M. Sc.-I, SEM. II, Physics (Condensed matter Physics)

HCT - 2.1: Quantum Mechanics Question Bank

Unit I: Operator Formalism

Four marks questions

- 1. Write a note on linear vector spaces.
- 2. Prove Schwartz inequality.
- 3. Discuss scalar product of state vectors.
- 4. Write a note on state vectors.
- 5. Write the definitions of norm, basis, orthogonal and orthonormal vectors.

- 1. Explain the operators.
- 2. Explain the commutator and its properties.
- 3. Prove the uncertainty relations between the operators.
- 4. Explain the unitary transformations and its properties.
- 5. What is the matrix representation of kets, bras, and operators? Explain in detail the matrix representation of operators.
- 6. Discuss Dirac notations? Explain its properties.
- 7. Explain vectors.
- 8. What is the Hermitian adjoint? Explain the properties of the Hermitian conjugate rule.
- 9. Discuss the eigenvalues and eigenvectors of an operator and prove, for a Hermitian operator, all of its eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal.

Unit II: Introductory Quantum Mechanics

Four marks questions

- 1. Discuss the probability interpretation.
- 2. Prove the time-independent Schrodinger equation.
- 3. Write an expression for the Schrodinger equation for a particle subject to forces.
- 4. Write the postulates of quantum mechanics.
- 5. Discuss the conservation of probability.

- 1. Derive expression for time dependent Schrodinger equation for one dimension.
- 2. Write the proof for Ehrenfest's theorem.
- 3. Explain the postulates of quantum mechanics.
- 4. Discuss in detail box normalization.
- 5. Explain the Schrodinger and Heisenberg pictures.
- 6. Explain the interaction picture.
- 7. Discuss in detail position and momentum representations.
- 8. Develop the connection between position and momentum representations.
- 9. Express the position operator in momentum representation and momentum operator in position representation.
- 10. Explain the admissibility condition of the wave function.

Unit III: Solution of Schrodinger equation for some solvable systems and Angular Momentum Algebra

Four marks questions

- 1. Explain the properties of the wave functions in infinite square well.
- 2. Prove $[L\dot{c}\dot{c}x, L_y] = i\hbar L_z\dot{c}$.
- 3. Show that $[L^2, L\dot{c}\dot{c}x] = 0\dot{c}$
- 4. If f is an eigenfunction of the L^2 and L_z , show that $L_{\pm}f$ is also an eigen function.
- 5. Write a note on angular momentum.

- 1. Explain the infinite square potential well.
- 2. Explain the finite square potential well.
- 3. Find the solution of harmonic oscillator using operator method.
- 4. Derive the expressions for the simultaneous eigenfunctions of the L^2 and L_z operators.
- 5. Derive the expressions for the eigenvalues of the L^2 and L_z operators.
- 6. Prove the relations $[L_{\dot{c}}\dot{c}x, L_{y}] = i\hbar L_{z}\dot{c}$ and $[L_{\dot{c}}\dot{c}y, L_{z}] = i\hbar L_{x}\dot{c}$.
- 6. Show that $[L^2, L\dot{c}\dot{c}x] = 0\dot{c}$ and $[L^2, L\dot{c}\dot{c}\pm] = 0\dot{c}$.
- 7. Explain with diagram ladder of the angular momentum states.
- 8. Explain with diagram ladder of the stationary states for the simple harmonic oscillator.
- 9. What is the angular momentum? Explain the commutation relations for the angular momentum.
- 10. Explain the algebraic method for the harmonic oscillator.

Unit IV: Addition of Angular Momenta and approximation methods

Four marks questions

- 1. Write a note on the total angular momentum eigenstates
- 2. Show that $[J^2, J\dot{c}\dot{c}x] = 0\dot{c}$
- 3. Discuss algebraic theory of spin.
- 4. Write a note on Pauli's matrices.
- 5. Discuss the validity of WKB approximation.

- 1. Express the J^2 and J_z in terms of matrices.
- 2. Express the Pauli's spin operators in matrix representation.
- 3. Prove the theorem $E_g \leq \langle H \rangle$ and find the ground state energy for the one-dimensional harmonic oscillator.
- 4. Find the general solution of Schrodinger equation in classical region using WKB approximation.
- 5. Find the allowed energy levels in potential well with two vertical walls using WKB approximation.
- 6. Prove that: a) $[S_{i} : x, S_{y}] = i\hbar S_{z} : \text{ and } \sigma_{j} \sigma_{k} = \delta_{jk} + i \sum_{l} \epsilon_{jkl} \sigma_{l}$.
- 7. An electron is in spin state $\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$:
 - a) Determine the normalization constant A. b) Find the expectation values of S_x , S_y and S_z .

M. Sc.-I, SEM. II, Physics (Condensed matter Physics)

HCT - 2.2: Electrodynamics

Question Bank

Unit-I: Electrostatics and Magnetostatics: 4 Marks Ouestions.

- 1. A long cylinder carries a surface charge density that is proportional to the distance from the axis: $\rho = \sigma k$ for some constant k. Find the electric field inside the cylinder.
- 2. Find the vector potential of an infinite solenoid with *n* turns per unit length, radius *R* and current *I*.
- 3. State and explain the Biot-Savart law.
- 4. Write a short note on Dirac delta function.
- 5. Deduce an expression for differential form of Ampere's law.

8 Marks Questions.

- 1. State and explain Gauss's law in differential form and deduce an expression for the Poisson and Laplace's equations.
- 2. Find the electric field inside a sphere which carries a charge density proportional to the distance from the origin, for some $\rho = \sigma k$ constant k.
- 3. Write a note on method of images and multipole expansion in electrostatic field.
- 4. A electric dipole consists of two equal and opposite charges (+q) separated by distance d. Find the approximate potential at points far from the dipole.
- 5. Derive an expression for Ampere's law and Differential form of Ampere's law.
- 6. Explain in brief the boundary condition in electrostatics and magnetostatics.
- 7. Discuss in detail uniqueness theorems and method of images.
- 8. Deduce vector potential and explain in brief magnetic field of a localized current distribution.
- 9. Find the magnetic field at the center of a square loop, which carries a steady current I. Let R be the distance from center to side.
- 10. Use of Gauss's law to find the electric field inside and outside a spherical shell of radius R, which carries a uniform surface charge density σ .

Unit-II: Time varying fields and Energy, force, momentum relations:

4 Marks Questions.

- 1. Write a short note on Maxwell's equations.
- 2. An infinitely long straight wire carries a slowly varying current I(t). Determine the induced electric field, as a function of the distance s from the wire.
- 3. Derive an expression Poynting's theorem.
- 4. Elaborate on the concept of Displacement current.
- 5. Derive an expression for energy stored magnetic field.

8 Marks Questions.

- 1. Derive an expression for energy stored in electric and magnetic field.
- 2. How the Maxwell corrected Ampere's law? What is the physical significance of displacement current?
- 3. Derive an expression Poynting's theorem.
- 4. Give full account of Maxwell's equations in matter.
- 5. Give brief account of magnetic interaction of two current loops.
- 6. Define and explain electromotive force. What is the Faraday's law of electromagnetic induction and Lenz's law?
- 7. Give an energy relation in quasi-stationary current systems,
- 8. Derive the general expression for electromagnetic energy.
- 9. A long coaxial cable carries current *I* (the current flows through down the surface of inner cylinder, radius *a*, and back along the outer cylinder, radius *b*). find the magnetic energy stored in a section of length *l*.
- 10. Discuss in detail scalar and vector potentials.

Unit-III: Electromagnetic wave equations:

4 Marks Questions.

- 1. Discuss in detail Lorentz's gauges.
- 2. Discuss in detail Coulomb's gauges.
- 3. Discuss in detail Skin effect and skin depth.
- 4. Express the electromagnetic wave equations in D' Almbertian Operator.
- 5. Discuss the case of oblique incidence of electromagnetic wave at boundaries.

8 Marks Questions.

- 1. What are the Gauge transformations? Explain the (a) Coulomb Gauge and (b) Lorentz Gauge.
- 2. Explain in brief the reflection and refraction of electromagnetic waves at plane boundaries.

- 3. Explain electromagnetic wave equations. Deduce an expression for electromagnetic plane waves in conducting medium.
- 4. Derive an expression for coefficient of Reflection (R) and Transmission (T).
- 5. Calculate the coefficient of reflection (R) at the interface for pair of media having refractive indices $n_1 = 1.50$ and $n_2 = 1.33$.
- 6. Explain electromagnetic wave equations. Deduce an expression for electromagnetic plane waves in stationary medium.
- 7. Write a note on wave equations in terms of electromagnetic potentials? What is D'Alembertian operator?
- 8. Discuss the case of Normal and oblique incidence of electromagnetic wave at boundaries.

Unit IV: Radiation emission:

4 Marks Questions.

- 1. Explain Larmor's formula.
- 2. Write a short note on electric dipole radiation.
- 3. Explain in detail the radiation from a half wave antenna.
- 4. Write a short note on angular distribution of radiation.
- 5. Write a short note on magnetic dipole radiation.

8 Marks Questions.

- 1. Explain in detail the concept of radiation damping.
- 2. Write a note on electric dipole, electric quadrupole and magnetic dipole radiation.
- 3. Deduce an expression for Lienard-Wiechert potentials of a point charge.
- 4. Explain in the radiation by a moving charge and derive Larmor's formula.
- 5. Deduce an expression for Larmor's formula and write a note on angular distribution of radiation.
- 6. Explain in brief the radiation by a moving charge.
- 7. Explain angular distribution of radiation. and gives a short note on fields and radiation of a localized oscillating source.

M. Sc.-I, SEM. II, Physics (Condensed matter Physics)

OET - 2.2: Conventional & Nonconventional Energy

Question Bank

Unit I: Energy Science and Energy Technology

4 Marks Questions.

- 1. Write a short note on non-conventional energy sources.
- 2. Discuss in detail various sciences and energy science.
- 3. Deduce an energy and power equations.
- 4. Write merits and demerits of hydro energy.
- 5. Write a short note on conventional energy sources.

8 Marks Questions.

- 1. Explain in brief the types of coal, coal production and processing.
- 2. Discuss primary hydro energy resources and types of hydroelectric plants.
- 3. Explain thermodynamics and energy analysis.
- 4. Elaborate on the concept of hydraulic turbines.
- 5. Explain in brief conventional and non-conventional energy sources.
- 6. How did the steam engine change the world?
- 7. What is fossil fuel? Is any major source of energy rather than fossil fuels?
- 8. How does energy affect on human and environment?
- 9. What were the main energy sources historically?
- 10. What is energy? Write a note on brief history of energy technology.

Unit II: solar energy

Each question having four marks.

- 1) What is PN junction Diode? Explain it?
- 2) What is meant by intrinsic semiconductor?
- 3) Define solar spectrum in details?
- 4) Explain efficiency of solar cell in details?
- 5) Define i) solar thermal Collector ii) Flat plate collector

Each question having eight marks

- 1) How PN junction diode is working? Draw and explain V-I characteristic of PN diode with neat diagram?
- 2) Write a note on Economic of photovoltaic (PV)?
- 3) Explain in details p-n junction with terms of unbiased and biased junctions?
- 4) Explain environmental impact of photovoltaic?
- 5) Write a note on i) Parabolic collectors ii) paraboloidal dish collector

Unit III: Wind and Biomass Energy

Four Marks Questions

- 1. Discuss the sources of wind energy and global wind patterns.
- 2. Write a note on modern wind turbines and write an expression for kinetic energy of wind.
- 3. Discuss the design of a modern horizontal-axis wind turbine.
- 4. Give the idea of biomass potential and use.
- 5. Write a note on biomass energy production.

- 1. Explain wind characteristics.
- 2. Discuss wind farms and explain environmental impact and public acceptance of wind energy.
- 3. Give detailed information about the photosynthesis and crop yields.
- 4. Explain in detail environmental impact, economics and potential of biomass.
- 5. Describe the economics of wind power.
- 6. Derive the expression for dependence of the power coefficient C_p on the tip-speed ratio.
- 7. What is turbine? Discuss its control and operation.
- 8. Explain the principles of a horizontal-axis wind turbine.

Unit IV: Nuclear energy

Four Marks Questions

- 1) Explain binding energy?
- 2) Explain stability of nuclei?
- 3) Write a note on fission reaction?
- 4) Explain fusion reaction?
- 5) What is plasma? What is the constituent of it?

- 1) Discuss in great detail environmental impact of nuclear power?
- 2) Discuss in thermal reactor with diagram?
- 3) Discuss controlled fusion reaction?
- 4) Explain charged particle in E and B field?
- 5) Why nuclear power is important?

P.A.H. Solapur University, Solapur

School of Physical Sciences

M. Sc.-I, SEM. II, Physics (Condensed matter Physics)

OET 2.1 Fundamental of Electronics

Question Bank

Each question having four marks.

- 1) A certain soldering iron has a resistance of 600 ohms when operated from a 230 volts power line. How much current does it take from the power line?
- 2) Calculate the energy used (in kWh) to run twelve 150 W light bulb for ten hours?
- 3) State and Explain Thevenin's theorem?
- 4) State and explain Kirchhoff 'current law?
- 5) Discuss briefly the Kirchhoff's voltage law?
- 6) Define the term i) Cycle ii) time period
- 7) Explain the difference phase and phase term?
- 8) What is meant by intrinsic semiconductor?
- 9) Explain what is Hole in Brief?
- 10) What is PN junction Diode? Explain it?
- 11) What are the important application of diode?
- 12) What id ideal diode and real diode?
- 13) What is Zener diode? Draw circuit diagram?
- 14) Define the term Common mode rejection ratio?
- 15) What is differential amplifier? Can be used in single ended input configuration?
- 16) Describe the block diagram of op-amp?
- 17) What is voltage Follower?
- 18) Explain switching action of a transistor?
- 19) Draw the switching waveform for the astable multivibrator?
- 20) Explain operation of an astable multivibrator?

Each question having eight marks

- 1) What is nonsinusoidal oscillator? Explain it briefly?
- 2) Draw a circuit of astable multivibrator and explain its working?
- 3) Sketch a transistor Schmitt trigger circuit and briefly explain its operation giving input output waveform?
- 4) Draw an internal operational circuit of timer IC 555?
- 5) Explain the operation of a bisatble multivibrator?
- 6) Distinguish between a bistable and monostable multivibrator?
- 7) Discuss the principle of transistors bistable multivibrator?
- 8) What is multivibrator? Explain the difference between the three types of multivibrators?
- 9) Explain in details of switching action of a transistor?
- 10) What is essential difference between direct current and altering current?
- 11) State and explain the three version of ohms's law relating voltage, current and resistance?
- 12) Briefly define each of the following, giving its unit and symbol: Charge, Potential, Potential difference, Current resistance and Conductance?

- 13) What is maximum power transfer theorem? Show that power lost in the internal resistance of a source is equal to the power delivered to the load the power efficiency is only 50%?
- 14) Explain briefly the following;
 - i) Linear resistor ii) Non-linear resistor
- 15) What is capacitor? Give its three application?
- 16) Write a short note on a variable capacitor?
- 17) What is difference between an ideal current source and a practical current source?
- 18) Draw V-I characteristics of a junction diode when it's a) forward biased b) reverse biased
- 19) Briefly explain (without derivation) the behaviour of junction in forward bias and reverse bias mode and draw its volt-ampere characteristics?
- 20) What is PN junction diode? How its terminal are identified?
- 21) In What respect is an LED different from an ordinary PN junction diode? State application of LEDs.
- 22) Explain with the help of neat diagrams, the structure of a N-channel FET, and its voltampere characteristic. In what way it is different from a bipolar junction transistors?
- 23) Distinguish between FET and BJT?
- 24) Describe some of the characteristics of a practical op-amp?
- 25) What is voltage followers? Describe its main characteristics?
- 26) Explain in details of instrumentation amplifier?
- 27) Distinguish between operation amplifier and Instrumentation Amplifier?
- 28) Explain in details ideal characteristics of op-amp?
- 29) Explain comparator Schmitt trigger wave generator (Square wave and Triangular wave)?
- 30) Discuss the term in details of DC and AC characteristics of op-amp?
- 31) Define the term a) LED b) Solar Cell c) Photodiode
- 32) Explain in details first order low pass and high pass filter?
- 33) Discuss V to I and I to V converter precision rectifier?
- 34) Explain the effect of temperature on the volt-ampere characteristic of diode?
- 35) Draw a block diagram of IC 555 and explain in details?
- 36) Explain the application of network laws to simple dc network?
- 37) Distinguish between monostable and astable multivibrators?
- 38) Why the Reset pin of IC 555 is normally connected to Vcc, and why the control voltage (pin 5) of 555 timers is connected to ground through a 0.01 µf capacitor?
- 39) Explain in details p-n junction with terms of unbiased and biased junctions?
- 40) How PN junction diode is working? Draw and explain V-I characteristic of PN diode with neat diagram?

P.A.H. Solapur University, Solapur

School of Physical Sciences

M. Sc.-I, SEM. II, Physics (Condensed matter Physics)

SCT 2.1 Statistical Physics

Question Bank

04 marks

- 1) Distinguish between different ensembles.
- 2) Distinguish between 1^{st} and 2^{nd} order phase transitions.
- 3) Explain the concept of microstates and macro states.
- 4) Explain the concept of statistical equilibrium.
- 5) What is an ensemble? Explain the concept of Canonical Ensemble.
- 6) Write Liouville's theorem in classical mechanics
- 7) Write a note on a PV diagram.
- 8) Write a note on grand canonical ensembles.
- 9) Explain the P.T. curve.
- 10) what is phase equilibrium.
- 11) Write a note on the canonical ensemble and state its partition function.
- 12) Write a note on the laws of thermodynamics.
- 13) What are the thermodynamic systems and equilibria?
- 14) Explain the Nearst's heat theorem.
- 15) Explain the concept of equipriori probability.
- 16) Explain the concept of microstates.
- 17) Explain the law of corresponding states.
- 18) Explain Gibbs's free energy.
- 19) Explain phase space and quantum state.
- 20) State and explain the third law of thermodynamics.

08 marks

- 1) How the paradoxical situation arises when we mix the samples of the same gas.
- 2) Explain the second-order phase transition.
- 3) Derive Ehrenfest equation for second-order phase transition.
- 4) Show that during the first-order phase transition, Gibb's function is continuous, but the first derivative of Gibb's function changes discontinuously.
- 5) Explain the canonical ensemble. Obtain an expression for canonical distribution.
- 6) Write a note on microcanonical, canonical and grand canonical ensembles
- 7) Write laws of thermodynamics and their consequences.
- 8) Explain the Second latent heat equation.
- 9) Show that during the second-order phase transition.

$$(\partial^2 \mathbf{G}_1/\partial \mathbf{T}^2) \neq (\partial^2 \mathbf{G}_2/\partial \mathbf{T}^2)$$

10) Explain the first-order phase transition.

- 11) Derive Clausius Clapeyron equation.
- 12) Give the condition for B E condensation.
- 13) Derive Ehrenfest equations.
- 14) What is the Gibbs paradox and how it is resolved?
- 15) Give the condition for ideal Bose gas.
- 16) By using the Vander Waals equation at reduced states calculate the values of critical constants.
- 17) Show that the average energy of a single particle of ideal fermi is 3/5 times the Fermi energy of the system.
- 18) Explain strongly degenerate fermi gas.
- 19) Explain weakly degenerate fermi gas.
- 20) Express elliptical motion of 1D harmonic oscillator in phase space.
- 21) Write about MB statistics.
- 22) Write about BE statistics.
- 23) Write about FD statistics.
- 24) Write about classical ideal gas.
- 25) Obtain Plank's law for black body radiation.
- 26) Connection between free energy and themodynamical quantities.
- 27) Write a note on black body radiations.
- 28) Write about thermodynamical potentials.
- 29) Write about Maxwell's relations.
- 30) Write about the paradoxical situation given by Gibbs.

M. Sc.-II, SEM. IV, Physics (Condensed Matter Physics)

HCT - 4.2: Nuclear and Particle Physics

Question Bank

UNIT I PROPERTIS OF NUCLEAR FORCES

Each question having four marks.

- 1) Write a note on radioactive dating.
- 2) Explain binding energy curve.
- 3) Explain nuclear stability.
- 4) Explain nuclear composition.
- 5) Explain Beta decay with an example.

Each question having eight marks

- 1) Discuss two nucleon system with potential.
- 2) Discuss properties of nuclear forces.
- 3) Write a note on radioactivity and explain their types in grate details.
- 4) Explain p-p interaction at different energies.
- 5) Discuss meson theory of nuclear interaction.
- 6) An $_8{\rm O}^{16}$ nucleus is spherical and has charge radius R and volume V=4/3 π R³, according to empirical observation of the charge radii, the volume of the $_{54}{\rm Xe}^{128}$ nucleus assume to be spherical.
- 7) In deep inelastic scattering electron are scattered off proton to determine if a proton has any internal structure, how much will be the energy of the electron.
- 8) What should be the minimum K.E of the electron to probe the size of 20Ca⁴⁰ nucleus.

UNIT II NUCLEAR MODELS

Each question having four marks.

- 1) Describe prolate and oblate structure of nucleus with stigmatic diagram with Q value condition.
- 2) Write a semi-empirical mass formula.
- 3) What is Spin orbit interaction?
- 4) Explain superconductivity model of nucleus.
- 5) Explain magic numbers, what is the significance of it.

Each question having eight marks

1) Explain in grate details liquid drop model.

- 2) Discuss extreme single particle shell model.
- 3) Write a note on Collective nuclear model.
- 4) Derive an expression for bethe-Weizsacker formula.

UNIT III NUCLEAR REACTIONS

Each question having four marks.

- 1) Describe conservation lows.
- 2) Nuclear reaction with heavy ions.
- 3) Give the few examples of transmutation of α particles.
- 4) Describe nuclear fission reaction.
- 5) Describe nuclear fusion reaction.

Each question having eight marks

- 1) Discuss types of nuclear reactions.
- 2) Determine the scattering cross-section of n-p interaction.
- 3) Discuss nuclear transmutation reactions with examples
- 4) Derive an expression for breit-wigner dispersion formula.
- 5) Discuss in detail fusion and fission reaction, with examples.

UNIT IV PARTICLE PHYSICS AND COSMIC RAYS

Each question having four marks.

- 1) Write a working principle of cyclotron.
- 2) Write a note on neutrino.
- 3) Explain four fundamental forces and there properties.
- 4) Discuss origin of cosmic rays.
- 5) Discuss conservation laws of particle physics.
- 6) Explain origin of secondary rays.

Each question having eight marks

- 1) Draw the tree diagram of classification of elementary particles.
- 2) Explain quantum chromo dynamics.
- 3) With the net libelled diagram explain working principle and construction of cyclotron.
- 4) Check conservation of lepton number of the following reactions?
 - 1. P $\rightarrow \pi^{0} + e^{-} + e^{+}$
 - 2. N \rightarrow P+ e⁻+v_e
 - 3. K+ $\rightarrow \mu^+ + \nu_\mu$

P.A.H. Solapur University, Solapur

School of Physical Sciences

M. Sc.-II, SEM. IV, Physics (Condensed Matter Physics)

HCT 4.3 Physics of Nano Materials

Question Bank

Questions – 4 marks each

- 1) Write a short note on Nanoscience and Nanotechnology.
- 2) Discuss about energy band structure in metals, semiconductors and insulators.
- 3) Draw a neat labelled diagram of the splitting of energy levels of isolated atoms to energy bands due to coupling.
- 4) Derive an expression for DC electrical conductivity of a metal.
- 5) Derive an expression for AC electrical conductivity of a metal.
- 6) Write a short note on conduction in ionic crystals.
- 7) Give comments on conductivity carrier concentration and Fermi level in extrinsic semiconductors.
- 8) Write a short note on thermionic emission.
- 9) Write a note on Schottky effect.
- 10) Write a note on Poole Frenkel Effect.
- 11) Discuss on variable range hopping conduction
- 12) What is polaron? Write a short note on Polaron conduction.
- 13) State the Beer and Lamberts Law.
- 14) Write a note on luminescence.
- 15) Write a short note on photoluminescence.
- 16) With neat labelled diagram describe e beam evaporation.
- 17) Write a note on sol-gel chemistry.
- 18) Explain how Z-piezo works for imaging the sample surface in constant tunneling current mode.
- 19) Describe in brief some applications of STM.
- What is the difference between the resolution and magnification?
- 21) Describe the electrodeposition process.
- 22) Write a note on plasma arc discharge.
- 23) Describe the ion beam deposition method.

- 24) Write a short note on density of states.
- 25) Describe the contrast transfer function in HRTEM.

Questions 8 marks each

- 1) Describe in details about density of states at low dimensional structures.
- 2) Describe the classical theory of the electrical conduction in metals.
- 3) Discuss in detail the free electron model for the behavior of valance electrons in metallic solid.
- 4) Show that for intrinsic semiconductors, the carrier concentration is found to be dependent on temperature.
- 5) State and derive an expression for Beer-Lamberts law.
- 6) What is luminescence? Describe various types of luminescence.
- 7) What is surface plasmon resonance spectra? Describe the effect of size of nanoparticles (Metal Semiconductors) on absorption and SPR spectra.
- 8) Describe the top down & Bottom up growth techniques with suitable examples.
- 9) With neat labelled diagram, describe the lithographic process. Also give its limitations.
- 10) Describe the details about the Plasma Arc Discharge technique.
- 11) What is evaporation? Describe the thermal evaporation method. Also discuss the cosine flux distribution in thermal evaporation process.
- 12) Describe the steps involved in the CVD process. Also give the types of CVD process.
- 13) Describe in detail the construction and working the pulsed laser deposition technique.
- 14) Define epitaxial growth. Explain molecular beam epitaxy with neat labelled diagram.
- 15) Describe the sol-gel technique with different steps involved for nanomaterial preparation.
- 16) Discuss the sputtering deposition system. Also give the details about sputtering and film deposition in a glow discharge.
- 17) With a suitable example describe the chemical bath deposition process.
- 18) Describe the basic principles of SPM technique.
- 19) Describe the basic principle and operation of atomic force microscope.
- 20) Draw neat labelled diagram of scanning electron microscope and describe the different specimen interactions involved for image formation.

- 21) Describe the construction of transmission electron microscope and explain the imaging modes of TEM.
- 22) Describe the working principle of HRTEM.
- 23) Describe the construction and working of dual beam UV-Vis spectrometer.
- What is X-ray? Give the details of the X-ray diffractometer.
- 25) Describe the working of AFM for the measurement of friction between the tip and the sample.
- 26) Describe the construction and working the single electron transistor.
- 27) Give an account on molecular machine.
- 28) Give details about nanobiometrics.
- 29) Give a detailed account on carbon nanotube.
- 30) Describe the details about the surface area and pore size measurement using BET analysis.

P.A.H. Solapur University, Solapur

School of Physical Sciences

M. Sc.-II, SEM. IV, Physics (Condensed Matter Physics)

SCT- 4.1 Experimental Techniques in Physics

Question Bank

Q. Answer the following (4 marks each)

- 1. Write a note on Measurement System.
- 2. Explain differential output transducer.
- 3. Write a note on Voltmeter.
- 4. Write a note on Ammeter.
- 5. Write a note LCR meter.
- 6. What is mean by Electron Microscopy? Explain in brief SEM.
- 7. What is mean by Electron Microscopy? Explain in brief TEM.
- 8. What is mean by Electron Microscopy? Explain in brief HRTEM.
- 9. What is mean by Scanning probe microscopy? Explain in brief AFM.
- 10. What is mean by Scanning probe microscopy? Explain in brief MFM.
- 11. What is mean by Scanning probe microscopy? Explain in brief STM.
- 12. Explain in brief UV-Vis spectroscopy and its applications.
- 13. What are Luminescence spectroscopy techniques? Explain in brief.
- 14. Explain in brief two probe method.
- 15. Explain in brief four probe method.
- 16. Write a note on scattering of X-rays.
- 17. Which are various crystal structures? Explain them using lattice parameters and diagrams.
- 18. Discuss about the XPS and write its applications.
- 19. Explain the XRF and its applications.
- 20. Write a note on various methods of X-ray diffraction.
- 21. Discuss about the gas liquefiers and cryo-fluid baths.
- 22. Write a short note on radiative transitions.
- 23. Describe about the temporal coherence.
- 24. Write a note on white light LED.
- 25. Write a short note on photoconductivity.

Q. Answer the following 8 marks each

- 1. Write a note on Transducer and its types.
- 2. Write a note on Hygrometers.
- 3. Explain Primary and Secondary cell.
- 4. Write a note on Inverters.
- 5. Write a note on Oscilloscope.

- 6. Write a details note on construction and working of LVDT
- 7. Explain construction and working of Switch Mode Power Supply (SMPS).
- 8. Discuss on Instrumentation amplifier with circuit diagram.
- 9. With neat block diagram, explain Scanning Electron Microscopy (SEM) in detail.
- 10. With neat block diagram, explain Transmission Electron Microscopy (TEM) in detail.
- 11. With neat block diagram, explain High-resolution TEM (HRTEM) in detail.
- 12. With neat block diagram, explain Atomic force microscopy (AFM) in detail.
- 13. With neat block diagram, explain Magnetic force microscopy (MFM) in detail.
- 14. With neat block diagram, explainScanning Tunnelling Microscopy (STM) in detail.
- 15. What is RAMAN effect and explain stokes and Antistokes lines.
- 16. Describe Dielectric and impedance spectroscopy.
- 17. Describe Interferometers for different analytical study.
- 18. Explain in detail two and four probe methods.
- 19. What is powder X-ray diffraction method? Write in detail about its principle and working suitable block diagram.
- 20. Write the working principle of Laue's X-ray diffraction method using block diagram.
- 21. Write in detail about the rotational/oscillation diffraction method of X-ray with the help of block diagram.
- 22. What are different methods for the production of low pressure? Explain thoroughly.
- 23. Which different parameters do affect the performance during the production of low pressure?
- 24. Explain in detail about the production of low temperature and its measurement.
- 25. Describe about the threshold condition for lasers. Also describe two, three and four level laser systems.
- 26. Describe the construction and working of LDR.
- 27. Give the construction and working of LCD.
- 28. Describe the construction and working of organic LED.
- 29. Give in detail construction and working of PIN photodiode.
- 30. Discuss in detail the modes of rectangular cavity and open planar resonator.

M. Sc.-II, SEM. IV, Physics (Condensed Matter Physics)

HCT 4.1 Semiconductor Devices

Question Bank

Unit 1

1) Write a note on CMOS devices.	4
2) Write a note on charge trapping in MOSFET.	4
3) Show schematic of P- channel depletion MOSFET and explain in brief.	4
4) What is the effect of work function difference on threshold voltage of MOSFET?	4
5) Show schematic of N- channel enhancement MOSFET and explain in brief.	4
6) Explain MS structure with band diagram. Explain current flow mechanism in MS junction.	
	8
7) Explain MOS structure. Draw necessary band diagram. Obtain voltage relationship of MOS))
structure.	8
8) Explain Depletion type MOSFET. What is the effect of gate voltage on drain current? Obtain	in
an expression of drain current.	8
9) Explain in detail about the MIS capacitances.	8
10) Explain Enhancement type MOSFET. What is the effect of gate voltage on drain current?	
Obtain an expression of drain current.	8
11) Explain in detail about the MOSFETS capacitances.	8
12) Discuss the quantitative analyses of I-V characteristics in P-channel and N-channel depleti	on
and enhancement mode MOSFETs	8

Unit 2

1) Discuss in brief various methods of triggering pnpn device.	4			
2) Write a note on di/dt protection.	4			
3) Write a note on dv/dt protection.				
4) Write a note on reverse conducting thyristor.				
5) Write a note on Programmable UJT.	4			
6) Write in detail about LASCR and FETSCR.				
7) Explain working principle of SCR and its IV characteristics.				
8) Draw and explain IV characteristics of SCR Explain two transistor model of SCR.	8			
9) Discuss with suitable diagrams the IV characteristics of the DIAC and TRIAC.	8			
10) Explain in detail about the construction and working of DIACs and TRIACs.	8			
11) What are the power diodes and power transistors? Explain their working principles.	8			
12) Write the principle and working of programmable unijunction transistors using suitable				
diagram.	8			
13) What are static induction thyristors? Discuss the Thyrister circuit that delivers variable				
power to a load.	8			
Unit 3				
	1			
1) Write a note on two phases CCD.	4			
2) Write a note on dynamic effect in CCD.	4			
3) Explain about the transistors and quenched diodes.	4			
4) Write a note on NDR device.	4			
5) Explain various steps of formation and transfer of domain in Gunn diode?	4			
6) Describe the basic structure of Charge Coupled Devices and its dynamic effect.	8			
7) How the performance of CCD is improved.	8			
8) What are the transferred electron devices? Discuss in detail the periodic oscillating behavior	r			
of n GaAs Gunn diode.	8			

9) What is Gunn effect? Explain two valley model of Gunn diode.					
10) Explain GaAs Gun Oscillator modes in terms of					
a) space charge accumulation, b) Quenched domain mode, c) Delayed domain mode.	8				
11) With the help of neat diagrams explain build up and drift of space charge domain in GaAs	. 8				
12) Write in detail about the frequency responses and overall performance of Gunn devices.	8				
Unit 4					
1) Write a note on radiative and non-radiative transitions.	4				
2) Write a note on Heterostructures Laser.	4				
3) Draw block diagram, doping profile, electric field distribution in p-i-n diode.	4				
4) Draw the band gap and wavelength scales and show the band gaps of some common					
semiconductors relative to the optical spectrum.	4				
5) Write a note on absorption in semiconductor.	4				
6) What is luminescence? Compare fluoresce and phosphorescence.	4				
7) What is Luminescence? Give different types of luminescence. Discuss in detail the process	of				
light emission in LED.	8				
8) What is Luminescence? Give different types of luminescence. Explain IR and Visible LED	. 8				
9) Explain the conditions of absorption of light by semiconductor and discuss non radiative					
transitions.	8				
10) What is Laser diode? Discuss the mechanism of stimulated emission of light in GaAs lase	r				
diode.	8				
11) Explain the operating principle of photodiode based on p n junctions, pin configuration an	ıd				
multilayer heterojunction. Sketch the relative band diagrams and IV characteristics.	8				
12) What is solar cell? Discuss IV characteristics of solar cell. Derive an expression for open					
circuit voltage and short circuit current.	8				
13) What is solar cell? Discuss IV characteristics of solar cell. Derive an expression for quanti	um				
efficiency of solar cell.	8				
14) What is the Quantum well hetero structures? Explain in detail about the effect of temperat	ure				

on them.

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

Faculty of science Question Bank

Paper III (Heat and thermodynamics) PHYSICS

Q. No. 2) Short answer Question (2 marks each)

- 1) Write short note on Air Conditioning.
- 2) What do you mean by collision cross section?
- 3) What do you mean by transport phenomena in case of a gas?
- 4) Explain different parts of the Carnot's ideal heat engine.
- 5) How thermal conductivity of gas depends upon temperature and pressure.?
- 6) What is Joule-Thomson adiabatic throttling?
- 7) State important properties of liquid He II.
- 8) What is magneto caloric effect?
- 9) What is lambda point?
- 10) Calculate the work done when kilo mole of a perfect gas expands isothermally at 25°C to double its value?
- 11) What is irreversible process? Explain using two examples.
- 12) Why entropy of irreversible process increases? Explain
- 13) What is reversible process?
- 14) Define the terms a) free path b) mean free path.
- 15) Find the efficiency of Carnot's engine working between 107° Celsius and 17° Celsius.
- 16) Define the terms: a) Isothermal process & b) Adiabatic process, and gives its equation for change in entropy.
- 17) Write note on isothermal process.
- 18) Write a note on adiabatic process.
- 19) Distinguish between Otto engine and Diesel engine.
- 20) What is Diesel cycle? Explain its operation.
- 21) Write general principal of refrigerator.
- 22) Define coefficient of performance.
- 23) Deduce the expression for coefficient of performance from Carnot's cycle.
- 24) How viscosity of gas depends upon temperature and pressure.
- 25) What do you mean by regenerative cooling?
- 26) State and explain zeroth law of thermodynamics.
- 27) Explain working of Carnot's cycle.
- 28) Obtain an expression for efficiency of Otto engine.
- 29) Draw neat labeled diagram of vapour compression refrigeration system.
- 30) Give application of air conditioning system.

Q. No. 3) Write short notes (4 marks each)

- 1) Work done during an isothermal process.
- 2) Mean free path.
- 3) Magnetocaloric effect.
- 4) Properties of liquid helium.

- 5) First law of thermodynamics
- 6) Adiabatic process.
- 7) Work done during isothermal process.
- 8) Entropy change in irreversible process.
- 9) Zeroth law of thermodynamics.
- 10) Otto cycle.
- 11) Diesel cycle.
- 12) Collision cross section.
- 13) Summer air conditioning system.
- 14) Comparison between auto engine and diesel engine.
- 15) Dependence of coefficient of viscosity on temperature and pressure.

Q. No.4) Long answer question. (4 marks each)

- 1) Explain how viscosity of gas depends upon temperature and pressure.
- 2) State and explain zeroth law of thermodynamics.
- 3) A Carnot's engine working as a refrigerator between 260 K and 300K receives 500 calories of heat from the reservoir at the higher temperature. Calculate the amount of work done in each cycle to operate the refrigerator.
- (1 Calorie = 4.2 J).
- 4) Obtain an expression for coefficient of viscosity of a gas.
- 5) Show that entropy change in reversible process is zero.
- 6) Derive an expression for the work done in adiabatic process.
- 7) Derive an expression for the work done in isothermal process.
- 8) Obtain an expression for efficiency of Otto engine.
- 9) Obtain an expression for efficiency of Diesel engine.
- 10) Find the efficiency of Carnot's engine working between 127°C and 27°C. It absorbs 80 cals of heat. How much heat is rejected.
- 11) With a neat labelled diagram explain working of vapour compression refrigeration system.
- 12) Obtain an expression for coefficient of thermal conductivity of gas.
- 13) Explain the term change in entropy in irreversible process.
- 14) The temperature of 10 gm of air is raised by 1°C at constant volume. Calculate increase in its internal energy.
- 15) Describe liquefaction of gas by Joule- Thomson effect.

Q. No. 5) Long answer question. (8 marks each)

- 1) With a neat labelled diagram explain working of vapour compression refrigeration system.
- 2) What is mean free path? Obtain Clausius equation for mean free path by collision cross section method.
- 3) Discuss any four properties of liquid He II
- 4) Show that PV $^{\gamma}$ = constant for adiabatic process.
- 5) Write note on isothermal process and derive an expression for the work done in isothermal process.

- 6) Describe Carnot's cycle and obtain an expression for efficiency of an ideal heat engine working between two temperatures T1 and T2.
- 7) Write note on i) Air Conditioning
 - ii) Summer air conditioning system.
- 8) Discuss the effect temperature and pressure on a) viscosity of a gas b) thermal conductivity of a gas.
- 9) Derive expression for fall in temperature due to adiabatic demagnetization of paramagnetic substance.
- 10) Describe Carnot's cycle and derive an expression for work done during Carnot's ideal engine.

QUESTION BANK

Faculty of Science

Examination M.Sc. II

Subject: Physics

Class: M.Sc. II Sem.-IV

Title of the Paper: HCT-4.1: Semiconductor Devices

Q.1 Short Questions

for 4 marks

- 1) Write short notes on MIS Structure.
- 2) What is the transferred electron effect?
- 3) Explain the term charge trapping.
- 4) Describe the term quantum well.
- 5) Distinguish between depletion and enhancement types MOSFET.
- 6) Write short notes on avalanche characteristics.
- 7) Write short notes on photoconductors.
- 8) Explain the term threshold current density.
- 9) Explain the nature of output characteristics curves of E-MOSFET.
- 10) Explain the construction power diode. How it differs from ordinary diode.
- 11) Explain the charge storage process in MOS capacitor.
- 12) What is LASER? Explain its properties.
- 13) Explain with suitable example power diode rating.
- 14) Explain the term surface potential.
- 15) Write short notes on SCR.
- 16) Explain the term emission spectra.
- 17) Write short notes on LED.
- 18) Describe the term heterojunction LASER.
- 19) Explain the P-N junction LASER.
- 20) Discuss the MIS Junction.

Q.2 Long Questions

for 8 marks

- 1) Explain the current flow mechanisms in MS junction.
- 2) Discuss the characteristics of DIACs and TRIACs.

- 3) Obtain the basic equations in flat band conditions.
- 4) Write the difference between LED and LASER.
- 5) Explain the charge transfer mechanisms of CCD.
- 6) Discuss the frequency responses of Gunn devices.
- 7) Discuss special characteristics of CMOS devices.
- 8) Discuss the various materials for semiconductor LASER.
- 9) Discuss characteristics of Power diode.
- 10) Explain the current flow mechanisms in MIS junction.
- 11) Draw the circuit diagram of Solar cell and explain I-V characteristics.
- 12) Explain the depletion node of operation in MOSFET.
- 13) Explain the construction and I-V characteristics of D-MOSFET.
- 14) What is TRIAC? Give its symbol and simplified diagram in terms of SCR. Explain its construction.
- 15) Explain with band diagram of current flow mechanism in metal and semiconductor junction.
- 16) Explain the surface potential in depletion region and formation of inversion layer.
- 17) What is a solar cell? Explain I-V characteristics of solar cell.
- 18) How many types of photo detectors available? Explain pn junction photodetector.
- 19) Explain the construction of light activated SCR.
- 20) Explain the working of heterojunction LASER diode.
- 21) Explain the charge transfer mechanism in two stage CCD device.
- 22) Draw the output I-V characteristics of SCR and explain its nature.
- 23) Discuss the construction of basic phases of CCD.
- 24) Describe the efficiency and fill factor of Solar cells.
- 25) Explain noise and optical absorption coefficient.
- 26) Explain the importance of quantum efficiency and response speed.