		М.S	Sc. (Sem-I) (N	lew) (CBCS) (BIOSTA Probability I	Exam	ination: Oct/Nov-2 CS) utions	022
Day & Time:	& Date : 03:0	e: Mo 0 PN	onday, 13-02-20 I To 06:00 PM	23			Max. Marks: 80
Instru	uctio	n s: 1 2 3) Question no. 1) Attempt any th) Figure to right	and 2 are con aree questions indicate full m	npulsory from Q. arks.	/. No. 3 to Q. No. 7.	
Q.1	A)	Mult 1)	iple choice que Which of the fo number of fish a) Geometric c) Hypergeo	estions. ollowing distrib es in a lake? c metric	ution ca b) d)	n be applied for estima Binomial Negative binomial	10 ting the
		2)	Which of the fe variance? a) Poisson c) Geometric	ollowing distrib	ution ha b) d)	ve the coinciding mear Binomial Hyper geometric	and
		3)	The number o Bernoulli trials a) Binomial c) Geometric	f failures before follows c	e the r th distribu b) d)	success in a series of i tion. Negative binomial Uniform	ndependent
		4)	The joint cumu a) $P(X = x, Y)$ c) $P(X \ge x, Y)$	ulative distribut = y) ≥ y)	ion func b) d)	tion is defined as $_$ P(X \leq x, Y = y) P(X \leq x, y \leq y)	
		5)	Suppose (X_1, X_2) $Cov(X_i, X_j), i =$ a) np_i c) $-np_ip_j$	K ₂ X _K) is a j = 1,2, , k,	multinoi i ≠ j is b) d)	mial random variate the np _i p _j n ² p _i p _i	n
		6)	Which one of t a) Maximum c) Median	the following is	not an o b) d)	order statistic? Minimum Mean	
		7)	Let X and Y ar a) Normal c) Chi-squar	re iid N (0,1) va e	ariates. T b) d)	Γhe distribution of Z = Υ Cauchy F	′ / X is
		8)	The variance of a) b ² /2 c) b ² /12	of continuous u	iniform d b) d)	distribution over (0, b) is b²/6 b²/4	S
		9)	If X> 0 then a) $E[\sqrt{X}] \le $ c) $E[\sqrt{X}] = $	$\frac{1}{E(X)}$	b) d)	$E[\sqrt{X}] \ge \sqrt{E(X)}$ none of these	

Set P

- 10) The first four moments about a number '4' are 1, 4, 10, 45 then mean and variance are _____.
 - a) (1,4) b) c) (5,4) d)
 - b) (5,3) d) none of these

B) Fill in the blanks.

- Negative binomial distribution NB(x: r, p) for r = 1 reduces to _____.
- If Z is standard normal variate then mean of Z² is _
- **3)** If X is symmetric about α then $(X \alpha)$ is symmetric about _
- 4) If a random variable X has mean 3 and standard deviation 5, then the variance of the variable Y = 2 X 5 is _____.
- 5) The distribution of sum of n independent exponential random variables is _____.
- 6) Let X has B(1, p) distribution. The distribution of Y = 1 X is _____.

Q.2 Answer the following

- a) Define, giving suitable examples.
 - 1) Discrete random variable
 - 2) Probability mass function of discrete random variable
- **b)** If X is symmetric random variable about α then show that $E(X) = \alpha$.
- c) Define negative binomial distribution. State its important properties.
- d) Define power series distribution and obtain its MGF.

Q.3 Answer the following.

- a) Define hypergeometric distribution. Give any two practical applications of hypergeometric distribution. Obtain its mean and variance.
- **b)** Define location-scale family of distributions. Examine which of the following are in location-scale families.
 - 1) $N(\mu, \sigma^2)$
 - 2) $Exp(\mu, \lambda)$

Q.4 Answer the following.

- a) Define probability generating function (PGF) of a random variable. Explain how it is used to obtain moments of a distribution.
- **b)** Let X has B(n,p)distribution. Obtain the PGF of X. Hence obtain its mean and variance.

Q.5 Answer the following.

- a) State and prove Holder's inequality. Deduce Cauchy-Schwartz inequality from it.
- b) Let X follows N(0,1) distribution. Find the distribution of
 - 1) $Y = X^2$
 - 2) Y = |X|

16

16

16

16

Q.6 Answer the following.

- a) Let (X, Y) is a bivariate discrete random variable. Define
 - 1) Joint probability mass function.
 - Marginal probability mass functions of X and Y. 2)
 - Conditional probability mass functions of X given Y = y and 3) Y given X = x
 - Independence of X and Y. 4)
- **b)** The joint probability distribution of (X, Y) is given by.

 $P(x,y) = \begin{cases} k(2x + 3y), x = 0, 1, 2, y = 1, 2, 3\\ 0, \text{ othrwise} \end{cases}$

Find

1) k

- Marginal probability mass functions of X and Y. 2)
- Conditional distribution of X given Y = y3)

Q.7 Answer the following.

- Define order statistics. Based on a random sample from continuous a) distribution with pdf f (x) and cdf F(x), derive the pdf of kth order statistic.
- **b)** Let (X,Y) has BVN(μ_1 , μ_2 , σ_1^2 , σ_2^2 , ρ). Obtain the conditional distribution of Y given X = x.

Seat	
No.	

M.Sc. (Semester - II) (New) (CBCS) Examination: Oct/Nov - 2022 (BIOSTATISTICS) Statistical Inference - I

Day & Date: Tuesday, 21-02-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Fill in the blanks by choosing correct alternatives given below. A)

- Let X_1, X_2, \dots, X_n be iid from $B(1, \theta)$. The \overline{X} is _____ 1)
 - sufficient statistic a) b) unbiased estimator
 - c) complete sufficient statistic d) all the above
- 2) A statistic which does not contain any information about the parameter is called b) minimal sufficient statistic
 - sufficient statistic a) C)
 - ancillary statistic
- d) complete statistic
- 3) Cramer-Rao inequality gives ____
 - upper bound to the variance of unbiased estimator of $\psi(\theta)$ a)
 - lower bound to the variance of unbiased estimator of $\psi(\theta)$ b)
 - lower bound to the mean of unbiased estimator of $\psi(\theta)$ c)
 - d) None of these
- Let T (X) is a complete sufficient statistic and A(X) is ancillary statistic, 4) then which one of the following statements is correct?
 - T(X) and A(X) are distributionally dependent a)
 - b) T(X) and A(X) are functionally dependent
 - T(X) and A(X) are statistically independent c)
 - d) none of the above

The MLE of parameter θ is a statistic which . 5)

- is sufficient for parameter for θ a)
- maximizes the likelihood function L b)
- is a solution of $\frac{\partial \log L}{\partial \theta} = 0$ c)
- d) is always unbiased
- If T is an unbiased estimator of θ then T^2 is _____. 6)
 - biased estimator for θ^2 a)
 - unbiased estimator for θ^2 b)
 - unbiased estimator for $(\theta^2 + 1)$ c)
 - biased estimator for $(\theta^2 + 1)$ d)
- Let X_1, X_2, \dots, X_n is a random sample of size n from $U(0, \theta)$ distribution 7) then what is unbiased estimator of θ ?
 - $\overline{X}/2$ \overline{X} b) a) c) $2\overline{X}$ d) $\sqrt{\overline{X}}$

Max. Marks: 80

Page 2 of 3

- 8) If a statistic T_n is such that $E(T_n) \rightarrow \theta$ and $Var(T_n) \rightarrow 0$ as $n \rightarrow \infty$, then for θT_n will be _____. a)
 - consistent b) efficient
 - C) sufficient d) none of these
- Let T_n be an unbiased and consistent estimator of θ . Then T_n^2 as an 9) estimator of θ^2 is unbiased and inconsistent

b)

d)

- unbiased and consistent a)
- c) biased and consistent
- 10) Mean squared error of an estimator T_n of θ is expressed as
 - $Var_{\theta}(T_n) + Bias$ a)
- $Var_{\theta}(T_n) + [Bias]^2$ b) $[Var_{\theta}(T_n) + Bias]^2$ d)

biased and inconsistent

 $Var_{\theta}(T_n) + Bias$ $[Var_{\theta}(T_n)]^2 + [Bias]^2$ c)

Answer the following B)

- If $E_{\theta}(T) \neq \theta$ then T is _____ estimator of θ . 1)
- 2) MLE of parameter θ of the distribution $f(x, \theta) = \frac{1}{2}e^{-|x-\theta|}$ is _____
- Let X has U (0, θ) distribution then the MLE of θ is ____ 3)
- If T_n is consistent estimator of θ then a consistent estimator for 4) $(a\theta^2 + b)$ is
- An estimator T_n of θ is said to be more efficient than any other 5) estimator T_n^* of θ if and only if _
- _____ statistic is independent of every complete sufficient statistic. 6)

Q.2 Answer the following

- Explain the following: a)
 - 1) Weak consistency
 - Strong consistency 2)
- Let random variable X has $N(\theta, 1)$ distribution. Show that family of X is b) complete.
- Define Fisher information in a single observation. Find the same for $B(n, \theta)$ c) distribution, when n is known.
- Let X_1, X_2, \dots, X_n be iid from $N(\theta, 1)$, computing the actual probability show d) that $\overline{X_n}$ is consistent estimator of θ .

Answer the following Q.3

- Define sufficient statistic. State Neyman-Fisher factorization theorem. a) Examine whether one-to-one function of a sufficient statistic is also sufficient.
- Let X_1, X_2 are iid Poisson random variables with parameter λ . b) Let $T_1 = X_1 + X_2$ and $T_2 = X_1 + 2X_2$. Show that T_1 is sufficient statistic but T_2 is not sufficient.

Q.4 Answer the following

- Define joint and marginal consistency for a vector parameter θ . Show that a) joint consistency is equivalent to marginal consistency.
- Let X_1, X_2, \dots, X_n be a random sample from $U(0, \theta)$. Find two consistent b) estimators of θ .

Q.5 Answer the following

- State and prove Lehmann-Scheffe theorem. a)
- b) Derive UMVUE of $(1/\theta)$ based on a random sample from $U(0,\theta)$ distribution.

16

06

16

16

Q.6 Answer the following

- a) State and prove Cramer-Rao inequality with necessary regularity conditions.
- **b)** Let X_1, X_2, \dots, X_n be iid Poisson (λ) random variables. Obtain Cramer-Rao lower bound for unbiased estimator of λ .

Q.7 Answer the following

- a) Define maximum likelihood estimator (MLE). Describe the method of maximum likelihood estimation for estimating an unknown parameter.
- **b)** Let X_1, X_2, \dots, X_n be a random sample of size *n* from $N(\mu, \sigma^2)$ distribution. Find MLE of μ and σ^2

16

M.Sc. (Sem-III) (New) (CBCS) Examination: Oct/Nov-2022 (BIOSTATISTICS) **STATISTICAL INFERENCE - II** Max. Marks: 80

Instructions: 1) Question no. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figure to right indicate full marks.

Q.1 Multiple choice questions. A)

Day & Date: Monday, 13-02-2023 Time: 11:00 AM To 02:00 PM

Seat No.

- Which one of the following is the probability of rejecting H₀ when H₁ 1) is true?
 - a) α b) ß d) $1 - \beta$ c) $1 - \alpha$
- 2) For testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ when population standard deviation is known, the appropriate test is_
 - a) t test b) Z - test
 - c) $X^2 test$ d) none of these
- In SPRT, decision about the hypothesis H₀ is taken _____. 3)
 - a) after each successive observation
 - b) after fixed number of observations
 - c) at least after five observations
 - d) when the experiment is over
- In likelihood ratio test, under some regularity conditions on $f(x, \theta)$, the 4) random variable $-2\log\lambda(x)$ (where $\lambda(x)$ is a likelihood ratio) is asymptotically distributed as
 - a) normal b)
 - F distribution c) chi-square d)
- 5) A nonparametric version of the parametric analysis of variance is .
 - a) Wilcoxon signed-rank test
 - b) Kruskal-Wallis test
 - c) Mann-Whitney test
 - d) sign test

6) If all frequencies of classes are same, the value of Chi-square is _____.

- a) Zero One b) c) Infinite d) All of the above
- The approximate relationship between Kendall's rand Spearman's rs 7) is
 - $\tau = (2/5)r_{s}$ a) $\tau = r_s$ b)
 - d) c) $\tau = (2/3)r_s$ $\tau = (1/3)r_{s}$
- Wilcoxon's signed-rank test considers the differences $(X_1 M_0)$ by 8) way of _____.
 - a) sign and magnitude both b) signs only
 - c) magnitude only d) none of these

SLR-GX-10

- exponential

Page 2 of 3

SLR-GX-10

9) Based on random sample of size n from N(θ , 1) distribution, the pivotal quantity for construction of confidence interval for θ is _____.

- a) $(\overline{X} \theta)/\sqrt{n}$ b) $\sqrt{n}(\overline{X} \theta)$
- c) $(\overline{X} \theta)/n$ d) $n(\overline{X} \theta)$
- 10) Let X has a B(n, p} distribution. Then a simple hypothesis will be _____.
 - a) $H_0: p = 1/2$ b) $H_0: p \le 1/2$
 - c) $H_0: p \ge 1/2$ d) $H_0: p \ne 1/2$

B) Fill in the blanks.

- 1) Level of significance is the probability of _____ error.
- 2) In testing independence in a 2 × 3 contingency table, the number of degrees of freedom in χ^2 distribution is _____.
- 3) The distribution of statistic used in sign test is ____
- The degrees of freedom for statistic t for paired t test based on n pairs of observations is _____.
- 5) In sequential probability ratio test (SPRT), the sample size is _____
- 6) If in Wilcoxon's signed-rank test, sample size is large, the statistic T⁺ is distributed with mean _____.

Q.2 Answer the following

- a) Define simple hypothesis and composite hypothesis. Give on example for each.
- **b)** Discuss 2×2 contingency table analysis.
- c) Discuss the merits and demerits of nonparametric tests as compared to parametric tests.
- **d)** Explain in brief the test of significance for testing $H_0 : \sigma^2 = \sigma_0^2$ in case of $N(0, \sigma^2)$ distribution.

Q.3 Answer the following.

- a) Describe the test of significance for testing equality of means of two normal population.
 - 1) for large samples
 - 2) for small samples
- **b)** A sample of size one from $U(0, \theta)$ is drawn to test the hypothesis $H_0: \theta = 1$ against $H_0: \theta = 2$. The hypothesis H_0 is accepted if observed value is $x \le 0.5$. Find the probabilities of committing type I and type II errors and also find power of test.

Q.4 Answer the following.

- a) State and prove Neyman-Pearson lemma.
- **b)** Use Neyman-Pearson lemma to obtain most powerful test for testing $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1 (< \mu_0)$ based on random sample of size n from $N(\mu, \sigma^2)$, when σ^2 is known.

Q.5 Answer the following.

- a) Describe the median test for the two sample location problem. How is the test carried out in case of large samples?
- **b)** Explain Wilcoxon's signed-rank test for paired observations.

16

06

16

16

Q.6 Answer the following.

- a) Define confidence interval for unknown parameter. Obtain $100(1 \alpha)\%$ confidence intervals for σ^2 in case of N(μ , σ^2) distribution, where μ known.
- **b)** Let X_1, X_2, \dots, X_N be a random sample from $N(\mu, \sigma^2)$ where both μ and σ^2 are unknown. Find likelihood ratio test of $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$

Q.7 Answer the following.

- a) Explain Wald's procedure of sequential probability ratio test (SPRT). In what respect SPRT differs from the fixed sample test.
- **b)** Let X be a discrete random variable having probability mass function. $f(x \ \theta) = \begin{cases} \theta^* (1 - \theta)^{1-x}, x = 0, 1 \end{cases}$

$$(x, 0) = (0, otherwise)$$

Where $0 < \theta < 1$. Obtain SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$

16

Page 1 of 2

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (BIOSTATISTICS) **Micro-array Data Analysis**

Day & Date: Tuesday, 14-02-2023 Time: 11:00 AM To 02:00 PM

Set No.

Instructions: 1) Q. Nos. 1 and. 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Choose the correct alternative. A)

- Traditional molecular biology research followed a _____ paradigm. 1)
 - one gene per experiment a)
 - Thousands of genes per experiment b)
 - Mixture of (a) and (b) strategies c)
 - None of these. d)

2) Consider the steps in the analysis of microarray data .

- Conducing the microarray experiment i)
- Converting images into quantitative data ii)
- Applying appropriate data analysis technique iii)
- iv) Getting the scanned image of microarray chips
- Preprocessing the data. V)

Which of the following is the correct sequence of these tasks?

- (i), (ii), (iii), (iv), (v) a)
- (i), (iii), (ii), (v), (iv) b)
- (i), (iv), (ii), (v), (iii) C)
- (hi), (v), (ii), (i), (iv) d)
- The complete set of genes in an organism, essentially the master 3) blueprint for that organism, is referred to as its _
 - Genome a) Genesis

c)

- Genocide b)
 - Genogram d)
- The DNA stands for 4)
 - Dehydrated nucleic acid a)
 - deoxyribonucleic acid b)
 - Decentralized nitrogen atoms c)
 - d) None of these
- 5) A DNA molecule consists of _____ long strand/ strands.
 - a) One b) Two
 - d) C) Three Four
- In connection with microarrays, SAM stands for _____. 6)
 - Similarity adjustment measure a)
 - significance analysis of microarrays b)
 - Stimulating adherent molecules c)
 - None of these d)

7) A type I error is also called as

- a) False negative error
 - False-positive error c)

Max. Marks: 80

10

SLR-GX-11

		8)	The protein-coding instructions from a gene are transmitted indirectly Through				
			a) c)	mRNA kRNA	b) d)	tRNA All of these	
		9)	Gen level	es with p-values falling bel l') may be regarded as	low a pres 	cribed level (the 'nominal	
			a) c)	Inconclusive	d)	None of these	
		10)	A typ a) c)	be II error is also called as False negative error False-positive error	 b) d)	True negative None of these	
	B)	Fill ir	n the	blanks.			06
		1)	PCR	R stands for			
		2)	RNA	stands for	اء م	lieten en heture en verieve	
		3)	IN Ca	ase of complete linkage, th s of two clusters is taken to	e a he the div	stance between various	
		4)	The	significance analysis of mi	icroarrays	is also called as test.	
		5)́		are the fundamental uni	its of all liv	ing organisms, both	
		•	struc	cturally and functionally.			
		6)	FWE	ER stands for			
Q.2	Ans	wer th	e fo	llowing.			16
	a)	Write	a no	te on Fold change method			
	b)	Write	a no	te on genes.			
	d)	Write	a no	te on gene expression.			
	u)	vinte	a no	le on DNA.			
Q.3	Ans	wer th	e fo	llowing.			
	a)	Expla	in mi	croarray data analysis with	n the help	of schematic.	08
	D)	Expla	in t te	est for microarray data ana	aysis.		08
Q.4	Ans	wer th	e fo	llowing.			
	a)	a) Explain the drawback of applying usual t test in microarray data analysis.					
	L-)	Also e	expla	in the modified t test.			00
	D)	Discu	ss, ir	n detail, nominal p value.			80
Q.5	Ans	wer th	e fo	llowing.			
	a)	Discu	SS:				08
		i) F	amily	y wise error rate control			
	b)	II) F Evolai	aise	discovery rate control			00
	5)	слріа					00
Q.6	Ans	wer th	e fo	llowing.			
	a)	Explai	in:	linkono			80
		I) 5 II) C	ingie	e linkage Joto linkago			
		iv) A	vera	ae linkage			
	b)	Expla	in hie	erarchical and non-hierarch	nical cluste	ering.	08
o –						-	
Q.7	Ans	wer th	e to	llowing. Adtail k maana aluataring			00
	aj b)	Fxnla	ss, ií in De	ndrogram with the help of	j. an examr	ole. (Use single linkage	00 08
	~,	metho	nd).		S. Oranip		

at
_

M.Sc. (Semester - III) (New) (CBCS) Examination: Oct/Nov-2022 (BIOSTATISTICS) Multivariate Statistical Methods

Day & Date: Wednesday, 15-02-2023 Time: 11:00 AM To 02:00 PM

Instructions: 1) Question 1 and 2 are compulsory.

- 2) Attempt any Three from Q.3 to Q.7
 - 3) Figures to the right indicate full marks.

Q.1 A) **Choose Correct Alternative.**

- Generalised variance is _____ of covariance matrix 1)
 - a) trace+ determinant b) Trace
 - c) Determinant d) None of these
- 2) While applying _____ clustering algorithm, the distance between two clusters is taken to be the smallest distance between observations from two clusters.
 - a) average linkage
 - c) single linkage
- Canonical correlation is _____. 3)
 - a) Always positive
 - c) Lies in between (-1,0)
- Let $X_1, X_2, ..., X_n$ be a random sample of size n from p-variate normal 4) distribution with mean vector μ and covariance matrix Σ . The unbiased estimator of Σ is _
 - a) $\underline{X} \underline{X'} n \overline{X} \overline{X'}$ c) $\underline{X} \underline{X'} \overline{X} \overline{X'}$ b) $\underline{X} \underline{X'} - n \overline{X} \overline{X'}$ d) $\underline{X} \underline{X'} - \overline{X} \overline{X'}$
- Let vector <u>Y</u> has $N_p(\mu, \Sigma)$ distribution. For a constant matrix $A_{q \times p}$ and 5) vector $b_{q \times 1}$ the distribution of $\underline{X} = A\underline{Y} + b$ is _____
 - b) $N_q(A\mu, A\Sigma A')$ a) $N_p(A\mu, A\Sigma A')$ d) $N_a(A\mu + b, A\Sigma A')$ c) $N_n(A\mu + b, A\Sigma A')$
- The mean vector of $(X_1 + X_2, X_1 X_2)$ is (8,12) then mean vector of 6) $(X_1, 2X_1 - X_2)$ is _____.
 - a) (8,18) b) (10,18) c) (10,22) d) (5,5)
- 7) Let <u>X</u> is multivariate normal, then $\underline{a'X}$ is univariate normal, only if _____.
 - a) *a* is zero vector b) *a* is unit vector
 - c) For all a d) None of these

Set

SLR-GX-12

Max. Marks: 80

10

b) complete linkage

- d) None of these
- b) Always negative d) None of these

	8)	lf <u>X</u>	If <u>X</u> has $N_p(\underline{\mu}, \underline{\Sigma})$ distribution then characteristic function of vector <u>X</u> is				
		a)	$Exp\left(i\underline{t}'\underline{\mu} - \frac{1}{2}\underline{t}'\Sigma\underline{t}\right) \qquad \qquad$				
		c)	$Exp\left(i\underline{t}'\underline{\mu} - \frac{1}{2}\underline{t}'\Sigma^{-1}\underline{t}\right) \qquad \qquad d) Exp\left(i\underline{t}'\underline{\mu} + \frac{1}{2}\underline{t}'\Sigma^{-1}\underline{t}\right)$				
	9)	Prir	ncipal Component Analysis is a multivariate method that				
		a) c)	reduces skewness of datab)reduces heterogeneity of datareduces dimension of datad)reduces multicollinearity of data				
	10)	Clu	ster is				
		a) b)	Group of similar objects that differ significantly from other objects Operations on a database to transform or simplify data in order to prepare it for a machine-learning algorithm				
		c)	Symbolic representation of facts or ideas from which information can potentially be extracted				
		d)	None of these				
	B)	Fill i 1) 2)	in the blanks The diagonal elements of variance-covariance matrix represent If there are p variables in the random vector \underline{X} , then number of principal components are obtained from it.				
		3)	In case of complete linkage, the distance between various units				
	4) The eigen values of the matrix $\begin{bmatrix} 3 & 1.5 \\ 0 & 7 \end{bmatrix}$ are						
		5) 6)	The range for canonical correlation is If $\underline{X} \sim N_p(\underline{\mu}, \underline{\Sigma})$, then the distribution of components of \underline{X} follows distribution.				
Q.2	Ans	wer t	he following.	16			
		1) 2) 3) 4)	Obtain moment generating function of multivariate normal distribution. Write a note on multivariate normal distribution. Write a note on sample dispersion matrix. Write a note on Wishart distribution				
0.2	۸nc	wor t	he following				
Q.3	a) b)	Explain complete linkage method in detail with the help of illustration.08Explain canonical correlation in detail.08					
Q.4	Ans	wer t	he following.				
	a) b)	Wha With	t do you mean by principal components analysis? Explain in detail. usual notations, derive the density of multivariate normal distribution.	08 08			
Q.5	Ans	wer t	he following.				
	a) For p-variate normal distribution obtain the MLE for variance covariance						
		matr	ix				

Q.6 Answer the following.

a)	If $X \sim N_p(\mu, \Sigma)$, them find the distribution of the following:				
	1) $\underline{a'} \underline{X}$, where \underline{a} is a p-dimensional vector of constants.				
	2) $A\underline{X}$, where A is matrix of order $m + p$				
b)	Describe Wishart distribution State and prove additive property of Wishart distribution.	08			

Q.7 Answer the following.

- a) Find the mean vector and variance covariance matrix of multivariate normal **08** density.
- b) What is meant by discriminant analysis? Obtain the classification rule for the case of two populations with densities $N_p(\underline{\mu_1}, \underline{\Sigma})$ and $N_p(\underline{\mu_2}, \underline{\Sigma})$.

sludy lasis			
5)			
, (В)			
ality of two	distribu	tions is based on	
	aistribu		
	b)	right censored	
g	d)	type II censoring	
			Page 1 of 3

M.Sc. (Semester - IV) (New) (CBCS) Examination: Oct/Nov-2022 (BIOSTATISTICS)

Survival Analysis

Day & Date: Wednesday, 22-02-2023 Time: 03:00 PM To 06:00 PM

Seat No.

Instructions: 1) Q. Nos. 1 and 2 are compulsory.

2) Attempt any three questions from Q. No. 3 to Q. No. 7 3) Figure to right indicate full marks.

Q.1 Choose correct alternative. A)

- A parallel system is a special case of k-out-of-n system when ____ 1)
 - a) k = 1b) k = 2 $\mathbf{k} = \mathbf{n} - \mathbf{1}$ k = nC) d)

2) Which of the following rate function corresponds to IFR distribution?

- h(t) = t $h(t) = e^t$ a) b) $h(t) = t e^{t}$ d) All the above C)
- Let p_i is the reliability of i^{th} component then reliability of series system 3) of *n* independent components is

4) A life time distribution F having finite mean is said to be NBUE for $t \geq 0$, if _____.

a)
$$\mu_t \le \mu_0$$

b) $\mu_t \ge \mu_0$
c) $\mu_t = \mu_0$
d) None of these

- 5) A function $P(x) \ge 0$ for all x is a Polya function of order 2 if _____.
 - $\log P(x)$ is convex a)
 - $\log P(x)$ is concave b)
 - for fixed Δ , $\frac{P(x+\Delta)}{P(x)}$ is increasing function C)
 - d) None of these
- In random censoring is random. 6)
 - number of uncensored observations a)
 - time for which study lasts b)
 - both (A) and (B) c)
 - neither (A) nor d)
- Log-rank test for equa 7) data.
 - a) left censored C) type I censoring

Max. Marks: 80

06

16

- 8) Actuarial method of estimation of survival function is used when data consists of _____.
 - a) only censored observations
 - b) only uncensored observations
 - c) complete data
 - d) All the above
- 9) The censoring time for every censored observation is identical in censoring.
 - a) type I

- b) type II
- c) random d) both in (A) and (B)
- 10) In type I censoring, the number of uncensored observations has _____ distribution.
 - a) Geometric

b) Binomial

c) Normal

d) Exponential

B) Fill in the blanks:

- The number of minimal paths in 2-out-of-3 system are _____.
- IFRA property is preserved under _____
- 3) Reliability of a system always lies between _____ and _____.
- 4) The scaled TTT transform for standard exponential distribution is ____.
- 5) In failure censoring experiments with n = 10, m = 2 and failure epochs are 15 and 20. Then total time on test statistic is _____.
- 6) Censoring technique is used for reducing _____.

Q.2 Answer the following.

- a) Define reliability of a system. Obtain the reliability of parallel system of n independent components.
- **b)** Define minimal path sets and minimal cut sets. Illustrate the same by example.
- c) Give two real life examples where both left and right censoring occurs.
- d) Show that for exponential distribution normalized spacings are independently distributed.

Q.3 Answer the following.

Q.4

a)	Define coherent system. Show that k-out-of-n system is coherent system.	08
b)	Illustrate the same by an example.	08
Ans	swer the following.	
a)	Define type-I censoring. Derive the likelihood function of observed data under type I censoring hence obtain MLE of mean of exponential distribution.	10
b)	Discuss maximum likelihood estimation of parameters of a gamma distribution under complete data.	06

Q.5 Answer the following.

- a) Define mean time to failure (MTTF) and mean residual life (MRL) function.
 08 Obtain the same for exponential distribution.
- **b)** Define Poly function of order 2 (PF₂). Prove that if $f \in PF_2$ then $F \in IFR$. **08**

Q.6 Answer the following.

- a) Obtain the actuarial estimator of the survival function. Clearly state the assumption that you need to make. Greenwood's formula for the variance of the estimator.
- b) Describe two sample problem under randomly censored set up and develop 08
 Gehan's test for the same.

Q.7 Answer the following.

- a) Define IFR and IFRA class of distributions. If $F \in IFR$ then show that **08** $F \in IFRA$.
- b) Define TTT transform. Obtain relation between TTT transform and failure 08 rate function of a survival distribution.