tensile stren	of the stress-strain cu yth b) ngth d)	rve denotes Abrasion strength Ultimate tensile strength		

		SLR-GF	-45		
	B)	 Fill in the blanks. 1) ISO stands for 2) ASTM- stands for 3) molding is used to manufacture products like drain pipes, waste pipes, vent pipes etc. 4) Male and Female mold parts are used in 5) is an example of Ideal fluid. 6) is the thermal testing. 	06		
Q.2	Ans a) b) c) d)	wer the following What is hardness and Explain optical properties of polymers? Explain the testing procedure for tubes and containers. Explain the Compressive strength. Explain the blow molding.	16		
Q.3	Ans a) b)	w er the following Explain the ideal fluid and Non Newtonian fluid with example. Draw neat labeled diagram and explain in detail twin-screw extruder.			
Q.4	Ans a) b)	wer the following Discus mechanical spectra, and explain factor affecting on it. What are difference between compression molding and transfer molding?	16		
Q.5	Ans a) b)	wer the following Explain in detail ultimate polymer properties and structure relationship of elastomer, fiber and plastic. Explain in detail injection molding with well labeled diagram.	16		
Q.6	Ans a) b)	wer the following Explain testing of adhesive and laminate. Describe in detail extrusion molding.	16		
Q.7	Ans a) b)	wer the following Explain stress strain curve in detail. Explain in short, Gel spinning, Phase separation spinning and Reaction spinning.	16		

Seat No.					Set	Ρ
M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov - 2022 PHYSICAL CHEMISTRY Quantum Chemistry						
Day & D Time: 1	Date: Mo 1:00 AM	nday, 13-02 To 02:00 P	2-2023 M		Max. Marks	: 80
Instruc	tions: 1) 2) 3)	Q. Nos. 1 a Attempt ar Figure to ri	and. 2 are compulsory. ny three questions from 0 ight indicate full marks.	Q. No.	3 to Q. No. 7	
Q.1 A) Fill i 1)	n the blank Quantizatio a) A. E c) de E	as by choosing correct on concept was first intro Einstein Broglie	alterr duceo b) d)	atives given below. d by Max Planck W. Pauli	10
	2)	The value a) 0.05 c) 5.29	for a₀ (Bohr radius) in Ar 529 9	igstro b) d)	m is 0.529 52.9	
	3)	The Comp a) angl b) Way c) inter d) all o	ton shift depends on le of scattering /elength of incident light racting material f these			
	4)	As per the a) $\lambda/2$ c) $h/2\pi$	uncertainty principle, Δx	$\begin{array}{c} \Delta p_x \in \ b) \\ d) \end{array}$	equals to h^2 λ	
	5)	The numbe a) 0 c) 2	er of nodes for 2 s atomic	c orbit b) d)	al is 1 3	
	6)	The energy the a) less c) equa	y calculated according to e ground state energy. than al to	varia b) d)	tion principle is always greater than all of these	
	7)	The atomic is a) 0 s c) 2 f	c orbital which is allowed	accor b) d)	rding to a quantum theory 1 p 3 d	
	8)	Hamiltonia a) $p^2/2$	n operator for simple hai 2 <i>m</i>	monio b)	c oscillator, H = $\frac{1}{2}kx^2$	
		c) $p^2 2n$	$m + \frac{1}{2}kx^2$	d)	$\frac{1}{2}kx$	
	9) Which orbital is represented by the wave function, $\Psi = 1/(32\pi)^{1/2}(Z/a_0)^{3/2}(2-r)e^{-r/2}$					
		a) 1s c) 2p		b) d)	2s 3d	

	10)	 If there exist more than one eigen function corresponding to a given eigen value, then the eigen value is called 				
		a) c)	non degenerate discrete	b) d)	degenerate continuum	
B)	Fill i 1) 2) 3) 4) 5) 6)	in the The radia The pair o Class The The The	blanks OR Write true/fa ejection of electron happen ation which is characterist Heisenberg's uncertainty of variables. (True / False sical frequency of oscillat zero point energy of parti expression for the mome ∇^2 operator is expressed	alse ens at only tics of that is principle is e) tion is giver icle in three ntum opera as	particular frequency of metal. (True / False) s applicable to all conjugate n by an expression dimensional box model is ator in one dimension is	06
Ans a) b) c) d)	wer t Discu Norm Wha The spee	he foll uss rad nalize t are th work fu d of el	lowing dial plots for the orbitals i the function $\Phi m = N e^{imq}$ he acceptability condition unction for metallic Rb is lectron ejected due to irra	in which $1 = {}^{\Phi}$. Find out is for a way 2.09 eV. C adiation by	≠ 0. the normalization constant N. re function? alculate kinetic energy and light of wavelength 195 nm.	16
Ans a) b)	 Answer the following a) Explain the various observations of Compton effect. Derive the expression for Compton shift. b) What is Hermitian type of operator? Write on the properties exhibited by the Hermitian operators. 				16	
Ans a) b)	wer ti Using bond On th Schr	he foll g Hucł ling en ne bas odinge	lowing kel Molecular Orbital The hergy and delocalization e is of wave mechanics, de er wave equation.	ory, estima energy of 1 erive the ex	Ite the π electron energy, π ,3-butadiene. pression for time independent	16
Ans a) b)	wer ti Using equa Ment calcu	he foll g meth ition fo tion va ulation	lowing nod of separation of varia or rigid rotator into ordinal nrious approximate metho of energy. Discuss linea	bles break ry angular o ods used in r variation p	up the Schrodinger wave equations. quantum mechanics for principle.	16
Ans a) b)	wer ti Expla Desc	he foll ain Sla cribe S	lowing ater and Gaussian type o Semiempirical approximat	rbitals. e method:	Perturbation theory.	16
Ans a)	wer t Wha equa	he foll t is bla ition.	lowing ack body? Derive Planck'	s black boo	ly radiation distribution	16

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

b) Derive Schrodinger wave equation for a particle in a cubical box. Give the zero point energy.
11110. 1	1.007.00	110 02:00 1 10		
Instruc	tions: 1 2 3) Q. Nos. 1 and. 2 are compute 2) Attempt any three questions 3) Figure to right indicate full ma	sory. from Q. No. 3 to Q. No. 7 arks.	
Q.1 A	∖) Fill ⊺ 1)	in the blanks by choosing co In Debye-Huckel Onsager eq a) 82.4/ (DT) ^{1/2} η	prrect alternatives given below. Juation the value of constant A= b) 82.4/ (DT) η	1
	2)	 c) 82.47 (DT)² η At high voltage the conductation due to effect. a) Debye 	 a) None of these nce of an electrolyte solution increases b) Falkenhagen 	
	3)	 c) Wien The concept of association o the scientist a) Debye-Huckel a) Discrete 	 d) Debye-Falkenhagen f ions to form ion pair was introduced by b) Onsager cretthuse 	
	4)	 c) Bjerrum The overvoltage with a) decreases c) becomes zero 	b) increases d) remains constant	
	5)	Streaming potential method i a) zeta potential c) discharge potential	s used to measure the b) single electrode potential d) both (b) and (c)	
	6)	In fuel cells oxidation occur a a) anode c) on both electrode	t the at the b) cathode d) first at cathode then at anode	
	7)	The abnormal conductance c mechanism. a) Einstein c) Debye-Falkenhagen	of hydrogen ion is explained by b) Grotthus-Draper d) Grotthuss	
	8)	Molten carbonate fuel cells (a) 100 ⁰ C and below c) 600 ⁰ C and above	 MCFCs) operate at temperature b) 400°C - 500°C d) below 0°C 	
	9)	Which of the following electro conductance and equivalent a) NaCl c) H_2SO_4	blytes will give same value of molar conductance? b) Na ₂ SO ₄ d) MgCl ₂	
	10)	The unit of equivalent conduc a) mho cm ² equi ⁻¹	ctance b) ohmcm² equi⁻¹	

ohmcm

d)

Seat	
No.	

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov - 2022 (PHYSICAL CHEMISTRY)

Day & Date: Tuesday, 14-02-2023 Time: 11:00 AM To 02:00 PM

mho cm⁻² equi⁻¹

C)

Electrochemistry

SLR-GF-53 Set Ρ

Max. Marks: 80

0

Page 1 of 2

	В)	 Fill in the blanks OR Write true/false 1) At high frequency the conductance of an electrolyte solution 2) The mobility of an ion decreases due to electrophoretic force. (True or False) 3) The ionic strength of an electrolyte is calculated by using the expression 4) According to Debye-Huckel theory of interionic attraction the ion is considered as a dimensionless point charge. (True or False) 5) The mobile phase in electrophoresis is 6) According to Debye-Huckel theory each ion is surrounded by an ionic atmosphere of charge. 	06				
Q.2	Ans a) b) c) d)	wer the following Discuss the concept of equivalent conductance at infinite dilution. What is polarization? Explain the types of polarization. Write on electroforming process. Describe hydrogen-oxygen fuel cell.	16				
Q.3	Ans a) b)	ver the following Discuss the electrochemical nature of corrosion. Describe the Helmholtz-Perrin theory of electrical double layer with its limitations.					
Q.4	Ans a) b)	wer the following Write on theories of overvoltage. Explain Stem theory of electrical double layer.	16				
Q.5	Ans a) b)	wer the following Derive Debye - Huckel - Onsager equation. What are the experimental proofs for Debye- Huckel theory? Explain how they support the ionic atmosphere formation.					
Q.6	Ans a) b)	wer the following Derive Debye- Huckel limiting law. Explain the mechanism of abnormal ionic conductances of hydrogen and hydroxyl ions.	16				
Q.7	Ans a) b)	wer the following What is hydration number? Discuss Van Arkel method for determination of it. Write a note on electrokinetic phenomena	16				
	u)	while a note on electrokinetic phenomena.					

	Μ.	Sc. (Semest	er - III) (New) (PHYSIC) Molecu	(CBCS) E AL CHEN Ilar Struc	Exan NIST ture	nination: Oct/Nov-2022 RY) - I	
Day Fime	& Da e: 11:0	te: We 00 AM	ednesday To 02:00	, 15-02-2023) PM			Max. Marks	: 80
nsti	ructio	o ns: 1 2 3) Q. Nos.) Attempt) Figure t	1 and 2 are com any three quest o right indicate f	npulsory. ions from C ull marks.). No.	3 to Q. No. 7	
Q.1	A)	Cho 1)	ose corr The cha same cl a) ic c) z	ect alternative. aracters of all ma ass are lentical ero	trices belor	ng to t b) d)	the symmetry operation in the different infinite	10
		2)	, BF₃ mo a) S c) C	lecule possesses ^{2h} n	sa	kis of b) d)	symmetry. C_{2v} S_n	
		3)	The mic a) H c) 0	crowave active m (Cl, CO_2 P_2 , Cl_2	olecules ar	e b) d)	CO, CO ₂ HCl, CO	
		4)	Rotatior a) b c) b	nal spectrum is u ond length ond strength	iseful to det	ermir b) d)	ne the bond order bond angle	
		5)	The energy (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ergy of the lowes Energy. otential ero point	t vibrational	l leve b) d)	l of oscillator is called as vibrational kinetic	
		6)	In mutu the vibra a) a c) e	al exclusion rule ation which is ac ctive xclusive	for a molec tive in IR is	b) d)	ossess a centre of symmetry, in Raman. inactive intense	
		7)	Beer La a) R b) s c) E d) E	mbert's law give deflected radiation cattered radiation nergy absorption nergy absorption	s the relation n and conce n and conce n and reflec n and conce	on bei entrai entrat ted ra entrat	tween which of the following? tion adiation ion	
		8)	Which c a) D b) C c) S	of the following is Detection of impu Control of purifica Study of kinetics of	an applica rities tion of the chem	tion c ical re	f electronic spectroscopy? eaction	

Seat

No.

C

All of the above d)

SLR-GF-54

Set P

06

16

06

9) Which of the following transitions mainly occur in IR?

- a) Electronic transitions only
- b) Rotational and vibrational transitions
- c) Rotational transitions only
- d) All the electronic, rotational, vibrational transitions

10) The correct order of different types of energies is _____

- a) Eel>>Evib>>Erot>>Etr
- c) Eel>>Evib>>Etr>>Erot d) Etr>>Evib>>Erot>>Eel

b)

Eel>>Erot>>Evib>>Etr

B) Fill in the blanks.

- 1) A monoid is always a ____
- 2) The moment of inertia for linear molecule along principle axis is _____.
- 3) In Raman spectroscopy the elastic scattering of photons is called as
- 4) In Fortrat diagram, the band head is at the _____ of parabola.
- 5) According to Born-Oppenheimer approximation, Etotal = ____
- 6) According to Franck-Condon principle vibrating molecule does not change its _____ during electronic transition.

Q.2 Answer the following.

- a) What is the importance of symmetry?
- b) Write note on: The effect of isotopic substitution on rotational spectra.
- c) What do you understand by depolarisation ratio?
- d) Write note on: term symbols.

Q.3 Answer the following.

- a) Explain the terms:
 - 1) Axis of rotation
 - 2) Plane of symmetry
 - 3) Centre of symmetry
- b) Obtain the expression for moment of inertia for rigid diatomic molecule.
 10 Show the allowed rotational energies of a rigid diatomic molecule.

Q.4 Answer the following.

- Discuss different types of vibrations in a polyatomic molecule. 06 a) Describe in detail rotational fine structure of electronic-vibration transitions. 10 b) Answer the following. Q.5 Explain the factors influencing width and intensity of spectral lines. 06 a) How is the dissociation energy of a diatomic molecule determined from 10 b) vibrational coarse structure in its electronic spectrum? Answer the following. Q.6 The B value estimated for H^1Cl^{35} is 10.59342 cm⁻¹. The masses of H^1 and a) 06 Cl^{35} are 1.0078250 and 34.9688527 amu. What is the bond length of the molecule? What is the significance of zero-point energy? Obtain, an expression for 10 b) zero-point energy of an anharmonic oscillator. Answer the following. Q.7 What is Raman Effect? Explain the mechanism of Raman excitation. 06 a)
 - b) How we can use the Grand Orthogonality Theorem to construct the 10 characters table for the C_{3v} point group.

			SLR-GF	-56
Seat No.			Set	Ρ
	M.S	Stat	emester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (PHYSICAL CHEMISTRY)	
Day & Time:	Date 03:00	e: Mo 0 PM	day, 20-02-2023 Max. Mark	:s: 80
Instru	ctior	1s: 1) 2) 3)	Q. Nos. 1 and. 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7 Figure to right indicate full marks.	
Q.1	A)	Fill i 1)	 the blanks by choosing correct alternatives given below. Fermi-Dirac statistics is for the a) Distinguishable particles b) Symmetrical Particles c) Particles with half integral spin d) Particles with integral spin 	10
		2)	For an atom, the term is ${}^{4}D_{5/2}$, the Qele will be a) 2 b) 5 c) 6 d) 7	
		3)	Which of the following element has highest specific heat? a) Si b) Au c) Cu d) C	
		4)	The symmetry number of CO molecules is a) 0 b) 1 c) 2 d) 6	
		5)	Which of the following is exact differential? a) dS b) dw c) dq d) both (a) and (b)	
		6)	What is the ratio of ortho to para hydrogen at room temperature?a)25:75b)75:25c)50:50d)0:100	
		7)	n an open system, for maximum work, the process must be entirely a) irreversible b) reversible c) adiabatic d) isothermal	
		8)	Protons obeys statistics.a) Fermi-Diracb) Maxwell-Boltzmannc) Bose-Einsteind) all of these	
		9)	Fhe value of Maxwell-Boltzmann constant 'β' is given by a) kT b) 1/kT c) 1/k d) kT ²	
		10)	How many particles can occupy the single energy state if these particles obey Fermi-Dirac statistics? a) one b) two	

c) many d) infinite

	B)	Fill in the blanks OR Write true/false1)Electrons follow statistics.2)As temperature increases ortho to para hydrogen ratio3)The molecular partition function is dimensionless. (True/False)4)As $T \rightarrow 0, Cv \rightarrow$ 5)Symmetry number for benzene molecules is6)Streaming current is reverse to	06
Q.2	Ans a) b) c) d)	wer the following For an ideal gas PV = nRT, show that 1/T is an integrating factor for dw= PdV. Derive Saxen's relations. Derive the expressions for the change in entropy during the various physical transformations. Explain the concept of electron gas in metals.	16
Q.3	Ans a) b)	wer the following If H= f(T,P) and dH is an exact differential then prove that $(dH/dP)_T = V - T(dV/dT)_P$ [Given: dq = dH - VdP and 1/T is an integrating factor] Discuss in detail electrokinetic effects.	16
Q.4	Ans a) b)	wer the following Derive the expression for vibrational partition function. Calculate vibrational characteristic temperature for O ₂ gas at 3050 K. [Given v = 3600 cm ⁻¹] For Cu, Θ_E is -63°C. Calculate heat capacity of Cu using Einstein's heat capacity model at 100 K and 150 K.	16
Q.5	Ans a) b)	wer the following Derive an expression for Fermi-Dirac statistics. Discuss the concept of reciprocity relations and Onsager theorem.	16
Q.6	Ans a) b)	wer the following Define ensemble. Discuss in detail canonical and grand canonical ensembles. Show that $Q_{trans} = (2 \pi m k T)^{3/2}/h^3$.V. Write down the equation for S _{trans}	16
Q.7	Ans a)	wer the following Derive the expression for the Maxwell-Boltzmann distribution law. Write the significance of the term β .	16

b) Discuss in brief Einstein's theory for heat capacity of solid.

Seat No.		5	Set	Ρ				
M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (PHYSICAL CHEMISTRY) Chemical Kinetics								
Day &	Day & Date: Tuesday, 21-02-2023 Max. Marks: 80 Time: 03:00 PM To 06:00 PM							
Instruc	tions: 1) 2) 3)	Q. Nos.1 and 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7 Figure to right indicate full marks.						
Q.1 A) Cho 1)	se correct alternative. (MCQ) The rate constant k and temperature are related by equation a) Arrhenius b) Vant Hoff c) both (a) and (b) d) Kirchhoffs	on.	10				
	2)	The molecularity of a reaction A + B → C + D is a) zero b) one c) two d) three						
	3)	Arrhenius equation may be written asa)d In k /dt = E_a / RTb)d In k /dt = E_a / RTc)d In k /dt - E_a / RTd In k /dt - E_a / RT						
	4)	If Ea> Eb (Where Ea and Eb are the energies of activation for forwarand reverse reaction respectively) then the reaction isa) exothermicb) endothermicc) explosived) chain	rd					
	5)	Which one of the following is not a biological catalyst? a) washing powder enzyme b) catalyase c) yeast d) hydrogen per oxide						
	6)	The rate determining step for a consecutive reaction is the one whiles a) fastest b) slowest c) last in sequence d) first in sequence	ich					
	7)	The mechanism which explains, under some conditions the bimolecular reactions shows first order kinetics is called as mechanism. a) Eyering b) Boltzmann c) Lindemann d) Grotthus	-					
	8)	The general mechanism for an enzyme - catalyzed reaction was fin proposed by the scientist a) Michaelis and Menten b) Eyering and Grotthus c) Grotthus and Boltzmann d) Lindemann and Grotthus	rst					
	9)	 Which of the following will not increase the rate of reaction? a) raising the temperature b) increasing the concentration of the reactant c) increasing the volume of the container a gaseous reaction 						

d) increasing the surface are of a solid reactant

		10)	The a) c)	reactions having fast steady	g smaller values	s of e b) d)	nergy of activation are slow both (a) and (b)	-
	В)	Write 1) 2) 3) 4) 5) 6)	e True Enzy The very Durin abso Nucl Minin ener E _a is	e/False. whe catalyzed reactivation energy high compared ng decomposition orbed. ear disintegration mum energy reconstruction gy. not affected by	eaction is faster gy for the first pr to that of H ₂ -Br on of an activate on follows first o quired for molec	than ropag 2 and ed co order cule to	a metal catalyzed reaction. ation step of H ₂ -I ₂ reaction is H ₂ -CI ₂ reaction. mplex energy is always kinetics.	06
Q.2	Ansv a) b) c) d)	wer th Assur Can t Gene What	ne fol mptio he ac ral as do yo	lowing. ns made in activ stivation energy spects of chain r ou mean by cha	vated complex t of a reaction be reaction. in length?	theor <u>y</u> e zerc	y. o or negative? Explain.	16
Q.3	Ansv a) b)	wer th Illustr reacti Solve 1) i (2) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ie fol ate th on. a the The vo s 4.83 Calcu 10358 Calcu consta	lowing. the kinetics of first problems: elocity constant 7 x 10 ⁻³ late the velocity 33.86 Joules. (R late ΔG^* for diment ant k =1.9 2 x 10 ant k=1.38 x 10 ⁻¹	st order reaction for decomposit constant at 298 a = 8.314 J/K/mo perisation reactio 0 ⁻² dm ³ /mol/sec	ion o BK if f ol) on at (h=6 4 J/K/	oses by second order f nitrogen pentoxide at 338K the energy of activation is 399°C having velocity 5.626x10 ⁻³⁴ Js, Boltzmann (mol)	16
Q.4	Ansv a) b)	wer the following. Explain the kinetics and mechanism for parallel reaction giving suitable example. Explain the use of potential energy surfaces in the study of chemical reaction.				l reaction giving suitable the study of chemical	16	
Q.5	Ansv a) b)	wer th Obtai featui What	n an o res of is the	lowing. expression for t the Michaelis-N e significance of	he Michaelis-Mo Menten plot. Fpartition functio	enter on in	equation. Explain the activated complex theory?	16
Q.6	Ansv a) b)	wer th Discu Discu	i e fol iss the iss in	lowing. e Lindemann's i detail about aci	mechanism of u d-base catalysi	inimo s rea	lecular reaction. ctions.	16
Q.7	Ansv a) b)	wer th What exam Discu	is an is an ple. iss th	lowing. autocatalyzed e kinetics of bra	reaction? Expla	in its actio	kinetics with a suitable ns and explosion limits.	16

Page 2 of 2

Sea	t]		Set	Ρ
No.							•
	М.	Sc. (S	Semester	- IV) (New) (CBCS) (PHYSICAL CHE Molecular Struc	Exan MIST cture	nination: Oct/Nov-2022 RY) - II	
Day Time	& Da : 03:	te: We 00 PM	dnesday, 2 To 06:00 P	2-02-2023 M		Max. Marks:	80
Instr	uctio	ons: 1) 2) 3)	Q. Nos. 1 a Attempt ar Figure to r	and 2 are compulsory. by three questions from (ight indicate full marks.	Q. No	. 3 to Q. No. 7	
Q.1	A)	Cho 1)	ose correc Debye equ a) Pola c) Line	t alternative. Jation is applicable for or ar molecule ear molecule	nly b) d)	Non-polar molecule Complex molecule	10
		2)	The magn number of a) pair c) unp	etic moment of material ed electrons aired electrons	can be b) d)	e determined by knowing protons neutrons	
		3)	Chemical (a) mag c) free	shifts originate from netic momentum induction decay	b) d)	electron shielding scalar coupling (J -coupling)	
		4)	The ESR f its a) mag c) spin	requency of unpaired ele netic moment quantum no	b) d)	in magnetic field depends on degeneracy line width	
		5)	a) TMS c) TDS	commonly used references	b) d)	DSS TSS	
		6)	The Mossl a) γ-ra c) α-ra	bauer Spectroscopy use diation Idiation	s b) d)	radiation. β-radiation x-ray radiation	
		7)	The diama called as _ a) Deb c) Pas	ignetic contribution of ato constant. ye cal	oms a b) d)	nd bonds in a molecule is Curie Weiss	
		8)	Dipole mo a) One c) Frac	ment of para-dichlorobe e ction	nzene b) d)	is Zero Infinite	
		9)	The natura a) four c) 1.1	al abundance of ¹³ C is al times less than 1H % of total carbon	bout _ b) d)	0.11% of total carbon 99% of total carbon	
		10)	The molec a) CH4 c) CH4	ule having zero dipole n , CHCl₃, C₀H₀ , CCl₄, C₀H₅OH	nomer b) d)	nts are CH4, CCl4, C6H6 CClH3, CCl4, C6H6	

Seat	
No.	

06

16

80

B) Fill in the blanks.

- 1) The temperature at which paramagnetic substance is converted in to ferromagnetic substance is called as temperature.
- 2) The product q x d is called as _____
- 3) ESR Spectroscopy uses _____ radiation.
- 4) If the relative permeability is less than one, then the substance is _____.
- 5) If "n" equivalent protons interact with the protons of an adjacent Carbon atom, then the peak is split into _____ peaks.
- 6) When a moving body emits radiation, a stationary observer sees a shifted frequency; this is called _____.

Q.2 Answer the following.

- a) Why a substance is a paramagnetic or diamagnetic?
- **b)** Factors affecting the 'g' value in ESR.
- c) Nuclear overhauser effect.
- d) Explain the Lennard-Jones potential.

Q.3 Answer the following.

- a) Discuss determination of dipole moment from dielectric measurements in pure liquids and in solutions.
 08
- b) Describe the experiment and instrumentation setup in NMR spectrometer. 08

Q.4 Answer the following.

- a) Discuss in detail the principle of Mossbauer spectroscopy.
- b) Explain the terms magnetic permeability and magnetic susceptibility. 08

Q.5 Answer the following.

- a) Distinction between polar and non-polar molecules. Describe the Clausius 10 Mossotti equation of molar polarization.
- b) Define the term coupling constant in NMR. Discuss the factors influencing 06 the coupling constant.

Q.6 Answer the following.

- a) Describe Langevin's classical theory of diamagnetism and paramagnetism. 10
- b) The half-life of the first excited state of Fe⁵⁷ is 1.58 x 10⁻⁷ s. What is the line **06** width of resonance? (h = 6.626×10^{34} Js, $\pi = 3.141$)

Q.7 Answer the following.

- a) Define chemical shift. Describe the factors affecting the chemical shift in NMR.
- b) Discuss applications of ESR spectroscopy. Calculate the frequency for an unpaired electron in a magnetic field of strength 0.35 T. (g=2, h= 6.626x10⁻³⁴ Js)

Seat No.

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov - 2022 (PHYSICAL CHEMISTRY) **Surface Chemistry**

Day & Date: Thursday, 23-02-2023 Time: 03:00 PM To 06:00 PM

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

2) Attempt any three guestions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Fill in the blanks by choosing correct alternatives given below. A)

- During wetting of solids, adhesive forces are cohesive forces. 1)
 - Equal to Lesser than a) b)
 - Very very less than d) Greater than C)
- 2) If common salt is dissolved in water, then the surface tension of saltwater is
 - a) Increased
- b) Decreased First increases then decrease
- C) Not changed
- d) 3) Which of the following is true for chemisorption?
 - It is reversible in nature a)
 - b) It exists in the form of monolayer
 - C) It is not specific in nature
 - It occurs at low temperature d)
- is not used as solid lubricant. 4) Among the following b) Molybdenum disulfide
 - Tungsten disulfide a)
 - Boron nitride C) d) Benzene
- One end of a towel dips into a bucket full of water and other end 5) hangs over the bucket. It is found that after some time the towel becomes fully wet. It happens
 - Because viscosity of eater is high a)
 - b) Because of the capillary action of cotton threads
 - Because of gravitational force C)
 - Because of evaporation of water d)
- Cohesive forces are the forces acting 6)
 - Between molecules of different materials a)
 - b) Between molecules of same material
 - Between water and glass capillary tube C)
 - Due to gravity d)
- 7) When there are no external forces, the shape of a liquid drop is determined by
 - a) Surface tension of the liquid
 - b) Density of liquid
 - Viscosity of liquid C)
 - Temperature of air only d)

Max. Marks: 80

SLR-GF-59

The extent of adsorption of a gas on a solid depends on _____ of the gas.

temperature a)

C)

8)

- b) pressure nature All of these d)
- adsorption isotherm is useful for multiple adsorption system. 9)

b)

d)

b)

d)

Freundlich

45 dynes/cm

72 dynes/cm

Gibbs'

- Langmuir a)
- C) BET
- The surface tension of water at 25°C is 10)
 - a) 90.0 dynes/cm
 - 82 dynes/cm C)

Fill in the blanks OR Write true/false B)

- "If volume ratio of water to oil is three or more an oil/water emulsion is 1) more probable than water/oil emulsion", state whether this statement is true or false.
- 2) Does the ratio of surface area to volume affects the shape of the particles in sintering? Indicate yes or no.
- At critical micelle concentration, all properties of solutions of surfactants 3) undergo dramatic change. (True/False)
- Composite material are solid bodies made up of at least two similar 4) materials. (True/False)
- The extent of adsorption depends upon the nature of adsorbent. 5) (True/False)
- One can synthesis two dimensional nanoparticles. 6)

Q.2 Answer the following

- State and explain Trube's rule. a)
- Describe maximum bubble pressure method of determination of surface b) tension of liquids.
- Explain micelle and reverse micelle. C)
- Write a note on sintering and sintering mechanism. d)

Q.3 Answer the following

- What is critical micelle concentration? Discuss surface tension method of a) determination of cmc of given surfactant.
- Discuss re-precipitation method of preparation of aqueous suspension of b) organic nanoparticles.

Answer the following Q.4

- Describe tilting plate method of determination of contact angle. a)
- Discuss theory and energetic of micellization. b)

Q.5 Answer the following

- Derive an equation for Langmuir adsorption isotherm. Discuss experimental a) verification this equation for the given system of adsorbate and adsorbent.
- b) Derive an equation for the spreading coefficient for the spreading of liquid B on the surface of liquid A.

At 20°C surface tension of water mercury are 72.8x10⁻³ N/m and 483x10⁻³ N/m respectively while interfacial tension between them is 375x10⁻³ N/m. Calculate spreading coefficient of mercury on the surface of water. State whether mercury spreads on the surface of water.

06

SLR-GF-59

16

16

16

Q.6 Answer the following

- a) Write in detail on Langmuir-Blodget films.
- b) Mention emulsion types and methods of identification of emulsion types.

Q.7 Answer the following

- a) Give an account of volumetric method of measuring gas adsorption.
- b) Derive Kelvin equation for the vapour pressure inside and outside the liquid.

16

						-	
Seat No.	t					Set	Ρ
	М.\$	Sc. (S	emeste	er - III) (New) (CBCS) Ex ANALYTICAL CHE Advanced Separation	xam MIS Tec	nination: Oct/Nov - 2022 STRY chniques	
Day a Time	& Da : 11:0	te: Mo 00 AM	nday, 13 To 02:00	-02-2023) PM		Max. Marks	: 80
Instr	uctio	ons: 1) 2 3) Q. Nos.) Attempt) Figure t	1 and. 2 are compulsory. any three questions from Q o right indicate full marks.	. No	. 3 to Q. No. 7	
Q.1	A)	Fill i 1)	n the bla In pape which is a) T	anks by choosing correct a r chromatography, usually st also called LC	alter ation b)	natives given below. nary phase is a strip of paper chromatogram	10
			c) c	hromosome	d)	ecg	
		2)	Reverse	ed phase chromatography us in nature.	ses s	stationary phase which is	
			a) H	lydrophilic	b)	Lipophilic	
			c) P	olar	d)	Hydrophobic	
		3)	The cap	illary action is performed in			
			a) L	iquid chromatography	b)	Gas chromatography	
			C) (C		u)		
		4)	a) M	factor does not influence on Iolecular weight	h)	Shape of molecule	
			c) S	ize of molecule	d)	Stereochemistry of molecule	
		5)	In electr	ophoresis cell, the pressure	is a	bout	
		,	a) 2	Kg/m ²	b)	3 Kg/m ²	
			c) 5	-6 Kg/m²	d)	10 Kg/m ²	
		6)	Solvent	extraction is also called		extraction.	
			a) L	Iquid-Iiquid iquid-Solid	d)	Solid-liquid Liquid-Gas	
		7)		Iquid-Solid	u) in de		
		()	a) G	Bravity of extraction process	b)	Boiling point	
			c) P	artition Coefficient	d)	None of these	
		8)	In excre	tion, ultrafiltration retains the	Э		
		-	a) B	lood plasma	b)	Solid molecule	
			c) V	Vater	d)	Small molecules	
		9)	Blood p a) S c) F	ressure required for ultrafiltra imple mechanical process fferent arteriole	ation b) d)	n is provided through Afferent arteriole Heart beat	
		10)	с, L	is used for ultrafiltration	~)		
		10)	a) P	ermeable membrane			
			b) H	lighly permeable membrane			
			c) S	emi-permeable membrane			
			u) N				

Page 1 of 2

	В)	 Fill in the blanks. 1) Whatman filter paper commonly used for chromatographic purpose has a content of 2) An electrophoresis technique which used in isoelectric focusing is 3) Electrophoresis is not suitable for the separation of 4) Electrophoresis was developed by the scientist 5) The extraction of is carried out with 8-Hydroxyquninoline inchloroform. 6) Ultrafiltration is the best techniques used for the separation and 	06 					
		purification of						
Q.2	Ans a) b) c) d)	wer the following Write a short note on peritoneal dialysis. Write a short note on electro osmotic flow. Explain the elusion methods used in affinity chromatography. Explain the factors affecting on solvent extraction.						
Q.3	Ans a) b)	wer the following Explain in details the technique of ultra filtration. Explain the principle, experimental procedure and application of capillary electrophoresis.	16					
Q.4	Ans a) b)	wer the following What is the principle of zone refining? Explain the process of zone refining. Define electrophoresis and theory and application.	16					
Q.5	Ans a) b)	swer the following Which gels are commonly used in gel permission chromatography? What are the roles of ligand and spacer arms in gel permission chromatography? Explain in detail the techniques of solvent extraction.						
Q.6	Ans a) b)	wer the following What is the principle of affinity chromatography? Describe components involved in affinity medium. Give the principle and classification of extractors.	16					
Q.7	Ans a)	 wer the following i) Give the application of dialysis. ii) Write short note on zone electrophoresis. 	16					
	b)	i) Write short note on two dimensional chromatography.						

ii) Explain in brief extraction by chelation.

Soat						
No.					Set	Ρ
N	I.Sc. (S	emester · Instrume	- III) (New) (CBCS) E (ANALYTICAL CHE ental Methods of Ch	xam MIS emic	ination: Oct/Nov - 2022 TRY) al Analysis - I	
Day & D Time: 1	Date: Tue 1:00 AM	esday, 14-02 To 02:00 P	2-2023 M		Max. Marks	3: 80
Instruc	tions: 1) 2) 3)	Q. Nos. 1 a Attempt an Figure to ri	and. 2 are compulsory. by three questions from C ight indicate full marks.). No.	3 to Q. No. 7	
Q.1 A) Fill i i 1)	n the blank An exampl F-determin a) BF ₃ c) PF ₅	s by choosing correct are of the electrode in solic ation is	alterr d-state b) d)	atives given below. e ion selective electrode for LaF ₃ NaF	10
	2)	Which of th a) Geig c) Sem	ne following is not a type ger Muller counter niconductor detector	of rac b) d)	liation detectors? Proportional counter Flame emission detector	
	3)	High freque a) Hall c) Ada	ency titration technique v ms	vas in b) d)	troduced by Jensen and Parrack Hyrosky	
	4)	Glass elect a) 1N k c) 0.1N	trode contains the solutic <ci I HCI</ci 	on of _ b) d)	Saturated KCI 1N HCI	
	5)	The DTA p to a) Forr b) Forr c) Burr d) Elim	lot of calcium oxalate in a nation of calcium oxide nation of calcium carbona ning of CO ination of water	air sh ate	ows an upward peak due	
	6)	Which of th a) It is b) Easy c) Avai d) it is	ne following is not the cha fragile y to use lable in different sizes ar insensitive to many ions	aracte	eristic of ion selective electrode	⊧s?
	7)	In amperor a) 700 c) 800	metric titration platinum e rpm rpm	electro b) d)	ode is rotated at 600 rpm 100 rpm	
	8)	High freque a) Amp c) pH r	ency titrimetry is closely i perometry netery	relate b) d)	d to Potentiometry Conductometry	
	9)	Becquerel a) Pho c) GM-	discovered radioactivity l tographic film Counter	by usi b) d)	ng Radiations damages on skin Cloud chamber NaF	

		10)	Radi a) c)	oactive disinteg Third Zero	ration follows _	b) d)	_ order kinetics. Second First	
	B)	Write 1) 2) 3) 4) 5) 6)	e true The s neutr TGA Radie In so Teflo The I stanc The J nucle	e or false. self-sustaining r rons. is most approp oactive emissio lid state membr on. limiting current i dard reduction p penetrating pow ear radiations.	nuclear fission riate to study p n of alpha does anes, the body n a linear swee ootential for the ver of the gamr	reaction oolymo s not of y of the ep vol redoo na ray	on depends on the release of orphism. change the atomic number. e electrodes are made of tammogram is related to the x couple under investigation. ys is highest among the	06
Q.2	Ansv a) b) c) d)	wer th Desc With Desc Write	ne foll ribe th schen ribe ra a sho	lowing ne cells used in natic diagram de adiochromatogra ort note on typic	high frequency escribe heat flu aphy technique al amperometr	v titrati ux DS e. ic titra	ions. C. ition curves.	16
Q.3	Ans	wer th	ne foll	lowing	n analysia is y	aad in	various hismodias	00
	a)	inves	tigatic	w isotope dilutic ons.		seu ir		08
	b)	What agricu	do yo ulture	ou mean by trac and industry.	er technique?	Descr	ibe applications of this in	80
Q.4	Ans	wer th	ne foll	lowing				00
	a) b)	Discu Desc	ribe n	eutron activatio	n analysis. Me	ntion	various applications of it.	08 08
Q.5	Ansv a) b)	wer th Desc What electr	ribe w are d ode.	l owing vith suitable exa lifferent types of	mple solid stat ion selective e	e elec electro	etrodes. odes? Explain glass	08 08
Q.6	Ansv a) b)	wer th Write Desc	n e foll a det ribe va	l owing ailed note on el arious applicatio	ectrolytic sepa	ration	of metals.	08 08
Q.7	Ansv a)	wer th What based	are the foll	l owing ne main materia selective memb ts in the membr	Il components rane? What is ane?	neede the ro	ed in the design of a polymer- le of each of these	08
	• •	55mp	5				.	

b) Discuss various factors that affect the results of thermo gravimetric analysis. 08

Seat No.								Set	Ρ
	М.S	Sc. (S	Semester	- - III) (New) ((ANALYTIC Applied Ana	CBCS) E AL CHE	xam MIS ⁻ then	nination: Oct/N TRY) nistry	ov-2022	
Day & Time:	Date 11:0	e: We 0 AM	dnesday, 19 To 02:00 P	5-02-2023 M				Max. Marks	: 80
Instru	ictio	ns: 1) 2) 3)	Q. Nos. 1 a Attempt ar Figure to ri	and 2 are comp ny three questic ight indicate ful	oulsory. ons from Q I marks.	. No.	3 to Q. No. 7		
Q.1	A)	Choo 1)	ose correct me a) Con c) Pola	t alternative. ethod is used fo ductometric arographic	or estimatio	on of b) d)	phosphorous. Potentiometric Colorimetric		10
		2)	The chemi a) $Fe_3(C)$ c) $FeO_2(C)$	cal formula of ł 2 ₄ 4	nematite is	b) d)	$FeSO_4$ Fe_2O_3		
		3)	Bronze cor a) B & c) Cu &	ntains a Zn & Zn	as main ele	emen b) d)	ts. Fe & Cu B & N		
		4)	Creams an a) Solid c) Emu	e normally ds ulsions		b) d)	Liquids Suspensions		
		5)	Generally, a) 4-5 c) 6.5-	P ^H of the soil li 7.5	ies betwee	n b) d)	8-9 11-12		
		6)	The major a) Sn c) Pb	constituent of s	solder alloy	v are j b) d)	& Sn & Pb Fe & Pb		
		7)	Mainly bau a) <i>Al</i> & c) <i>Fe</i> &	ixite contains _ Si Zn		b) d)	B & N C & H		
		8)	Indicator u a) Phe c) Pota	sed in acid-bas nolphthalein assium chroma	e titration i te	is b) d)	EBT Methyl red		
		9)	a) Basi c) Neu	soil is increase icity trality	d by ammo	onium b) d)	n sulphate. Acidity None		
		10)	Urea conta a) 46 c) 76	ains%	of nitroger	า. b) d)	60 90		

	B)	Fill in the blanks.	06
		 Silica is estimated by acid treatment. In gravimetric estimation of calcium, calcium is precipitated as 	
		by adding ammonium oxalate.	
		 Electrical conductance of soil is measured by 	
		4) Catalyst used for estimation of nitrogen by kjeldahls method is	
		5) Type of rock contains minerals & metals that can be economically	
		extracted from rock is	
		6) acid is generated at armpit which has bad odour.	
Q.2	Ans	wer the following.	16
	a)	What is P^{H} ? Give in detail P^{H} determination of soil.	-
	b)	Define pesticide, insecticide, herbicide & fungicide.	
	C)	Write the process to extract iron from hematite.	
	d)	How will you estimate propylene glycol, sulphate, chlorides & zinc oxide from cosmetic?	
Q.3	Ans	wer the following.	16
	a)	Explain Kjeldahl's method for estimation of nitrogen.	
	b)	Explain different factors that effects on soil temperature.	
Q.4	Ans	wer the following.	16
	a)	What is sample? Explain its type in detail.	
	b)	Write note on Fertilizer? Explain alkalimetric ammoniummolybdophosphate	
		method for estimation of phosphoroces.	
Q.5	Ans	wer the following.	16
	a)	Explain the process to analyse tin & lead from alloy.	
	b)	Explain the process to analyse copper & nickel from copper- nickel alloy.	
Q.6	Ans	wer the following.	16
	a)	Explain the process to determine calcium & magnesium from face powder.	
	b)	Give the difference between antiperspirant & deodorant.	
Q.7	Ans	wer the following.	16
	a)	How will you estimate iron & nickel from alloy?	
	b)	How will you estimate aluminium & boric acid from deodorant?	

No.							001	
	М.S	Sc. (S	Semester A	- IV) (New) (CBCS) E (ANALYTICAL CHE dvanced Analytical	Exan MIS Tech	nination: Oct/No TRY)	v-2022	
Day a Time	& Date : 03:0	e: Moi 0 PM	nday, 20-02 To 06:00 F	2-2023 PM		N	/lax. Marks	s: 80
Instr	uctio	ns: 1) 2) 3)	Q. Nos. 1 Attempt a Figure to	and. 2 are compulsory. ny three questions from C right indicate full marks.). No.	3 to Q. No. 7		
Q.1	A)	Fill in 1)	n the blan lon chrom a) sim c) visc	ks by choosing correct a atographs method is used ple mixture cous mixture	alterr d to so b) d)	natives given below eparate and analyze complex mixture metals	<i>I.</i> the	10 [.]
		2)	Na ₂ CO ₃ is a) ion c) GC	s used as eluents in exchange	_ chi b) d)	romatography. TLC HPLC		
		3)	Hyphenat a) GC c) GC	ed HPLC-MS is also know -MS -AES	/n as b) d)	LC-MS EC-MS		
		4)	Which of t a) Pac c) Cap	the following systems GC- cked column pillary column	· MS∣ b) d)	has been developed Open tubular colun Porous layer colum	? וח וח	
		5)	The term a) Hirs c) Ste	hyphenation was first intro schfield wart	bduce b) d)	d by Hansen Ruzieka		
		6)	Which of t a) Sav c) Hur	the followings are not adv ving in labor costs man interventions	antag b) d)	es of automated ana Speed of productio Analysis of toxic sa	alyzer? n mples	
		7)	In Flow In suitable p a) abs c) elec	jection Analysis (FIA), det hysical properties such as orbance ctrical conductivity	ector b) d)	is continuously reco electrode potential all of the above	ords the	
		8)	Which of t a) Spe c) Bio	the following detector not ectrophotometer sensor	used b) d)	in Flow injection and Ion-selective electro Fluorescence detect	alysis? ode ctor	
		9)	In order to methanol a) stat c) mo	o improve an efficiency of is used as in SFC tionary phase difier	isolat chrc b) d)	ion of highly polar so matography. mobile phase substitute	olvents,	

Seat

		 10)technique is used to study the molecular mass distribution of a polymer. a) Low-Angle Laser light scattering b) Dynamic light scattering c) Photo-sedimentation d) Calorimetry 	
	В)	 Fill in the blanks. 1) The packed and open tabular columns are used in 2) Automation means 3) In mass spectrometry, the separation of ions is take place on the basis of 4) channel auto-analyzer used for blood urea nitrogen analysis. 5) IR Spectroscopy shows type of energy transitions. 6) source is used for monitoring photo-sedimentation. 	06
Q.2	Ans a) b) c) d)	wer the following Describe the suppressor columns in ion chromatography. Explain the determination of molecular weight of biopolymer using HPLC- MS technique. Write a note on stopped flow methods of analysis. Explain the characteristic properties of SCF.	16
Q.3	Ans a) b)	wer the following Explain detectors used in ion chromatography and give their applications. Describe the GC-MS technique of separation of mixture with suitable example.	16
Q.4	Ans a) b)	wer the following What is automated analysis? Give the advantages and disadvantages of automated analysis. Describe supercritical fluid chromatography with suitable diagram.	16
Q.5	Ans a) b)	wer the following Describe the instrumentation in ion chromatography. What is mean by hyphenated techniques? Explain hyphenated techniques for NMR and Mass detection.	16
Q.6	Ans a) b)	wer the following Explain the principle and instrumentation of centrifugal fast scan analyzer. Explain photo-sedimentation with the help of suitable diagram.	16
Q.7	Ans a)	wer the following Explain the principle, working and applications of HPLC-MS	16

a) Explain the principle, working and applications of HPLC-MS.b) Describe low angle laser light scattering instrumentation with suitable diagram.

Seat No.						Set	Ρ
	М.S	Sc. (S	emester - Instri	IV) (New) (CBCS) I (ANALYTICAL CHE umental Methods o	Exan EMIS of An	nination: Oct/Nov-2022 TRY) alvsis – II	
Day 8 Time:	k Date 03:0	e: Tue 0 PM	sday, 21-02- To 06:00 PM	-2023 1		Max. Marks	: 80
Instru	uctio	ns: 1) 2) 3)	Q. Nos.1 an Attempt any Figure to rig	d 2 are compulsory. three questions from G ht indicate full marks.	Q. No.	3 to Q. No. 7	
Q.1	A)	Cho 1)	The absorpt a) Bragg c) Stefa	alternative. (MCQ) ion of X-rays in a mater g's law n's law	rial gc b) d)	overned by Beer Lambert's law Planck's law	10
		2)	The hottest a) acety c) butan	flame in O₂ is producec lene e	l by _ b) d)	 cyanogens hydrogen	
		3)	The smalles order Bragg a) d _{hkl} = c) d _{hkl} =	t interplanar spacing in reflection is n n/3	a cry b) d)	stal which will give the nth d _{hkl} = n/2 d _{hkl} = n/4	
		4)	X-rays are p X-rays are p a) Brem c) interfe	produced following phot produced as a result of <u></u> sstrahlung erence	oelec b) d)	tric process while continuous process. diffraction Daune Hunt	
		5)	For very dilu a) Turbio c) Color	ite suspensions, the mo dimetry imetry	ost se b) d)	nsitive technique is Nephelometry Photometry	
		6)	The good ox a) Oxyg c) butan	kidants to excite metals en e	in the b) d)	e flame is cyanogens hydrogen	
		7)	a) fluore c) Delay	the non- radiative trans scence red fluorescence	ition. b) d)	phosphorescence Internal conversion	
		8)	For triplet st a) 1 c) 3	ates, the spin multiplicit	ty is _ b) d)	2 1/2	
		9)	Which of the phenomeno a) anthra c) biphe	e following system show n? acence nyl	vs che b) d)	emiluminescence azulene luminol	
		10)	X-ray was d a) Bohr c) Roter	iscovered by	b) d)	Einstein Compton	

	B)	 Fill in the blanks OR Write True/False. 1) The Bragg's equation is written as nλ = 2) The wavelength of Cu Kα line is A (Angstrom). 3) Elements having atomic number less than 23 produce only series. 4) The expression of Snell's law is 5) The temperature of acetylene-oxygen flame is°C. 6) For phosphorescence detection, sample should keep at very low temperature. True/False 	06
Q.2	Ans a) b) c) d)	wer the following. Write on applications of fluorimetry. Write on chemiluminescence phenomenon. Illustrate the principle and working of Abbe's refractometer. Explain how X-rays can be produced.	16
Q.3	Ans a) b)	wer the following. Discuss various components encountered in spectrofluorometer. Through a light on general techniques utilized in surface spectroscopy.	16
Q.4	Ans a) b)	wer the following. Mention different types of emission spectra. Briefly explain them. Factors influencing the intensity of radiation in flame photometry.	16
Q.5	Ans a) b)	wer the following. Write on an interferences encountered in flame photometry. Write on applications of turbidimetery.	16
Q.6	Ans a) b)	wer the following. With schematic block diagram, explain the instrumentation of Nephelometer. Discuss X-ray powder diffraction method.	16
Q.7	Ans a) b)	wer the following. Give an account of X-ray fluorescence technique. With the help of energy level diagram, illustrate various photophysical pathways.	16

			1				
Seat No.						Set	Ρ
	M.Sc.	(Semester Bi	- IV) (New) (CB (ANALYTICAL ochemicals Ar	CS) Exan . CHEMIS Id Food A	nination: Oct/No TRY) analysis	ov-2022	
Day & Time:	Date: W 03:00 Pl	/ednesday, 22 M To 6:00 PM	2-02-2023 1		-	Max. Marks	: 80
Instru	ctions:	1) Q. Nos.1 a 2) Attempt an 3) Figure to ri 4) Draw neat	nd 2 are compulso by three questions ight indicate full ma labelled diagram v	ory. from Q. No. arks. vherever ne	3 to Q. No. 7 cessary.		
Q.1	A) Ch	oose correct	t alternatives.				10
	1)	Triglycerid	es on saponificatio	n gives	·		
		a) glyc	erol	b)	aldehyde		
	2)			u) human hair	anali		
	۷)	ne norma ma.	li biood giucose in	numan beir	ig ranges between		
		a) 40-7	0	b)	70-110		
		c) 110-	-150	d)	above 150		
	3)	Excess of	calcium causes				
		a) B.P.	av atono	b)	Blood clotting		
	4)			u)			
	4)	a) D	os are sources of	vitamin b)			
		c) B		d)	C		
	5)	Pleasant o	dour is given by	oil.			
	-	a) esse	ential	b)	mineral		
		c) coco	onut	d)	paraffin		
	6)	Haemoglol	oin in blood carries	6			
		c) prov	ide enerav	(d d)	all of these		
	7)	is e	xample of barbitura	ate family			
	• • •	a) Eph	edrine	b)	Phenobarbital		
		c) Diaz	epam	d)	hydrochlorothiazio	le	
	8)	Ascorbic a	cid is known as vit	amin			
		a) B		b)	A		
	0)			u)			
	9)	a) Fe	ement is present in	naemogioc b)	n. Na		
		c) K		d)	Са		
	10)) The dose L	D stands for letha	I			
	,	a) conv	/ersion	b)	concentration		
		c) com	position	d)	cementation		

	B)	 Fill in the blanks. 1) Amount of milligrams of KOH required to saponify 1 gm oil is 2) Contents in haemoglobin are 3) Substance used to prevent, treat, cure disease is known as 4) Composition of milk are 5) CNS drug affects on 6) Vitamin A is called as 	06
Q.2	Ans [•] a) b) c) d)	wer the following. Write four properties of purpose of colouring. Write note on CNS. How will you estimate cholesterol from blood? Write short note on snake venom.	16
Q.3	Ans a) b)	wer the following. How will you estimate saponification and acid value of an oil? How will you estimate R M value and Polenske value of oil?	16
Q.4	Ans a) b)	wer the following. How will you estimate Ca, Uric acid and Na from Urine? Discuss sample collection. Preservation of physiological fluids.	16
Q.5	Ans a) b)	wer the following. Explain classification of Drug. Explain analysis of diazepam and chloromazinc.	16
Q.6	Ans a) b)	wer the following. Write an essay on Vitamin A. How will you determine chloride from milk?	16
Q.7	Ans [.] a) b)	wer the following. How will you estimate non – protenous nitrogen by Kjeldahl's method? How will you estimate blood glucose? Explain its clinical interpretation.	16

Seat No.		Set P)
N	1.Sc. (S	emester - IV) (New) (CBCS) Examination: Oct/Nov - 2022 (ANALYTICAL CHEMISTRY) Pharmaceutical Analysis	
Day & [Time: 0	Date: Thu 3:00 PM	rsday, 23-02-2023 Max. Marks: 80 To 06:00 PM	C
Instruc	tions: 1) 2) 3)	Q. Nos. 1 and. 2 are compulsory. Attempt any three questions from Q. No. 3 to Q. No. 7 Figure to right indicate full marks.	
Q.1 A) Fill i 1)	the blanks by choosing correct alternatives given below.10Tetanus toxin is prepared from sterile filtrate of culture.a)a)Escherichia colib)Clostridium tetanic)Staphylococcus aureusd)Salmonella	D
	2)	To avoid microbial contamination process is used.a) sterilization b) disintegrationc) distillation d) none of these	
	3)	Invitro study is a) Study inside the body b) Study outside the body c) Both a and b d) None of these	
	4)	Administration of the drug with injection under the skin is called a) S.C b) I.M c) I.V d) I.S	
	5)	Drug is developed from a) synthetic method b) natural source c) a & b d) none of these	
	6)	The limit test is test used to identify small number of impurities.a) qualitativeb) quantitativec) semiquantitatived) both b & c	
	7)	The dry sterilization process is carried out in a) incubator b) oven c) cooker d) thermostat	
	8)	FDA visits to a) store b) quality control lab c) product and packing d) all of these	
	9)	Arsenic is converted into arsine gas when passed over a) starch paper b) chloride test paper c) turmeric paper d) pH paper	
	10)	Ash is remaining residue after a) ignition b) sterilization c) incubation d) drying	

	B)	Fill ii 1) 2) 3) 4) 5) 6)	The blanks. FDA stands for GLP stands for Rh means IRB Stand for Syrup is saturated solution of Ointments are used for external applicant to	06
Q.2	Ans a) b) c) d)	wer th Expla Discu Discu Discu	e following. in the pills in detail. ss the sampling of vegetable drug. ss GMP in brief. ss the term injection with suitable examples.	16
Q.3	Ans a) b)	wer th Expla Expla	e following. in in detail ophthalmic preparation in dosage form. in control of pharmaceutical industries by FDA.	16
Q.4	Ans a) b)	wer th Discu What	e following. ss in detail protolytic activity. is tablet? Describe different types of tablets with suitable example.	16
Q.5	Ans a) b)	wer th Expla Discu	e following in in brief particulate and microbiological contamination. ss in detail different dosage forms.	16
Q.6	Ans a) b)	wer th Expla What	e following in loss on drying and loss on ignition. How personal error is controlled? is sterilization? Explain dry heat sterilization.	16
Q.7	Ans a)	wer th Write	e following a note on visit to quality control.	16

b) Discuss in detail clinical study in development of new drug.

-	1					1	
Seat No.						Set	Ρ
	M.S	c. (S	emest	ter - III) (New) (CBCS) E (INORGANIC CHEM Inorganic Chemical Sp	xam MIST pectr	ination: Oct/Nov -2022 RY) oscopy	
Day & Time:	Date 11:0	e: Mor 0 AM	nday, 13 To 02:0	3-02-2023)0 PM		Max. Marks	: 80
Instru	ctio	1s: 1) 2) 3)	Q. Nos Attemp Figure	 1 and. 2 are compulsory. any three questions from Q to right indicate full marks. 	. No.	3 to Q. No. 7	
Q.1	A)	Choo 1)	DSE COR The int frequer a) i c) (rect alternative. roduction of electronegative g ncy. increased constant	group b) d)	results invibrational decreased zero	10
		2)	Analys a) l c) /	is of surfaces can be achieve UV-PES AES	ed by b) d)	ESCA All of these	
		3)	PAS is a) I c) I	comparable to NMR Fluorescence	b) d)	Phosphorescence IR	
		4)	An aco a) (c) I	ustical resonant frequency de Cell length Photoacoustic cell	epeno b) d)	ls upon Tunable dye laser Chopper	
		5)	PAS pr spectra a) S c) I	rovides a means for obtaining a of Solids Liquids	b) d)	visible and IR absorption Semi solids All of these	
		6)	The sir a) I c) I	nplest molecule with a low po HCI HCN	otentia b) d)	al barrier to inversion is OCS NH ₃	
		7)	The inv a) I c) I	version frequency rapidly dec Increased Identical	rease b) d)	es as the barrier height is Decreased None of these	
		8)	Transit a) l c) s	ions involving d-orbitals (d-d aporte allowed spin forbidden	transi b) d)	itions) is laporte forbidden spin allowed	
		9)	Orgel c a) ł c) ł	diagram apply to high spin complexes both a & b	b) d)	spin allowed transitions low spin complexes	
		10)	The fur a) { c) 8	ndamental vibrational modes 5 8	for H b) d)	₂O molecule are 3 1	

	B)	 Fill in the blanks OR Write true/false 1) The term symbol for Cr⁺³ ion is 2) The experimental and theoretical aspects of PES were first pioneered 	06
		 a) Scalar coupling is also termed as 3) Scalar coupling is also termed as 4) The energy separation of spectroscopic terms is expressed as 5) Unsaturation causes effect on the chemical shift. 6) In laser spectrometersdetector is used. 	
Q.2	Ans a) b) c) d)	Swer the following Applications of IR spectroscopy Spin spin coupling Orthogonality theorem Electronic transitions	16
Q.3	Ans a) b)	swer the following Distinguish between proper and improper axis of symmetry with example. Discuss in brief the Charge transfer spectra with suitable example.	16
Q.4	Ans a) b)	wer the following Explain the Principle of photoacoustic spectroscopy (PAS) Explain the effect of isotopic substitution in microwave spectrum.	16
Q.5	Ans a) b)	Swer the following Explain the occurrence of stokes and antistoke lines in Raman spectrum of molecule. Explain the Classification of molecules in point groups.	16
Q.6	Ans a) b)	wer the following Explain the principle and instrumentation of Auger electron spectroscopy. Explain the local and remote effects in NMR spectroscopy.	16
Q.7	Ans a) b)	wer the following Construct and explain the character table for C2v point group. Explain the Morse potential energy diagram.	16

Seat]			
No.						Set	Ρ
	М.:	Sc. (S	emester ·	- III) (New) (CBCS) E (INORGANIC CHEI Co-ordination Chei	xam MIST mist	ination: Oct/Nov - 2022 RY) ry – I	
Day & Time:	& Da 11:	ite: Tue 00 AM	esday, 14-02 To 02:00 P	2-2023 M		Max. Marks	: 80
Instru	uctio	o ns: 1) 2) 3)	Q. Nos. 1 a Attempt ar Figure to r	and 2 are compulsory. ny three questions from Q ight indicate full marks.). No.	3 to Q. No. 7	
Q.1	A)	Fill ii 1)	h the blank Acetic acid a) Olef b) Olef c) Mon d) Non	as by choosing correct as t is produced by in hydrogenation in Polymerization isanto acetic acid process e of these	alterr S	natives given below.	10
		2)	Wilkinson's a) TiCl c) [Rh(s catalyst is $_4 + AlEt_3$ (PPh ₃) ₃ Cl])	b) d)	ZrO ₄ TiO ₄	
		3)	Which mag a) Diar c) Ferr	gnetic have negative susc magnetic materials romagnetic materials	ceptib b) d)	ility? Paramagnetic materials All of the above	
		4)	Under con- in thermog a) First c) Thir	ditions of heating ravimetry. t order d order	l, dec b) d)	omposition usually take place Second order Dynamic	
		5)	One of the a) TGA c) FTIF	following TA instrument. A 2950 R	b) d)	UV-3600 Spectrum 100	
		6)	The CFSE a) −0.6 c) −1.6	for a high – spin d^4 octal $\delta\Delta_{oct}$ $\delta\Delta_{oct} + P$	hedra b) d)	Il complex is $-1.8\Delta_{oct}$ $-1.2\Delta_{oct}$	
		7)	Which calil a) Glas c) Alun	brant is used in DTA? ss beads nina	b) d)	Silicon carbide All of these	
		8)	Which met distortion? a) [Cr(c) [Cr(al complex ion is expecte $(OH_2)_6]^{3+}$ $(CN)_6]^{3-}$	ed to ∣ b) d)	be subject to a Jahn-Teller [Cr(NH ₃) ₆] ²⁺ [Cr(bpy) ₃] ²⁺	
		9)	The filling (a) The b) Pau c) Hun	of molecular orbital takes Aufbau Principle li Exclusion Principle d's rule of maximum mult	place tiplicit	e according to	

All of the mentioned d)

		10)	The s cons a) c)	substance that umed is Element Copolymerize	increases the r [.] er	rate of b) d)	reaction but is not itself Catalyst None of above	
	В)	Fill in 1) 2) 3) 4) 5) 6)	n the Oxid Zigle Tran Nicke In ind as Basid	blanks OR Wr ation of ethylen r-Natta catalysi sition metals ar el (II) ion has dustrial process c source of mag	ite true/false te to acetaldehy t is e complexes a unpaired ses, transition e	yde is ct as _ t elect elemer 	carried out by rons. nts and their oxides are used	06
Q.2	Ans a) b) c) d)	wer th Spect Facto Diam Deca	troche brs affe agnet rboxy	owing emical series ecting DTA cur ism. lation of B keto	ve acids			16
Q.3	Ans a) b)	wer th Expla Write	ie fol l iin the a brie	owing different betwe of note on curre	een CFT and N ent and future tr	1OT. rends	in catalysis.	16
Q.4	Ans a) b)	wer th Discu Expla	ne foll iss the iin the	owing e factors affecti tetrahedral str	ng stability of te ucture involving	ernary g sigm	r complexes. na bonding with MO diagram.	16
Q.5	Ans a) b)	wer th Expla Expla	ie fol l iin the iin in l	owing structure of [N prief diamagnet	$[i(CN)_4]^{2-}$ on the tism and parameters	ne bas nagnet	is of VBT. tism with suitable example.	16
Q.6	Ans a) b)	wer th Expla Expla	ne foll iin the iin the	owing determination factors affectir	of magnetic su ng TGA curve.	iscepti	ibility by Gouy method.	16
Q.7	Ans a)	wer th Draw decor	the fol l the D mposi	owing TA curve for C tion.	aC ₂ O4. 2H ₂ O a	ind ex	plain mechanism of	16

b) Explain the Octahedral structure involving sigma bonding with MO diagram.

						-	
Set No.						Set	Ρ
	М.\$	Sc. (S	Semeste	r - III) (New) (CBCS) E (INORGANIC CHE Nuclear Chem	Exam MIST istry	nination: Oct/Nov-2022 RY)	
Day & Time:	& Dat : 11:0	e: We 0 AM	dnesday, ´ To 02:00 I	15-02-2023 PM	-	Max. Marks	: 80
Instru	uctio	ns: 1) 2) 3)	Q. Nos. 1 Attempt a Figure to	and. 2 are compulsory. ny three questions from C right indicate full marks.). No.	3 to Q. No. 7	
Q.1	A)	Choo 1)	ose corred The unit c a) cm ³ c) N/m	ct alternative. (MCQ) of reaction cross-section is	; b) d)	 Barn Joule m²	10
		2)	Nuclear fu a) Ther c) strip	usion reaction is also knov monuclear ping reactions	vn as b) d)	reaction. elastic scattering None	
		3)	Which of disintegra a) Cycl c) cold	the following is used to me ition? otron chamber	easur b) d)	e the rate of nuclear mass spectrograph Geiger-Muller counter	
		4)	The act o a) Dosi c) Phot	f measuring or estimating imetry tometry	radia b) d)	tion doses is known as Colorimetry none of these	
		5)	The stopp is referred a) LET c) EZ	bing power is the rate of end as	nergy b) d)	loss per unit length of matter EC IE	
		6)	In fast bre a) U-23 c) Th-2	eeder nuclear reactor, the 39 232	fuel u b) d)	ised is Th-231 Pu-232	
		7)	The Liquid a) Bohi c) Chae	d drop model of nucleus w r, Wheeler dwick	/as de b) d)	eveloped by Fermi Rutherford	
		8)	The comr a) lead c) Grap	nonly used material for sh or concrete phite	ieldin b) d)	g is lead and tin thick galvanized sheets	
		9)	If the mas then the r a) Endo c) Elas	es of reactant is 8.02636 a nuclear reaction is oergic tic	nd ma b) d)	ass of product is 8.02813, Exoergic none of these.	
		10)	What is B a) 14 M c) 28 M	.E./A of He nucleus which /leV /leV	has b) d)	B.E. 28 MeV? 7 MeV 9.87 MeV	

	B)	Fill in the blanks OR Write true/false.	06
		is .	
		 model corresponds to the magic numbers. 	
		 Nuclear reactions induced by X-rays or g-photons of high energy are referred as reactions. 	
		 Even-even nuclides (both Z and A even) have zero intrinsic spin and parity. 	
		5) The range of N/Z ratio for stable nuclei is	
		 The first plant set up in India for the production of heavy water is at 	
Q.2	Ans	wer the following.	16
	a) b)	Write about nuclear reactors in INDIA.	
	c)	Write a note on magnetic moments of odd mass numbers nuclei.	
	d)	Explain radiolysis of aqueous solution with suitable examples.	
Q.3	Ans	wer the following.	16
	a) b)	Explain the stability of nucleus w.r.t mass defect, B.E, N/Z ratio. Explain Liquid drop model. Derive semi-empirical mass equation.	
Q.4	Ans	wer the following.	16
	a)	What is threshold energy of a nuclear reaction? Give Bohr's hypothesis of compound nucleus for nuclear reaction	
	b)	Explain the construction and working of pressurized water reactor.	
Q.5	Ans	wer the following.	16
	a)	What is nuclear cross section? And explain different types of nuclear reactions	
	b)	Give a brief account of general aspects of reactor design.	
Q.6	Ans	wer the following.	16
	a) b)	Write nuclear configuration, spin and parity of 29Cu ⁶³ and 78Pt ¹⁹⁵ Discuss about the heavy water manufacturing in India.	
07	٨٣٥	wor the following	16
Q.1	AIIS		10

- a) Discuss about Chemical solutions to environmental problems biodegradability.b) Discuss about the ionizing and non-ionizing radiations on living things.

Seat			l			
Seat No.					Set	Ρ
N	M.Sc. (S	emester · Pl A	- III) (New) (CBCS) E HARMACEUTICAL (dvanced Organic C	xam CHEN hem	ination: Oct/Nov - 2022 /IISTRY istry - I	
Day & I Time: 1	Date: Mo I1:00 AM	nday, 13-02 To 02:00 P	-2023 M		Max. Marks	: 80
Instruc	2) 2) 3)	Q. Nos. 1 a Attempt an Figure to ri	and. 2 are compulsory. by three questions from C ight indicate full marks.). No.	3 to Q. No. 7	
Q.1 A	A) Fill i 1)	n the blank The interm a) Cart c) Cart	s by choosing correct ediate used in Smiles rea panion pocation	altern arrang b) d)	a tives given below. gement is Carbene Carbon free radical	10
	2)	In Hunsdie a) Alky c) Aryl	cker's reaction the final p I cyanide halide	broduo b) d)	ct formed is Alkyl halide Alkyl ester	
	3)	DCC is the a) Oxid c) Hydr	agent for prepa lizing rating	ration b) d)	of amides, ketones and nitriles Hydrolyzing Dehydrating	}.
	4)	In Hiyama a) Nick c) Enzy	coupling reaction the cat el vme	alyst b) d)	used is Palladium Platinum	
	5)	Spontaneo a) Red c) Com	us oxidation of a compo ox reaction ibustion reaction	und in b) d)	air is called as Rapid oxidation Autoxidation	
	6)	In Shapiro a) Meth c) Alke	reaction, ketone or aldeh nane ne	nyde i b) d)	s converted to Alkyne Alkane	
	7)	Sandmeye a) Subs c) Addi	r reaction is a type of stitution ition	b) d)	reaction. Elimination Rearrangement	
	8)	The reaction called as a) Broom c) Witti	on in which ketoxime is c ok rearrangement g rearrangement	onver b) d)	ted into an α -amino ketone Neber rearrangement Hofmann rearrangement	
	9)	The reaction bond of alk a) Core c) Grut	on in which exchanges th enes is ey-Winter olefination ob's metathesis	b) d)	ups attached to the double Coupling reaction McMurry reaction	
	10)	The formul a) HI ₄ C c) HIO ₂	a of periodic acid is) ₄	b) d)	H ₂ I ₂ O ₄ HIO ₄	

	B)	 Write the answer with one answer 1) How lithium dialkylcuprate is formed? 2) In Chugaev elimination what is eliminated and which product is formed? 3) What kind of reaction is NBS? 4) In iodolactonisation, by addition of an oxygen and iodine which ring is formed? 5) What is Heck reaction? 6) Which conversion is occurred in Wittig reaction? 	06
Q.2	Ans a) b) c) d)	wer the following Write note on allylic hydrogenation. Explain Grubb's metathesis. Explain Hundsdieker reaction. Write note on Peterson's synthesis	16
Q.3	Ans a) b)	wer the following Explain Julia olefination and Corey-Winter olefination. Explain Pyne rearrangement and Brook rearrangement.	16
Q.4	Ans a) b)	wer the following What are the types of free radical reactions? Explain free radical substitution mechanism. How DCC is prepared? Write its four applications.	16
Q.5	Ans a) b)	wer the following Explain the coupling of alkynes and arylation of aromatic compounds by diazonium salt. How selenium dioxide is prepared? Write its four applications.	16
Q.6	Ans a) b)	wer the following Explain semipinacol rearrangement and Wittig rearrangement reaction. Explain Darzen reaction and Bamford-Steven reaction.	16
Q.7	Ans a)	wer the following Explain Pummerer rearrangement and Hofmann rearrangement.	16

b) Explain Strecker amino acid synthesis and Henry reaction.

Seat No.			Set	Ρ				
M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov - 2022 (PHARMACEUTICAL CHEMISTRY) Chemistry of Bioactive Heterocycles								
Day & E Time: 1	0ate: Tue 1:00 AM	esday, 14-02-2023	Max. Marks	: 80				
Instruc	tions: 1) 2) 3)) Q. Nos. 1 and. 2 are compulsory.) Attempt any three questions from Q. No. 3 to Q. No. 7) Figure to right indicate full marks.						
Q.1 A) Fill i 1)	In the blanks by choosing correct alternatives given belowPiperazine is prepared by reaction of ethanolamine witha)Ammoniab)Ethyl alcoholc)Waterd)Piperyl alcohol	/.	10				
	2)	Which of the following five membered rings is most resonand stabilized?a)Furanb)Thiophenec)Pyrroled)Pyridine	e					
	3)	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
	4)	What is the name of the following reaction? $ \underbrace{\bigcap_{N}}_{H} \underbrace{CHCl_{3, KOH}}_{A} \underbrace{\bigcap_{N}}_{CHO} \underbrace{CHO}_{N} $						
		 a) Gattermann reaction b) Riemer tiemann reaction c) Friedal craft reaction d) Blanc's chlorometh 	action ylation					
	5)	Oxidation of Isoquinoline with KMnO4 gives as one of products.a) Benzoic acidb) Pyridinec) Phthalic acidd) Salicylic acid	of the					
	6)	In coumarin one of the ring is having functional group a) Acid b) Alcohol c) Ester d) Phenol	Э.					
	7)	 2- Aza naphthalene is the name of a) Pyridine b) Quinoline c) Isoquinoline d) Indole 						
	8)	Indole is prepared by fusion of benzene ring to pyrrole ring ata)1,2 positionb)1,4 positionc)2,3 positiond)1,3 position	t					
	9)	Thiophene cannot be prepared froma) Acetyleneb) n-butanec) Ethylened) Sodium succinate						
		10)	Azirid a) c)	ine is a Three membered ring Five membered ring	b) d)	Four membered ring Six membered ring		
-----	--	---	--	---	---	---	---------------	
	B)	Fill in 1) 2) 3) 4) 5) 6)	n the I Quina Numb Thiop Isoqu Pyrro Pyraz	blanks. azoline is prepared by c per of double bonds pre hene is membe inoline is a structural is l on heating with methy formed. ine contain nitr	ondensatior sent in Pyra ered heteroc omer of I chloride in ogen atom.	n of two ring and in is cyclic compound. presence of sodium methoxid	06 	
Q.2	Ans ^a a) b) c) d)	wer th Write Write Write Write	synthe any tw synthe a note	owing esis and medicinal impo vo methods of preparat esis and aromatic chara e on morphine.	ortance of B ion of furan. acter of Pyri	enzothiophene. dine.	16	
Q.3	Ans a) b)	wer th Discu Write	ne follo iss the syntho	owing synthesis of thiophene esis, reactivity and med	and pyrrole	e with mechanism. tance of Azeridine.	16	
Q.4	Ans [.] a) b)	wer th Discu reacti Discu	ne folle iss the ions. iss the	owing synthesis of indole witl synthesis of imidazole	n mechanisı and pyrazo	m and their chemical le and their applications.	16	
Q.5	Ans a) b)	wer th Write What	ne foll synth is quii	owing esis, reactivity and med nolone and isoquinoline	licinal impor ? Write syn	tance of Oxirane. thetic methods with examples	16	
Q.6	Ans a) b)	wer th Write Discu	ne follo syntho iss the	owing esis, reactivity and med synthesis of azitidine a	licinal impor and thietane	tance of Piperazine. with chemical reactions.	16	
Q.7	Ans a)	wer th Discu	ne follo	owing synthesis of triazine ar	nd tetrazine	in detail.	16	

b) Write synthesis, reactivity and medicinal importance of Pyrrolidine.

Seat	
No.	

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (PHARMACEUTICAL CHEMISTRY) **Drug Development**

Day & Date: Wednesday, 15-02-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Choose correct alternative. Q.1 A)

- The drug concentration between Minimum Effective Concentration 1) and Maximum safe concentration is called as
 - a) Therapeutic range
 - Peak response C)
- The most significant protein involved in the binding with the drug is . 2)

b)

d)

b)

d)

b)

- a) Albumin
- C) Lipoprotein
- d) Globulin

Glycoprotein

All of the above

- 3) The computational methodology that tries to find the best matching between two molecules, a receptor and ligand are called Molecular matching b)
 - Molecular fitting a)
 - Molecular docking C)
- Among the following _____ is a source for obtaining drugs. 4) Micro-organisms
 - Animals and plants a)
 - Synthetic origin C)
 - d) The identification of drugs through the genomic study is called _____.
 - Genomics a) C)
 - b) Pharmacogenomics Cheminformatics Pharmacogenetics d)
- Among the following compounds has desirable properties to 6) become a drug.
 - Fit drug a)

5)

- b) Lead
- Fit compound d) All of the above C)
- 7) In pharmacokinetics, the acronym ADME stand for
 - Absorption, Distribution, Metabolism and Excretion a)
 - Administration, Differentiation, Metabolism and Excretion b)
 - Absorption, Disintegration, Metabolism and Efficacy C)
 - Administration, Distribution, Metabolism and Efficacy d)
- 8) The protein structures that are expressed within the cell membranes and interact with endogenous signaling molecules or some drugs to initiate an intracellular response are called as
 - a) Enzymes
- b) Hormones
- C) Ligands d) Receptors

10

Set

Max. Marks: 80

Pharmacological response

Molecular affinity checking

Area under curve

06

16

16

16

- 9) The science which deals with the drug and their action on human body is called _____.
 - Physiology
- b) Pathology
- c) Pharmacology d) Microbiology
- 10) The volume of distribution (Vd) relates _
 - a) The amount of drug in the body to the concentration of drug in plasma
 - b) An unchanged drug reaching to the systematic circulation.
 - c) Daily dose of an administered drug
 - d) An administered dose to a body weight

B) Fill in the blanks.

a)

- 1) _____ software programme is used to determine the Verloop steric parameter.
- 2) refers to the study of the entire set of expressed proteins in the cell.
- 3) In medicinal chemistry, a compound that acts as the starting point for drug design and development _____ compound.
- 4) The symbol 'P' is QSAR equation represent
- 5) _____ is a measure of the fraction of administered dose of a drug that reaches the systematic circulation in the unchanged form.
- 6) The combined effect of two drug effect is higher than either individual effect is called as _____.

Q.2 Answer the following.

- a) Explain Lipinski rule of 5.
- b) Discuss the types of molecular descriptors.
- c) What are pro-drugs and soft drugs?
- d) Explain the terms: LD50, ED50, IC50, MIC.

Q.3 Answer the following.

- a) Explain bioavailability of drug and major factors affecting drug bioavailability.
- **b)** What is dose-response relationship? Explain the potency and efficacy of the drug.

Q.4 Answer the following.

a) What are molecular descriptors? Explain the methods of molecular descriptor selection.
b) Explain in detail the combined effect of drugs administered together in the body.

Q.5 Answer the following.

- a) Explain the development of Cemetidine on the basis of physico-chemical properties.
- b) What is pharmacokinetics? Explain in detail the process of drug absorption.

Q.6 Answer the following

- a) Define and classify molecular docking and discuss various steps involved in 10 the flexible docking.
- b) Write an account on metabolism for the drug administered in the body. 06

Q.7 Answer the following

- a) What are receptors? Explain the types of receptors in detail.
- **b)** What are the principles of drug action? Discuss the mechanism involved in drug action.

Seat No.					Set	Ρ		
N	M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (PHARMACEUTICAL CHEMISTRY) Photochemistry and Pericyclic Reactions							
Day & D Time: 03	ate: Mo 3:00 PM	nday, 20-02 To 06:00 Pl	-2023 M		Max. Marks	: 80		
Instruct	ions: 1) 2) 3)	Q. Nos. 1 a Attempt an Figure to ri	nd. 2 are compulsory y three questions fror ght indicate full marks	⁷ . n Q. No. 3.	3 to Q. No. 7			
Q.1 A)) Fill i 1)	n the blank In photoche place. a) ultra c) only	s by choosing corre emical reactions, abso violet and visible visible	e ct altern prption of b) d)	a tives given below. f radiations takes radio visible and x-rays	10		
	2)	The reactant a) 1,5 c c) 1,4 c	nt of cope rearrangen liene liene	nent is b) d)	1,3 diene 1,6 diene			
	3)	The a) hete c) hete	_ species in the excite rodimeric rotrimeric	ed state i b) d)	s termed as the excimer. homodimeric Homotrimeric			
	4)	The oxyger a) Reso c) Vale	n molecule is parama onance nce bond theory	gnetic. It b) d)	can be explained by Hybridization Molecular orbital Theory			
	5)	Which one a) 4n, 1 b) 4n, 1 c) 4n+2 d) 4n+2	is correct as per sele Thermally → Conrotate Thermally → Disrotate 2, Thermally → Conro 2, Photo chemically →	ction rule ory ory tatory · Disrotat	of Electrocyclic reactions?			
	6)	Diel's Alder a) [2+2 b) [4+2 c) [4+4 d) [6+2	reaction is]-Cycloaddition reaction]-Cycloaddition reaction]-Cycloaddition reaction]-Cycloaddition reaction	on on on on				
	7)	Formation example of a) Phot c) Phot	of polycyclic compour o dissociation o cyclization	nd in pres b) d)	sence of oxygen is an Photo oxidation Photo dimerization			
	8)	In the Clais gamma, a) α , β c) β , δ	en rearrangement, vi unsaturated ca	nyl allyl e rbonyl. b) d)	ether is heated to give a γ, δ α, δ			

		9)	 Combination of two atomic orbitals results in the formation of two molecular orbitals namely a) one bonding and one non-bonding orbital b) two bonding orbitals c) two non-bonding orbitals d) two bonding and non-bonding oirbitals 	
		10)	 Product of Patemo-Buchi reaction is a) Four membered oxirane ring b) Five membered oxazole c) Five membered thiazole d) Four-membered oxetane rings 	
	B)	Ansv 1) 2) 3) 4) 5) 6)	wer in one sentence. What is Norrish type I reaction? Why do anti-bonding orbitals have higher energy? How Many pi electrons are present in allyl radical? What we can name for heterodimeric species in exicted state? During conrotatory process which symmetry is maintained? How many electrons can a molecular orbital hold?	06
Q.2	Ansv a) b) c) d)	wer th Expla Expla What Expla	he following ain Diels-Alder reaction with mechanism. ain Photo cycloaddition, photodimerisation of conjugated olefins. t are Woodward-Hoffmann selection rules for cycloaddition reactions? ain Norrish type II reaction in ketones and esters.	16
Q.3	Ansv a) b)	wer th Write Expla orbita	he following e calculation of energies of orbitals in cyclic and acyclic systems. ain for the mechanism of cycloaddition reactions by Conservation of al symmetry and orbital symmetry correlation diagrams.	16
Q.4	Ansv a) b)	wer th Expla Fries Write index	he following ain photo substitution reactions of aromatic compounds and Photo s rearrangement. e calculation of charge densities. Explain PMO theory and reactivity x.	16
Q.5	Ansv a) b)	wer th Expla 1, 3-b Expla	he following ain nodes and symmetry properties of molecular orbital in ethylene and butadiene. ain Cope rearrangement and Claisen rearrangement.	16
Q.6	Ansv a) b)	wer th Expla What openi	he following ain photochemistry of azo compounds, diazo compounds and azides. t is Con-rotation and dis-rotation? Explain electrocyclic closure and ning in 4n and 4n+2 systems.	16
Q.7	Ansv a)	wer th Expla and a	he following ain the mechanism of electrocyclic reactions by Huckel-Mobius aromatic anti-aromatic transition state method.	16

Explain Patemo-Buchi reaction and Chemiluminescent reactions. b)

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (PHARMACEUTICAL CHEMISTRY)

Advanced Organic Chemistry-II

Day & Date: Tuesday, 21-02-2023 Time: 03:00 PM To 06:00 PM

Seat

No.

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Choose correct alternative. A)

C)

4)

Which reaction would result in structure having a cyclohexene such 1) as the following as a molecular structure?

Ene reaction a)

COOEt

Claisen rearrangement

- Which of (a)-(d) is the most suitable starting for the synthesis of m-2) ethylaniline?

- Stereoselectivity a)
- b) Regioselectivity All of these d)
- Enantioselectivity C)
- Mention the conditions for deprotection of following protected amine?

HCI a)

C)

NaOH

- b) NH₂NH₂ / EtOH None of these d)
- Which combination of reagents is appropriate for following 5) transformation?

- 1) HO-CH₂-CH₂-OH, H⁺ 2) LiAlH₄, Et₂O, H₃O⁺ a)
- 1) NaBH₄, MeOH 2) LiAlH₄, Et₂O, 3) H₃O⁺ b)
- C) 1) LiAlH₄, Et₂O, 2) H₃O⁺
- 1) NaBH₄, MeOH d)

Max. Marks: 80

- Aldol condensation b) d)
 - **Diels-Alder reaction**
- COCH₃ d) b)

The synthetic equivalent for following Target molecule is? 6)

- 7) Conversion of one functional group into another functional group is known as
 - Functional group interconversion a)
 - b) Oxidation
 - Reduction C)
 - None of these d)
- 8) Choose correct reagents for following asymmetric synthesis.

B) Fill in the blanks.

9)

- 1) The cyclohexane units in both cis and trans decalins exist in conformation.
- The site of disconnection is shown by _ 2)
- When a tetrahedral carbon can be converted to a chiral center by changing 3) only one of the attached groups, it is referred to as a carbon.

 CH_{2}

OН

- The molecule to be synthesised is known as _____. 4)
- An imaginary bond breaking corresponding to the reverse of real 5) reaction is known as
- Addition of borane to alkene follow rule. 6)

16

16

16

16

Q.2 Answer the following.

- a) Explain asymmetric epoxidation.
- **b)** Outline the retro synthetic analysis and design synthesis of the following target molecule.

Q.3 Answer the following.

C)

d)

- a) Discuss the principle of protection of carbonyl compounds with suitable examples.
- b) What is stereoselective synthesis? Describe with suitable examples.

Q.4 Answer the following.

- a) Explain role of boranes in organic synthesis.
- **b)** Explain various protecting groups for alkynes.

Q.5 Answer the following.

- a) Explain Bredts rule with suitable examples.
- **b)** Suggest synthesis for the following compounds, using disconnection approach.

Q.6 Answer the following.

- a) What is umpolung? Explain with suitable examples.
- b) Draw the conformations of cis/trans 9- methyl decalins and comment on their stability and optical activity.

Q.7 Answer the following.

- a) Explain enantiomeric excess (ee) with example.
- **b)** Draw different conformations of perhydrophenanthrene and explain its stability.

	Se
١	I.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022
	(PHARMACEUTICAL CHEMISTRY) Pharmaceutical Dosage Forms

Day & Date: Wednesday, 22-02-2023 Time: 03:00 PM To 06:00 PM

Seat

No.

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three guestions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Choose correct alternative. A)

Which route is adopted by the physician for sensitivity screening of 1) potent drugs?

b)

Enteral

- Intramuscular a)
 - Subcutaneous d) Intradermal C)

What is the drawback of parental controlled release system? 2)

- a) Injecting is a difficulty
- The drug cannot be easily removed once administered b)
- Can get easily precipitated in the injection site C)
- rapid onset but fast excretion d)

Posology is a branch of pharmacy which deals with 3)

- a) study of dosage forms b) study of dosage all of these
- study of drug interaction d) C)
- Rate of sedimentation is high in ____ 4) ____ suspension. b) deflocculated
 - flocculated a)
 - none of these both a) and b) d) C)
- Elexirs are . 5)
 - aqueous a)
 - C) hydroalcoholic liquids
- Which of the following is an ideal characteristic of any pharmaceutical 6) drug/excipient?

b)

d)

- Non-toxic a)
- C) Water soluble d)
- is most commonly used dosage form. 7)
 - Liquid a) b) d)
 - Semisolid C)
- 8) Drug is
 - Any chemical compound a)
 - Substance which alter physiological function b)
 - Substance which cure disease C)
 - All of these d)
- Which drug delivery system has longest duration of action? 9) Implants b)
 - Nasal preparation a)
 - Depot injection C) d) Transdermal patch

- Chemical inertness b)
- All of the above

Gaseous

Solid

viscous

semisolid

Set

Max. Marks: 80

		10)	Whic a) c)	n of the following is/are typ Slow-release Self-regulating release	bes of mo b) d)	odified drug release? delayed release All of these	
	В)	Write 1) 2) 3) 4) 5) 6)	e True Exces comp To pr used Upwa The p pract Cloni Trans drug	e or False. ssive moisture can be responsion. ovide delayed repeat action and creaming is observed in prescription is an order write tioner to pharmacist. dine patches have been us dermal drug delivery syste for delayed action.	oonsible t on of drug n W/O er tten by a sed for m em can b	for mottling during tablet gs enteric coated tablets are mulsion. registered medical noderate hypertension. be programmed to deliver a	06
Q.2	Ansv a) b) c) d)	wer th Desci What Class Write	ribe th are en ify sen a note	owing. e steps involved in sugar o mulsifying agents? Give its misolid dosage forms. e on rationale of sustained	coating. s classific l release	cation. formulations.	16
Q.3	Ansv a) b)	wer th Expla ointm Desci	ver the following. Explain different types of Ophthalmic preparations. Write formulation of eye ointment. Describe recently design Occular dosage form.				
Q.4	Ansv a) b)	wer the following. Write excipients used in formulation of tablets. Write a detailed note on types of tablets.					16
Q.5	Ansv a) b)	wer th Write Desci	in det in det ribe qu	owing. ail formulation consideration ality control methods and	ons of su measure	spension. ements of tablet properties.	16
Q.6	Ansv a) b)	wer th Desci Write	ribe ro a note	owing. utes of drug administration e on design of transderma	ns. I drug de	livery system.	10 06
Q.7	Ansv a)	wer th Expla	ie foll in stal	owing. bility testing protocol.			16

b) Explain oral drug delivery system.

Seat No.					Set	: P			
М	M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov - 2022 (PHARMACEUTICAL CHEMISTRY) Pharmaceutical Technology								
Day & D Time: 03	Day & Date: Thursday, 23-02-2023 Max. Marks: 80 Time: 03:00 PM To 06:00 PM								
Instruct	t ions: 1) 2) 3)	Q. Nos. 1 a Attempt an Figure to ri	and. 2 are compulsory. y three questions from Q ght indicate full marks.	. No.	3 to Q. No. 7				
Q.1 A)) Fill in 1)	n the blank GMP guide a) a cle b) clarit c) reco d) All o	s by choosing correct a elines provide the guideline an & hygienic manufactu ty & control in manufactu rds of manufacture f these	altern nes fo iring a ring p	atives given below. r maintaining area rocesses	10)		
	2)	The format a) vapo c) solid	ion of acetic acid through our	n oxid b) d)	ation is done in phase liquid All of the above				
	3)	is t assurance predetermi a) valid c) reva	the documented evidence that specific process pro ned specification and qua lation lidation	e whic duce ality c b) d)	ch provides high degree of product meeting its haracteristics. qualification process				
	4)	Brine is a) heat c) coola	exchanger ant	b) d)	tower column				
	5)	a) mixir c) millir	the most important state ng ng	in dry b) d)	granulation. screening slugging				
	6)	The first ele is a) insta c) conc	ement of validation of nev Illation qualification current validation	w faci b) d)	lities systems or equipment design qualification process validation				
	7)	Coating us is a) film (c) ente	ed to protect the tablet fr coating ric coated	om ao b) d)	cidic environment of stomach sugar coating encapsulation				
	8)	Moisture ar a) direc c) wet g	nd heat sensitive drug an et compression granulation	e forn b) d)	nulated into tablets by dry granulation All of these	_·			

		9)	Whic a) c)	h one of these is res die filling both a and b	ponsible f	or ha b) d)	rdness of tablet? compression force None of these	
		10)	What comp a) c)	t size of equipment is pared with batch proc does not depend or smaller	s needed i cess? n size	n cor b) d)	ntinuous process when larger none of these	
	B)	Fill i 1) 2) 3) 4) 5) 6)	n the ICH s GLP API s IRB s IP sta FDA	blanks. stands for stands for stands for Stand for ands for stands for				06
Q.2	Ans a) b) c) d)	wer the Desc Draw Give Give	ne foll ribe le a unit details the dit	owing evel of screening. t process diagram for s about qualification p fference between cal	r monochl phases ac ibration ai	oroac cordi nd va	cetic acid. ng to WHO. lidation.	16
Q.3	Ans a) b)	 Answer the following Explain unit process of vinyl chloride. Write a note on granulation method. 						16
Q.4	Ans a) b)	Answer the following Describe sampling techniques in cleaning validation. What are the types of process validation? 						16
Q.5	 Answer the following a) Discuss the typical industrial chlorination process for the preparation of monochlorobenzene. b) Discuss compression method. 						16	
Q.6	Ans a)	wer tł Discι α-Niti	ne foll uss the ronapl	owing e typical industrial nit nthalene.	ration proc	cess	for the preparation of	16
	b)	Expla	ain val	idation of standard m	nethod in a	analy	tical method validation.	
Q.7	Ans a) b)	wer th Write Discu	ne foll a brie uss the	owing of note on reactors us e factors affecting on	sed in API chemical	man proce	ufacturing unit. ess.	16

-							
	М.	Sc. (\$	Seme	ster - III) (New) (0 (MEDICIN) Advanced Org	CBCS) Exan L CHEMIST ganic Chem	nination: Oct/N RY) istry – I	lov-2022
Day & Time	& Dat : 11:0	e: Mo)0 AM	nday, To 02	13-02-023 ::00 PM			Max. Marks
Instr	uctio	ns: 1) 2) 3)) Q. No) Atten) Figur	os. 1 and. 2 are comp npt any three question re to right indicate full	oulsory. ns from Q. No marks.	. 3 to Q. No. 7	
Q.1	A)	Fill i 1)	n the In Es hydra a) b) c) d)	blanks by choosing chenmoser fragments azine give and alkenes and carbon alkynes and carbon alkanes and carbon alcohols and carbor	correct alternation \propto, β –ep yl compounds yl compounds yl compounds yl compounds	natives given bel oxy ketones and a	l ow. aryl sulphonyl
		2)	The b low te a) c)	base catalyzed [2,3] – emperature. Ethers Allylethers	- witting rearra b) d)	ngement of Allyl alcohols All three	_occur at
		3)	R- Cl a) c)	$HO \bigoplus_{\substack{(D) \in Br_{4}} \ell ph_{3}/2v} \ell ph_{3$	R- Ξ- E b) d)	n –Buli then E^{\oplus} n –Buli + E^{\oplus}	
		4)	Julia	Olefination can be us	sed to prepare	alkenes.	

Seat No.

ov-2022

a)

C)

a)

C)

5)

Max. Marks: 80

10

Set

b) NH_2NH_2 d) All three

b)

d)

Disubstituted

All three

Ozone is a very electrophilic molecule. 6)

Monosubstituted

Trisubstituted

9

KCN

TsNHNH₂

- a) 1, 3-dipolar b) 1,3-polar C) Non polar d) None of these
- Organocopper reagents are _____ and give _____ addition reaction 7) in Michael Addition.

Na. Etypleneglyco).

- Soft nucleophile and 1,4 addition a)
- Soft nucleophile and 1,2 addition b)
- Hard nucleophile and 1,4 addition C)
- Hard nucleophile and 1,2 addition d)

- Factor/s favouring the formation of the kinetic enolate is/are _____. 8)
 - Aprotic solvent a)
 - b) Strong base
 - Oxophilic cations and low temperature C)
 - All three d)
- 9) Secondary and tertiary leaving groups should not be used as alkylating agents in alkylation of ketone enolates because of
 - their poor reactivity a)
 - possible competition with elimination reaction b)
 - their high reactivity C)
 - both a) & b) d)
- 10) The ideal use of Tiffeneau- Demjanove rearrangement reaction is for the synthesis of _____ membered rings.
 - Four a) c) Five
 - b) Eight d) Three

CH2 = CH Sm (n-Bu)3

00

B) Predict the product.

0

CH2 CH2

-04

1)

2)

3)

4)

5)

06

PPA, 60-100C & -0H -6)

a) b) c) d)	Explain the mechanism of Shapiro reaction with suitable example. Explain the reaction mechanism of Brook rearrangement reaction. Discuss alkylation of enolates stabilized by two functional groups. Give the synthetic applications of polyphosphoric acid.	
Ans	wer the following	00
a)	reagents.	00
b)	Explain reaction mechanism of Hofmann rearrangement and give its various applications.	08
Ans	swer the following	
a)	Explain with suitable examples generation of specific enclates by different methods other than deprotonation method	08
b)	Discuss various applications of periodic acid with suitable examples & give its mechanism.	08
Ans	swer the following	
a)	Discuss with suitable examples reaction mechanism and applications of	08
b)	Give reaction mechanism and applications of Mistunobu reaction.	08
Ans	swer the following	
a)	Discuss reaction mechanism and applications of Wagner-Meerwien	08
b)	Explain generation & alkylation of dianions with suitable examples.	08
Ans a) b)	swer the following Explain reaction mechanism of Negeshi and Kumada reaction. Discuss applications and reaction mechanism of DCC.	08 08
	a) b) c) d) Ans a) b) Ans a) b) Ans a) b) Ans a) b) Ans a) b) Ans a) b)	 a) Explain the mechanism of Shapiro reaction with suitable example. b) Explain the reaction mechanism of Brook rearrangement reaction. c) Discuss alkylation of enolates stabilized by two functional groups. d) Give the synthetic applications of polyphosphoric acid. Answer the following a) Discuss with suitable examples application of complex metal hydride reagents. b) Explain reaction mechanism of Hofmann rearrangement and give its various applications. Answer the following a) Explain reaction mechanism of Hofmann rearrangement and give its various applications. Answer the following a) Explain with suitable examples generation of specific enolates by different methods other than deprotonation method. b) Discuss various applications of periodic acid with suitable examples & give its mechanism. Answer the following a) Discuss with suitable examples reaction mechanism and applications of peracids. b) Give reaction mechanism and applications of Mistunobu reaction. Answer the following a) Discuss reaction mechanism and applications of Wagner-Meerwien rearrangement reaction. b) Explain generation & alkylation of dianions with suitable examples.

Seat No.			Set P
ſ	И.Sc. (Semester - III) (New) (CBCS) Examination: Oct/N (MEDICINL CHEMISTRY) Chemistry of Bioactive Heterocycles	lov-2022
Day & [Time: 1	Date: Tu 1:00 AM	esday, 14-02-2023 I To 02:00 PM	Max. Marks: 80
Instruc	tions: 1 2 3) Question Nos.1 and 2 are compulsory.) Attempt any three questions from Q. No. 3 to Q. No. 7.) Figure to right indicate full marks.	
Q.1 A) Cho 1)	ose correct alternative (MCQ). The IUPAC nomenclature for the given heterocycle is	
		a) Oxarane b) Oxorane c) Oxane d) Oxirane	
	2)	The major product formed in the following reaction is $interproduct = \frac{SO_3/H_2SO_4}{Br_2, Na_2CO_3}$?	·
		a) N b) N Br	
		c) () () () () () () () () () () () () ()	
	3)	The major product formed in the following reaction is PhCOCI Petrol/ -20 °C ?	·
		a) N Ph b) N Ph O	
		c) $(N + Ph + d)$ $(+ N + Ph + d)$ $(+ Ph + d)$	

4) The product formed in the following reaction is _____

Ph

Ph

CI

Me

Ph

Pł

5) Which compound is most basic?

6) The major product formed in the following reaction is: _____.

7) Which is the main product of the following reaction?

8) Which is the most probable main product of the following reaction?

- Piperazine is an organic compound that consists of a _____ membered ring containing two _____ atoms at opposite positions in the ring.
 - a) four, nitrogen
- b) four, oxygen
- c) six, nitrogen
- d) six, oxygen
- 10) Which is the main product of the following reaction?

B) a) Fill in the blanks.

- 1) 1,4-diazine is also known as _____.
- The number of nitrogen atoms in the pyrazine heterocyclic moiety are _____.
- 3) Azetidine is _____ liquid having _____ structure.

b) True or False.

- The base catalysed cyclocondensation of malonamides with carboxylic esters leads to 6-hydroxypyrimidin-4(3*H*)-ones is known as Remfry-Hull synthesis.
- 2) The suffix 'ole' is used for six membered unsaturated ring.
- 3) The reaction of 4-chloropyridine with sodium ethoxide is an example of addition reaction.

03

Q.2	Ans a) b) c)	swer the following. How are 1,3-dicarbonyl compounds used for the synthesis of isoxazoles and pyrazoles? How could one prepare 2-bromo-, 3-bromo- and 3,4-dibromothiophenes? Name three types of compound which will react with 4,5-diamino-pyrimidines to produce purines. Explain reactions of each for synthesis of purines.	16
03	d) And	Discuss different methods for synthesis of aziridines and thiiranes.	16
Q.0	a)	What is the regeoselectivity of nitartion, halogenations and sulphonation	10
	b)	At which positions do benzofuran and benzothiophene reacts most readily with electrophiles? Give reason of each.	
Q.4	Ans	swer the following.	16
	a)	Which ring synthesis method and what reactants would be appropriate for the synthesis of a pyrrole, unsubstituted on the ring carbons, but carrying CH(Me)(CO ₂ Me) on nitrogen?	
	b)	How one can prepare imidazoles and thiazoles from α -halo-carbonyl compounds? Give mechanism in details.	
Q.5	Ans	swer the following.	16
	a)	details with mechanism.	
	b)	What is the reactivity of pyridine towards nucleophilic substitution reaction? Discuss regioselectivity?	
Q.6	Ans	swer the following.	16
	a)	At which positions do quinoline and isoquinoline react most readily with nucleophiles? Why these positions?	
	b)	How could one convert.1) isoquinoline into 2-methyl-1-isoquinolone2) quinoline into 2-cyanoquinoline?	
Q.7	Ans a) b)	swer the following. What are the different methods for synthesis of pyrimidine? Discuss Baldwin ring closure rules for the formation of 3, 4, 5 and 6 membered rings.	16

Day & [Time: 1	Date: We 1:00 AM	ednesday, 15-02-2023 1 To 02:00 PM	Max. Marks: 80
Instruc	tions: 1 2 3) Q. Nos. 1 and 2 are comp) Attempt any three question) Figure to right indicate full	ilsory. is from Q. No. 3 to Q. No. 7 marks.
Q.1 A	.) Cho 1)	Drug abuse is the use of a a) Non-medicinal	substance for b) Medicinal d) Treating virus
	2)	Lipinski's rule of five says a drug should be a) <5 c) >12	b) <10 d) >5
	3)	 Phamacodynamics involve a) Biological and thera b) Absorption and district c) Mechanism of drug d) Drug interaction 	s the study of following except Deutic effect of drug ibution of drug action
	4)	The concentration of a dru maximal effects is termed a) Efficacy c) Affinity	g required to produce 50% of that drug's as b) Potency d) Bioavailability
	5)	LD stands for a) Legal dose c) Lateral Dose	b) Lethal Dose d) Less Dose
	6)	The first step in the drug d a) Lead Modification c) Target Identification	scovery process is b) Lead Validation d) Lead Optimization
	7)	QSAR method involves a) Target structure c) Target property	b) Ligand X ray structured) Ligand property
	8)	The study of drug and thei a) Physiology c) Biotechnology	action on the human body is called b) Pharmacology d) Microbiology
	9)	is not a docking too a) Hex c) AutoDock	l. b) BLAST d) SwissDock
	10)	Drugs are majorly excrete a) Saliva	l from the body through organ. b) Kidney

Seat No.

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (MEDICINAL CHEMISTRY) **Drug Development**

Page 1 of 2

- c) Intestine
- Sweat d)

Set P

06

B) Fill in the blanks.

		1)	Protein 3D structures are deposited in database.	
		2)	Ligand based drug design is an approach used in the absence of the	
		•	structure	
		3)	is an approach to find correlations between chemical	
		4)	structure and properties.	
		+)	barriers	
		5)	is a drug substance that is administered inactive in the	
		,	intended pharmacological actions.	
		6)	is the minimum plasma concentration of a drug needed to	
		,	achieve sufficient drug concentration at the receptors to produce the	
			desired pharmacologic response. Minimum effective concentration.	
~ 1	A no		a following	46
Q.2	Alls	Write	a note on types of recentors	10
	a) b)	Desc	ribe different sources of drugs	
	c)	Write	a note on drug elimination and drug toxicity.	
	d)	Expla	ain the methods of molecular descriptor selection.	
• •	A			
Q.3	Ans		ne following. ain the Structure and ligand based drug designing	10
	a) h)	Expla	ain the Lininski rule of 5 in detail	06
	ω,	Expid		
Q.4	Ans	wer tl	ne following.	
	a)	Expla	ain LD50, ED50, IC50, MIC, MEC and Ki in brief.	10
	b)	Desc	ribe the development of QSAR.	06
Q.5	Ans	wer tl	ne following.	
_	a)	Expla	ain the mechanism of drug absorption.	10
	b)	Desc	ribe RCSB-PDB database in detail.	06
Q.6	Ans	wer tl	ne following.	
4.0	a)	Expla	ain the physico chemical properties of molecules.	10
	b)	Expla	ain the factors affecting bioactivity.	06
Q.7	Ans	wer tl	ne following.	
	a)	Expla	ain the Pharmacokinetic parameters.	10
	b)	Desc	ribe the concept of pro-drug and soft drug.	06

Soat	•				Γ
No.	•				Set P
	М.	Sc. (\$	Semester - IV) (New) (CBCS) E (MEDICINL CHEM Pharmaceutical Dos	Exar IIST age	nination: Oct/Nov-2022 RY) Forms
Day & Time:	& Da : 03:	te: Mo 00 PM	nday, 20-02-2023 To 06:00 PM	-	Max. Marks: 80
Instru	uctio	2 (2 2 3 4) Q. Nos. 1 and. 2 are compulsory.) Attempt any three questions from Q) Figure to right indicate full marks.) Draw neat labelled diagram wherev). No rer ne	. 3 to Q. No. 7 ecessary.
Q.1	A)	Fill i 1)	n the blanks by choosing correct a Nitroglycerin is tablet. a) chewable	b)	natives given below. 10 effervescent
		2)	 are the systemic route of dr a) oral c) sublingual 	ug a b) d)	dministration. rectal all of these
		3)	Suspensions are classified into pharmaceutical use. a) oral suspensions c) ophthalmic suspension	b) d)	_ main classes according to its parenteral suspensions all of these
		4)	methods are commonly use stability of suspension. a) sedimentation method c) electrokinetic method	b) d)	r evaluating the physical micrometric method all of these
		5)	are the main types of delive forms. a) metered dose inhalers c) nebulizers	b) d)	vstem for respiratory dosage dry powder inhalers all of these
		6)	The formulation that best meets the to be its formula. a) matter c) material	goa b) d)	ls for the product is selected master none of these
		7)	With organic compound, an increas seem to increase the sweetness of a) carbonyl c) hydroxyl	e in t the c b) d)	the number of groups compound. methyl ethyl
		8)	Noyes Whitney equation gives the r aqueous solubility. a) dissolution rate	elati b)	on between and the reaction

c) compound molecule d)

SLR-GF-112

Seat

- 9) Rate limiting steps in the bioavailability of dosage form is/are _____.
 - a) release from the dosage form
 - b) dissolution of the drug
 - c) absorption through the gastrointestinal mucosa
 - d) all of these
- 10) _____ are the common transdermal patch designs.
 - a) drug-in-adhesive patch
 - b) drug-in-matrix patch
 - c) rate-limiting membrane type patch
 - d) all of the above

B) Fill in the blanks.

06

16

16

16

16

- Dusting powders should be passed through a _____ sieve to enhance their _____.
- The isotonicity of sterile solution may be adjusted by adding _____.
- 3) LAL stands for _____
- 4) Before the formulation of a drug substance into a dosage form, it is essential that it be ______ and _____ characterized.
- 5) Noyes Whitney equation is _____.
- 6) Matrix systems are also called as _____ because the drug is homogeneously dispersed throughout a rate-controlling medium.

Q.2 Answer the following

- a) Write the importance of dosage forms.
- **b)** What do you mean by 'Parenteral Products'? Describe the different routes of administration of parenteral products.
- c) Define and give example of following ingredients.
 - 1) Buffering agents
 - 2) Chelating agent
 - 3) Humectant
 - 4) Surfactant
- **d)** Write the classification of control release system and list the advantages and disadvantages of such a system.

Q.3 Answer the following

- a) What are 'Monophasic liquid dosage form'? Write in detail about syrups, Elixirs and Linctues.
- b) Define the term 'suspension'. Discuss about the formulation of suspension.

Q.4 Answer the following

- a) Explain different steps involved in sugarcoating of tablets.
- **b)** What are the various ingredients used in the preparation of semisolid dosage form with suitable examples?

Q.5 Answer the following

- a) Write down the factors affecting on designing of dosage forms and comment on Accelerated stability studies.
- **b)** How will you increase drug solubility and absorption in topical ophthalmic preparation, also mention sterility of ophthalmic preparations.

Q.6 Answer the following

- a) Explain in brief about excipients used in parenteral drug delivery system.
- b) 1) Define excipient and explain selection and mode of action of preservatives.
 - 2) Define chelating agent and explain the mechanism of drug degradation.

Q.7 Answer the following

- a) What are 'Ointments'? Classify different ointment bases used in the preparation of ointments. Describe briefly each base.
- b) Explain wet granulation method of tablet manufacturing.

16

						SLR-GF-11	4
Seat No.						Set F	כ
	М.S	Sc. (\$	Semester	- IV) (New) (CBCS) (MEDICINAL CH) Drug Regulator) Exan EMIST ry Affa	nination: Oct/Nov-2022 [RY) airs	
Day & Time:	Dat 03:0	e: We 0 PM	dnesday, 2 To 06:00 P	2-02-2023 M	-	Max. Marks: 8	30
Instru	ctio	ns: 1) 2 3) Q. Nos. 1 a) Attempt ar) Figure to r	and 2 are compulsory. Ny three questions from ight indicate full marks	n Q. No.	. 3 to Q. No. 7	
Q.1	A)	Cho 1)	ose correc A competit of ANDA c a) Para c) Para	t alternative. for can file for ANDA be ertification clause. a l a III	efore its b) d)	1 s expiry under Clause Para II Para IV	0
		2)	cGMP regr which orga a) Cen b) Cen c) Offic d) Cen	ulations for pharmaceu anisation domain of US tre for biologics evalua tre for food safety and ce of Regulatory Affairs tre for Drug Evaluation	itical ma FDA. ition and applied (ORA) and Re	anufacturing comes under d research I nutrition) esearch (CDER)	
		3)	The forma ste a) 3 c) 5	I ICH procedure is a steeps.	epwise b) d)	procedure consisting of 4 6	
		4)	Intellectua idea that a a) Soc c) Con	l Property Rights (IPR) re of ial value nmercial value	protect b) d)	t the use of information and Moral value Ethical value	
		5)	A company a) Cop c) Pate	y wishes to ensure that y rights ent	t no mo b) d)	re else can use their logo is Trade Mark Geographical indications	
		6)	Schedule the guideli a) Y c) M	of the D & C A nes for good manufact	ct 1940 uring pr b) d)	and rules 1945 deals with ractices. P X	
		7)	Animal stu application a) IND c) ANE	dies, clinical trials, bioa i process. DA	availabii b) d)	lity studies are part of NDA BLA	
		8)	List of app a) Pink c) Red	roved drugs and their a book book	associat b) d)	ted IPR is available in Orange book Black book	

							• •				
	9)	The g a) c)	guidelines for good Schedule M 21 CFR part 21	manufacturin b d	g p))	ractice in India is 21 CFR part 4 None of these					
	10) Which of the following is an international regulatory authority for dru										
		regul a) c)	ation? CDSCO WHO	b)	US-FDA FMA					
B)	Fill i	n the	blanks.	-	,		06				
,	1)		is the long form	of FIFO.							
	2) 3)	 2) MedDRA stands for 3) with GMP is a necessary condition for the marketing 									
	4)		is a right obtaine	d by a perso	n fc	or his innovation.					
	5) 6)	CDS	CO stand for	 NTO is locate	d a	+					
_	0)	THE I									
Ans ^v a)	wer th Write	ie foll defini	owing. tions of following				16				
۳,	1) <i>I</i>	AHU	lione er felletting.								
	2) (Clean Contai	room minations								
	4) (Contro	olled area								
b)	Expla	in the	Exclusive market ri	ight (EMR).							
d)	What	is imp is imp sis?	port licences and de	escribe import	t of	drugs for examination, test or					
Ans	wer th	ne foll	owina.				16				
a)	Write GMP	a sho	ort note on packagin	g and labellir	ng r	nanagement system as per					
b)	Expla as pe	ain in c er WH0	letails about materia O and GMP.	al manageme	enta	and good storage practices					
Ans	wer th	ne foll	owing.				16				
a) b)	What Give	is pat the sa	ent? What are type lient features of Ind	s of patent? \ ian patent lav	Nhy w a	y one should go for patent? mendment (2005).					
Ans	wer th	ne foll	owing.				16				
a)	Write indus	an ov try an	verview on quality as d discuss in brief ab	ssurance dep oout quality as	oarti ssu	ment in pharmaceutical rance in regulatory affairs of					
b)	pnarr Discu	naceu iss in l	brief about USFDA	and FDA mis	sio	n. Explain what FDA					
	regula	ates a	nd does not regulat	es.							
Ans	wer th	ne foll	owing.				16				
a) b)	Discu Expla act (S	uss in o ain in c Schedu	details about Drug r letails about require ule Y).	egulatory age ment and gu	enc ide	y in India (CDSCO). lines of Drug and cosmetics					
Ans	wer th	ne foll	owing.				16				
a) b)	Write	a not	e on Geographical i	ndices and T	rad	emarks.					

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

b) Discuss in details about quality assurance and quality control and write difference between responsibilities of quality assurance and quality control department.

Seat No.									Set	Ρ
M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 MEDICINAL CHEMISTRY										
Day & Time: (Day & Date: Thursday, 23-02-2023 Max. Marks: 80 Fime: 03:00 PM To 6:00 PM									
Instruc	ctior	ו s: 1) 2) 3)	Q. N Attei Figu	os. 1 a mpt any re to riç	nd. 2 are y three qu ght indicat	compulsory estions from e full marks	n Q. No.	3 to Q. No. 7		
Q.1 #	A)	Choo 1)	ose c Antir a) b) c) d)	orrect neoplas Alkyla Antime Alkyla None	alternativestic agents ting agent etabolites ting agent of these	/e. (MCQ) s are classifi s s & Antimet	ed into _			10
		2)	Tolb and a) c)	utamid carbox Amine Aldehy	e gets oxi ylic acid. yde	dized exten	sively to b) d)	the corresponding Thiol Alcohol	l	
		3)	An A a) c)	Acyclov Anti-in Antidia	ir is flammato abetic	_ drug. ry	b) d)	Antiviral Anti-histamine		
		4)	Antir a) c)	netabo Cance Covid	lites usua er	lly employed	d in the t b) d)	reatment of Hepatitis Fever		
		5)	a) c)	is ca Jaund Cance	used by g ice er	jenus plasm	iodium. b) d)	Fever Malaria		
		6)	Pher a) c)	nelzine Antide Antihis	is a drug pressant stamine	which show	rs b) d)	activity. Antineoplastic Antiviral		
		7)	Insul a) c)	lin is ar Kidne <u>y</u> Pancr	n essentia ⁄ eas	l hormone p	produced b) d)	by the Lungs Liver		
		8)	The a) c)	penicill Monol Tribas	ins are all basic ic	strong	acids b) d)	Dibasic none of these		
		9)	Para a) c)	icetamo o-nitro p-nitro	ol can be s phenol phenol	synthesized	from b) d)	m-nitrophenol None of these		
		10)	a) c)	is u Lidoca Aspirii	ised in the aine າ	e treatment o	of rheum b) d)	natoid pains. Diclofenac Insulin		

l

	B)	Writ 1) 2) 3) 4) 5) 6)	e true/false. All the penicillins gives the different amines and same aldehyde. Halothane and Thiopental are local anaesthetics. Abbreviation of NSAIDs is Non-steroidal Anti-inflammatory drugs. Penicillin and Cephalosporin are classified under broad spectrum antibiotics. Clotrimazol is in the class of antifungal medication. Tolbutamide and Glipizide are oral hypoglycaemic agents.	06
Q.2	Ans a) b) c) d)	swer t Expla Expla Expla Expla	he following. ain the mechanism of action of metformin. ain classification of penicillin. ain the synthesis of sulfaoxazole. ain antianginal activity of Nifedipine.	16
Q.3	Ans a) b)	swer t Expla Expla	he following. ain the SAR and synthesis of chloroquine. ain the SAR and synthesis of captopril.	16
Q.4	Ans a) b)	swer t Expla Expla	he following. ain the synthesis and mechanism of action of sulfacetamide. ain synthesis and mechanism of action of Ibuprofen.	16
Q.5	Ans a) b)	swer t Expla Expla	he following . ain classification of antimetabolites. ain the synthesis and mechanism of action of propranolol.	16
Q.6	Ans a) b)	swer t Expla Expla	he following . ain the SAR and mechanism of action of diphenylhydramine ain the SAR and mechanism of action of Ampicillin.	16
Q.7	Ans a) b)	swer t Expla Defir	he following . ain anaesthetic activity for halothane and thiopental. ie and classify the NSAIDs.	16