

1) Preamble

B.SC III Mathematics is framed to provide the tools to get the easy and precise outcome to various applications of science and technology. Also logical development of various algebraic statements can be made to develop the innovative approach of various concepts and it can be applied to various abstract things. In the theory courses of Linear algebra ,Complex Analysis, Real Analysis, Partial differential Equation, Mathematical analysis, Integral calculus, Metric Space, Numerical Analysis, graph theory, Programming In C

Various deductions of theorems, corollaries and lemmas will be acquired by Students. Change is the Universal truth of the nature .So our aim is that Students should learn various techniques to find solutions. Students who opted T.Y.B.SC Mathematics have to complete 8 theory courses 4 each semester , four practical entitled (Numerical Techniques in Laboratory) NTL A,B,C,D Courses (Annual). In the practical course of 400 marks students exercise the problem solving techniques for practical course A,B,C,D . The details are mentioned in the syllabus.

2) Aims

The aim of the course is to generate Intelligent and Skillful human beings with adequate theoretical and practical knowledge of the various mathematical systems. To include conceptual understanding in basic Phenomena, statements, theorems and development of appropriate problem solving skills suitable for applications and sufficient logical connectivity is provided.

3) Objective of the Course

1) To design the syllabus with specific focus on key Learning Areas.

2) To equip student with necessary fundamental concepts and knowledge base

3) To develop specific problem solving skills.

4) To impart training on abstract concepts, analysis, deductive techniques.

- 5) To prepare students for demonstrating the acquired knowledge.
- 6) To encourage student to develop skills for developing innovative ideas.

7) A student is able to apply their skills and knowledge that is translate information presented verbally into mathematical form select and use appropriate mathematical formulae or techniques in order to process the information and draw the relevant conclusion.

8) A Student should get adequate exposure to global and local concerns that explore them many aspects of mathematical sciences.

PUNYSHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

Syllabus for B.Sc III – Mathematics Semester Pattern

Choice Based Credit System

(CBCS Pattern) (w.e.f .2021-22)

To be implemented from Academic Year 2021-22

Subject/ Name a		and Type of the Paper	No. of papers/ Practical	Hrs/week		Total Marks Per	UA	CA	Credits	
	Туре	Name	Tucticui	L	Τ	Р	Paper			
Class :			B.Sc III	Sem	lester	• – V			1	
Ability Enhancement Course(AECC)		English (Business English)	Paper- III	4.0			50	40	10	2.0
Discipline S Elective (I	Specific DSE)	DSE-1A	Paper- IX	4.0			100	80	20	4.0
(Students can oj	pt any one	DSE- 2 A	Paper –X	4.0			100	80	20	4.0
subjects among Subjects exc	the three luding	DSE- 3 A	Paper- XI	4.0			100	80	20	4.0
B.Sc II	[.	DSE- 4	Paper- XII		(Elec	ctive A	A or B) C	Choose	any o	one
		DSE- 4 A DSE- 4 B	Paper- XII	4.0			100	80	20	4.0
		(Add-on /-self								
		learning)- MOOC/SWAYAM/ Skill based - certificate course – institute or university /internship/ apprenticeship								4.0
Grand Total				20			450	360	90	18
Class :			B.Sc III	Sem	ester	-VI				1
Ability Enhancement Course(AECC)		English (Business English)	Paper IV	4.0			50	40	10	2.0
DSE (Students can opt any one subjects		DSE- 1B	Paper -XIII	4.0			100	80	20	4.0
among the three excluding interd	e Subjects isciplinary	DSE- 2B	Paper- XIV	4.0			100	80	20	4.0
offered at B.Sc. II.		DSE- 3 B	Paper- XV	4.0			100	80	20	4.0

DSE- 4		DSE- 4	Paper- XVI	(Elective A or B) Choose any one				ne		
		DSE- 4 A DSE- 4 B	Paper- XVI	4.0			100	80	20	4.0
Total(The	eory)			20			450	360	90	18
DSE		DSE-1A & B	Practical- IX & XIII			5	100	80	20	4.0
(Practical Annual		DSE -2 A & B	Practical- X&XIV			5	100	80	20	4.0
E	(xam									
		DSE- 3 A & B	Practical- XI&XV			5	100	80	20	4.0
		DSE- 4 A & B	Practical- XII & XVI			5	100	80	20	4.0
Total (Practicals)						20	400	320	80	16
Grand Total				40		20	1300	1040	260	52

Summary of the Structure of B.Sc.Programme

as per CBCS pattern

Class	Semester	Marks-	Credits-	Marks-	Credits-	Total –
		Theory	Theory	Practical	Practical	credits
B.ScIII	V	450	18			18
	VI	450	18	400	16	34
Total		900	36	400	16	52
DOD						

B.Sc.Programme :

Total Marks : Theory + Practical's = $900 + 400 = 1300$	
Credits : Theory + Practical's = $36 + 16 = 52$	
Numbers of Papers: Theory: Ability Enhancement Course (AECC)	: 02
Theory: Discipline Specific Elective Paper (DSE)	:02
Theory: DSC	: 08
Skill Enhancement Courses	: 02
Total : Theory Papers	: 10
: Practical Papers	: 08

Abbreviations:

L: Lectures	T: Tutorials
P: Practical	UA: University Assessment
CA: College Assessment	DSC / CC: Core Course
AEC: Ability Enhancement Cours	DSE: Discipline Specific Elective Paper
SEC: Skill Enhancement Course	GE: Generic Elective
CA: Continuous Assessment	ESE: End Semester Examination

PUNYSHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

Syllabus for

B.SC.-III (MATHEMATICS)

CBCS pattern Syllabus w.e.f. June – 2021

Structure of the revised course:-

<u>SEMESTER – V</u>

(I) Theory Papers:-

Paper	Title of the Paper	Marks
IX	Algebra – II	80+ 20 = 100
Х	Complex Analysis	80+20=100
XI	Real Analysis	80+ 20 = 100
XII	Partial Differential Equations	80+20=100
	(Elective - A)	
	Mathematical Analysis (Elective	80+ 20 = 100
	- B)	

<u>SEMESTER – VI</u>

(II) Theory Papers:-

Paper	Title of the Paper	Marks
XIII	Metric Spaces	80+ 20 = 100
XIV	Numerical Analysis	80+ 20 = 100
XV	Graph Theory	80+ 20 = 100
XVI	Integral Calculus (Elective - A)	80+ 20 = 100
	Programming in C (Elective - B)	80+20=100

Equivalent Subject for Old Syllabus

Sr.	Name of the Old Paper	Name of the New Paper
No.		
1	Paper-IX : Algebra – II	Paper-IX : Algebra - II
2	Paper-X : Complex Analysis	Paper-X : Complex Analysis
3	Paper-XI : Integral Calculus	Paper-XI : Real Analysis
4	Paper-XII : Partial Differential	Paper-XII : Partial Differential
	Equations (Elective - A)	Equations (Elective - A)
	Paper-XII : Mathematical Analysis	Paper-XII : Mathematical Analysis
	(Elective - B)	(Elective - B)

Sem-V

Sem-VI

Sr.	Name of the Old Paper	Name of the New Paper
No.		
1	Paper-XIII : Metric Spaces	Paper-XIII : Metric Spaces
2	Paper-XIV : Numerical Analysis	Paper-XIV : Numerical Analysis
3	Paper-XV : Programming in C	Paper-XV : Graph Theory
4	Paper-XVI : Integral Transform	Paper-XVI : Integral Calculus (Elective
	(Elective - A)	- A)
	Paper-XVI : Graph Theory and	Paper-XVI : Programming in C
	Combinatory (Elective - B)	(Elective - B)

NTL No.	Торіс	Marks
NTL-III (A)	S-I : Algebra-II[6]	80+20=100
	S-II : Metric Space[6]	
	+Seminar	
NTL-III (B)	S-I : Complex Analysis [6]	80+20=100
	S-II : Numerical Analysis	
	[6] + project	
NTL-III (C)	S-I : Real Analysis [6]	80+20=100
	S-II : Graph Theory [6]	
	+Study Tour/Book review	
NTL-III (D)	S-I : Partial Differential	80+20=100
	Equation [6]	
	OR	
	S-I: Mathematical	
	Analysis[6]	
	S-II : Integral Calculus [6]	80+20=100
	OR	
	S-II: Programming in C	
	[6] + Viva Voce	

Numerical Technique Laboratory (NTL)

Note: [] Number inside bracket indicated number of assignments.

In Numerical Technique Laboratory: NTL - III (A) - III (D) [Project / Seminar / Study Tour/ Viva-Voce / Book Review]

Project: Biography of One Mathematician or One Mathematics Topic (which is not included in the syllabus up to B.Sc.-III Mathematics) about five Pages. **10Marks**

Seminar: Any topic in mathematics.	10Marks
Book Reviews: Mathematics Book other than text book	10Marks
Study Tour: Visit to any Industry / Research Institution / Educational Inst	itution.
	10Marks

Viva Voce: Viva voce on Project, Seminar, Book review and Study Tour. 10Marks

(Free internet should be availed for collection of Material for Project, Seminar.)

Distribution of each Theory paper (Marks 100)

University Assessment (UA): 80 Marks

College Assessment (CA): 20 Marks

Scheme of College Assessment

1.	Unit '	Fest:	10	Marks

2. Home Assignment: 10 Marks

Distribution of Practical Marks (100)

Practical examination will be at the end of sixth semester. The candidate has to perform eight practical, one from each group.

A. University Practical Examination (80) Marks: (UA)

a) Problems from NTL (A)	80: [S – I: 30 M + S – II: 30 M + Seminar: 10 M + J: 10 M]
b) Problems from NTL (B)	80: [S – I: 30 M + S – II: 30 M + Project: 10 M + J: 10 M]
c) Problems from NTL (A) 10 M]	80: [S – I: 30 M + S – II: 30 M +Study tour/Book Review: 10 M + J:
d) Problems from NTL (A)	80: [S – I: 30 M + S – II: 30 M + Viva voce: 10 M + J: 10 M]

B. Practical: Internal Continuous Assessment (20 marks)

Scheme of Marking: 10 Marks: Internal Test on each NTL and

10 Marks: Home assignment/oral/Seminars/Conference /Industrial Visit/Group Discussion/Viva, etc. on each NTL

Instructions:

1. Each Theory Paper is allotted 45 periods per semester.

2. All **Numerical Technique Laboratories (NTL)** (similar to Practical) will be conducted in the batch as a whole Class.

3. Total evaluation of B.Sc. III (1400 Marks.)

[Theory papers	(1000 Marks)
----------------	--------------

+

[Practical NT L-III (A) to III (D) (400 Marks)

4. The annual Numerical Technique Laboratory (NTL - III (A) to III (D)] will carry 100 Marks each.

5. Department of Mathematics should provide FIVE computers per batch of TEN Students

Nature of paper of Numerical Technique Laboratory (For NLT - III (A) to NLT - III (D))

	Total Marks 80
IV) Journal	Marks 10
III) Seminar/Project/Study Tour/Viva-voce/Book Review	Marks 10
OR Attempt SIX out of EIGHT (each of 05 Marks)	
II) Attempt THREE out of SIX (each of 10 marks)	Marks 30
OR Attempt SIX out of EIGHT (each of 05 marks)	
I) Attempt THREE out of SIX (each of 10 marks)	Marks 30

SEMESTER-V

Paper - IX: Algebra – II

Unit - 1: Introduction to Rings.	[10]
1.1 Definitions and Examples	
1.2 Integral Domains. Subrings	
1.3 Fields	
1.4 Isomorphism, Characteristic of rings	
Unit - 2: Quotient Rings.	[05]
2.1 Homomorphism of rings, ideals	
2.2 Quotient Rings	
Unit - 3: Vector Spaces Vector spaces, subspaces	[10] 3.1
3.2 Linear combination and system of linear equation	
3.3 Linear dependence and independence, basis and dimensions.	
Unit - 4: Linear transformation and matrices	[15]
4.1 Linear transformation, null spaces and range	
4.2 Matrix representation of linear transformation, composition of linear transform	ation
and matrix multiplication	
4.3 Inevitability and isomorphism.	
Unit - 5: Inner product space Inner products and Norms.	[05] 5.1

Recommended books (Scope of Syllabus):

Modern Algebra-An Introduction, by John R. Durbin, John Wiley & Sons, Inc. Fifth Edition.

Unit - 1: Chapter - VI: Art. 24, 25, 26, 27

Unit - 2: Chapter - IX: Art. 38, 39

Linear Algebra Fourth Edition by Stephen H. Friedberg, Arnold J. Insel Lawrence E. Spence Prentice Hall of India New Delhi (EEE)

Unit 3: Chapter - I (Vector Spaces): Art. 1.2 to 1.6

Unit 4: Chapter-II (Linear transformation and matrices):Art.2.1to2.4

Unit 5: Chapter - VI (Inner product space) Art. 6.1

Reference Books:

1. A First Course in Abstract Algebra by J. B. Fraleigh, Pearson Education 7th edition.

2. University Algebra by N.S. Gopalkrishnan

3. Fundamental of Abstract Algebra by D.S. Malik & N. Mordeson & M.K. Sen, Mc. Graw Hill International Edition.

4. Liner Algebra by Vivek Sahai & Vikas Bist, Narosa Publishing House.

5. Topics in algebra by John Wiley & Sons and by I.N. Herstein

6. Abstract algebra by K.S. Bhambri and Khanna Vijay

Paper – X: Complex Analysis

Unit - 1. Analytic Functions

Complex Differentiation, Limits and Continuity, Differentiability Necessary and sufficient condition of analytic function, Method of constructing a regular function and analytic function, Simple method of constructing analytic function, Polar from of Cauchy-Riemann Equations.

Unit - 2: Complex Integration

Introduction, Some basic definitions, Complex integral, Reduction of complex integrals to real integrals, Some properties of complex Integrals, An estimation of a complex integral, Line integrals as functions of arcs, Cauchy's Fundamental Theorem (Theorem-I), Cauchy Goursat Theorem [Statement Only], Cauchy's Integral formula [Statement only], its consequences and examples, Derivative and higher order derivatives of an analytic function [Statement(s) only] and examples, Expansions of Analytic functions as power series (Taylor's Maclaurin's and Laurent's Series [Statement only]) and its examples, The zeros of an analytic function, Different Types of Singularities, Some Theorems on Poles and other Singularities (Theorem-I to IV only) and its examples, The point at infinity

Unit - 3: Calculus of Residues

Residue at simple pole, Residue at a Pole of order greater than unity, Residue at infinity, Cauchy's Residue Theorem. Evaluation of Definite integrals, Integration round the unit Circle. Evaluation of $\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$.

[20]

[15]

Recommended Book (Scope of Syllabus):

1. Functions of Complex Variable by J.N. Sharma Revised by Dr. Shanti Swarup, (38 Edition) Krishna Prakasha Media Ltd., Meerut.

Chapter - 2 (Analytic Functions): 1 to 7

Chapter - 6 (Complex Integration): 1 to 8, 9 (Statement only),

19 (Theorem-1, Theorem- II (Statements only),

20, 21, 22 [Theorems I to IV only], 23. 24.

Chapter- 7 (Calculus of Residues): 1 to 6.

Reference Books:-

1. Graduate texts in mathematics functions of one complex variable – J.B.Conway.

2. Theory of functions of a complex variables- Shanti Narayan , P.K.Mittal, Chand Publication.

3. A function of complex variable by A.R.Vashishtha.

4. Complex variables and applications by J.W.Brown, J.R.Churchill.

Paper – XI: Real Analysis

Unit - 1. Sets and Function	[15]
 1.1 Sets and elements 1.2 Operations on sets 1.3 Functions 1.4 Real Valued functions 1.5 Equivalence , countability 	
Unit - 2. Sequences of real numbers	[15]
2.1 Definition of sequence and subsequence	
2.2 Limits of sequence	
2.3 Convergent sequence	
2.4 Divergent sequence	
2.5 Bounded sequence	
2.6 Monotonic sequence	
2.7 operations on convergent sequence	
2.8 operations on divergent sequence	
2.9 Limit superior and limit inferior	
2.10 Cauchy sequence	
Unit - 3. Series of real numbers	[15]
3.1 Convergence and divergence	
3.2 Series with non negative terms	
3.3 Alternating Series	
3.4 Conditional convergence and absolute convergence	
3.5 Test for absolute convergence (Comparison test, Ratio test, Root test)	
3.6 Series whose terms from non increasing sequences	

Recommended Book (Scope of Syllabus):

Scope: Methods of Real Analysis by R.R.Goldberg John wiley & sons 1976

Real Analysis

Unit – 1: (sets and function) Art: 1.1 to 1.5

Unit – 2: (Sequences) Art: 2.1 to 2.10

Unit – 3: (Series of real number) Art: 3.1 to 3.4, 3.6, 3.7

Reference Books:-

1. A First course in Mathematical Analysis by D.Somasundaram & B.Choudhary Narosa Publishing House.

2. Mathematical Analysis second edition by S.C.Malik and Svita Arora.

3. Principles of Mathematical Analysis by Rudin W. McGraw – Hill, New Yokr.

4. A Course of Mathematical Analysis by Shanti Narayan S.Chand and company New Delhi.

Paper-XII: Partial Differential Equations (Elective-A)

Unit - 1: Linear Partial differential equation of order one **[15]** 1.1 Formation of partial differential equation by eliminating arbitrary constants 1.2 Formation of partial differential equation by eliminating arbitrary functions. 1.3 Types of integrals of partial differential equation 1.4 Lagrange's Method of solving linear partial differential equation of order one namely Pp + Qq = R (Working rule for solving Pp+Qq = R by Lagrange's Method). 1.5 Integral surface passing through a given curve Unit-2: Non Linear partial differential equation of order one [15] 2.1 Solution of first order partial differential equation by Charpit's Method. 2.2 Special methods of solution applicable to certain standard form I, II, III, IV. Unit-3: Linear partial differential equation with constant Coefficient [15] 3.1 Homogeneous and Non – Homogeneous linear partial differential equation with constant coefficient working rule for finding complementary function (C.F.), method of finding particular integral (P.I.)

3.2 Short method when f (x, y) is φ (ax + by) and x^myⁿ

Recommended Book (Scope of syllabus):

1. Ordinary and partial differential equation by M.D. Raisinghania, S. Chand Co. [PART - III]

Unit - 1: Chapter -1: 1.1, 1.2, 1.2a, 1.2b, 1.3, 1.4, 1.5, 1.5a, 1.5b, 1.5c, 1.5d, 1.6

Unit - 2: Chapter -2: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10

Unit - 3: Chapter - 3: 3.1, 3.2, 3.3, 3.4, 3.4A, 3.4B3.5, 3.6, 3.6A, 3.6B, 3.7, 3.8, 3.9, 3.10

Reference Books:

1) Elements of partial differential equations by IAN Sneddon (International students edition by MC Graw Hill Book)

2) Differential equations Sharma & Gupta (Krishna Prakashan Media (P) Ltd. Meerut)

3) Introduction to Partial differential equations – K.Sankara Rao, PHI Publication

Paper- XII: Mathematical Analysis (Elective - B)	
Unit - 1: Functions of a Single Variable (I)	[15]
1.1 Limits	
1.2 Continuous functions	
1.3 Functions continuous on closed intervals	
1.4 Uniform continuity	
Unit - 2: Functions of a Single Variable (II)	[15]
2.1 The Derivative	
2.2 Continuous functions	
2.3 Increasing and decreasing Functions	
2.4 Darboux's Theorem	
2.5 Rolle's Theorem	
2.6 Lagrange's Mean Value Theorem	
2.7 Cauchy's Mean Value Theorem	
2.8 Higher Order Derivatives	
Unit - 3: Functions Power series	[15] 3.1
3.2 Exponential functions	
3.3 Logarithmic functions	
3.4 Trigonometric functions	
3.5 Functional fquations	
3.6 Functions of bounded variation	
3.7 Vector - Valued functions	

4) Partial Differential Equations by J.M.Kar.

Recommended Books:

1) Mathematical Analysis by S. C. Malik and Savita Arora by S. New Age International Publishers.

2) Methods of Real Analysis by R.R. Goldberg.

Reference Books:

- 1) Elements of Real Analysis: Shanti Narayan, Dr. M. D. Raisinghania, S. Chand Publication
- 2) Principles of Mathematical Analysis Water Rudin, McGraw Hill
- 3) Introduction to Real Analysis by R.G. Bartle, Donald R. Sherbert.

SEMESTER - VI

Paper- XIII: Metric Spaces

Unit - 1: Limits and metric Spaces	[15]
1.1 The Class l ² (Schwartz, Minkowski inequality)	
1.2 Limit of a function on the real line	
1.3 Metric Spaces	
1.4 Limits in metric spaces	
Unit - 2: Continuous functions on metric spaces	[15]
2.1 Functions continuous at a point on the real line	
2.2 Reformulation	
2.3 Function continuous on a metric space	
2.4 Open Sets	
2.5 Closed Sets	
Unit - 3: Completeness and Compactness	[15]
3.1 More about open sets	
3.2 Bounded sets and totally bounded sets	
3.3 Complete metric spaces	
3.4 Compact metric spaces	
3.5 Continuous functions on compact metric spaces.	

Recommended Book (Scope of Syllabus):

Scope: Methods of real analysis by R.R. Goldberg John Wiley & Sons 1976.

Metric Spaces

Unit - 1: Limits and metric spaces Art: 3, 10, 4.1 to 4.3

Unit - 2: Continuous functions on metric spaces Art: 5.1 to 5.5

Unit - 3: Completeness and Compactness Art: 6.1, 6.3, 6.4, 6.5, 6.6

Reference books:

1. A first course in mathematical analysis by D. Somasundaram & B.Choudhary Narosa Publishing House.

2. Mathematical Analysis second edition by S.C. Malik & Savita Arora.

3. Principles of Mathematical analysis by Rudin W. McGraw-Hill, New York.

4. A Course of Mathematical Analysis by Shanti Nasrayan S. Chand & Company New Delhi. 5. Metric space – Pundir and Pundir.

Paper- XIV: Numerical Analysis

Unit - 1: Finite Differences	[10]
1.1 Introduction	
1.2 Finite differences,	
1.3 Differences of Polynomial	
1.4 Relation between the operators	
Unit - 2: Interpolation	[15]
2.1 Introduction	
2.2 Newton's forward interpolation formula	
2.3 Newton's backward interpolation formula	
2.4 Central difference interpolation formula	
2.5 Gauss's forward interpolation formula	
2.6 Gauss's backward interpolation formula	
2.7 Stirling's formula	
2.8 Interpolation with unequal Intervals	
2.9 Lagrange's Interpolation Formula	
Unit - 3: Numerical Differentiation and Integration	[10]
3.1 Numerical differentiation	
3.2 Formula for derivatives	
3.3 Maxima and minima of a tabulated function	
3.4 Numerical Integration	

3.5 Quadrature formulae (Trapezoidal rule, Simpson's 1/3 Rule and Simpson's 3/8 thrule)

Unit - 4: Difference Equations

[10]

- 4.1 Introduction
- 4.2 Definitions
- 4.3 Formation of difference equations
- 4.4 Linear difference equation
- 4.5 Rules for finding the Complementary function
- 4.6 Rules for finding the Particular Integral
- 4.7 Difference equations reducible to linear form

Recommended Book (Scope of Syllabus):

Numerical Methods in Engineering & Science with Programs in C and C++ Nineth Edition by B.S. Grewal Khanna Publishers New Delhi.

Chapter – 6: (Finite differences) Art. 1, 2, 3, 7

Chapter – 7: (Interpolation) : Art 1, 2, 3, 4, 5, 6, 7, 11, 12

Chapter – 8: (Numerical Differitation and Integration) Art. 1, 2, 3, 4, 5 (except IV and V)

Chapter – 9: (Difference Equations) Art. 1 to 7.

Reference books:

1. Numerical Analysis and Programming in C by Pundir and Pundir (Pragati Prakashan)

2. Numerical Analysis by P.Kandasamy , K.Thilagavathy,K Gunavathi , S,Chand Publications

3. Introductory Methods of Numerical Analysis by S.S.Sastry and by PHI

Paper-XV: Graph theory

Unit – 1: Graph Theory

Graphs – undirected and directed, simple graphs, multigraphs, degree of vertex, indegree and outdegree of vertex, Types: Null graph, Complete graph, regular graph, platonic, cycles, wheels, Bipartite, complete bipartite, subgraphs, Isomorphic graphs.

Unit – 2: Operations on Graph

Union, Intersection, Sum, Ring sum, Complements, product, composition and fusion, Paths, Cycles, Cut – vertex, cut set, Bridge, Connectedness, Matrix representation, Adjacency matrix, Incidence matrix, Planner graphs, Eulerian and Hamiltonian graphs, Eulers formula.

Unit – 3: Trees

Trees and their Properties, Rooted trees, Spanning trees, Construction of spanning trees, weighted graphs, Minimal Spanning trees, Tree traversal, Prefix and Postfix notation (Delete binary search tree onword).

Unit – 4: Number Systems

Base – b number system, Decimal, Binary, Octal and Hexadecimal number system and Conversions between these systems.

Recommended Books (Scope of syllabus):

[I] A text book of Discrete Mathematics by Swapan Kumar Sarkar (S.Chand Co. 1st
edition 2003)Ch - 13: 13.1 to 13.12Ch - 14: 41.1 to 14.4**[II] Essential Computer Mathematics** by Seymour Lipshutz, Schaum's outline series
Ch - 1: 1.1 to 1.3Ch - 2: 2.1 to 2.4

Reference Books

1. Discrete Mathematics by Dr.Ranjeet singh, Manish Soni, University Book House (P) Ltd. Jaipur.

2. Discrete Mathematics and Graph theory by Purna Chandra Biswal, PHI, EEE.

3. Introduction to Discrete Mathematics by M.K.Sen, B.C.Chakraborty, Books and Allied (P) Ltd.

[12]

[13]

[10]

[10]

4. Fundamental Approach to Discrete Mathematics by D.P.Acharya, Sreekumar, New age Publishers

Paper - XVI: Integral Calculus (Elective-A)

Unit - 1. Improper Integrals:

Convergence of Improper integrals of the first kind, Test of convergence of a (Positive integrands), Necessary and sufficient condition for the convergence of improper integrals, Comparison of two integrals, A practical comparison test, Useful comparison integrals, Two useful tests, f(x) not necessarily positive general test for convergence, Absolute and conditionally convergence, Convergence of improper integrals of the second kind, Convergence at infinity (Integrand being positive), Comparison of two integrals, A useful comparison integrals, General test (for convergence at infinity and f(x) may be positive or negative), Cauchy's test for convergence, Absolute and conditionally convergence of improper integrals of second kind, Test for the absolute convergence of the integral of product, Abel's test, Dirichlet's test.

Unit - 2: Beta and Gamma function:

Definition, Properties, Transformations of Gamma function and Beta function and relation between them, some important deductions, Duplication formula.

Unit - 3: Multiple integrals:

[10]

[15]

Double Integrals, Cartesian and polar, Applications of Double Integration (Area of regions and Volume of a Solid only), Change of order of integration, Change of Variables.

Recommended Book:

Integral Calculas by Shanti Narayan and P.K. Mittal S.Chand publication Revised Edition - 2005. Unit 1: 16.1 to 16.18

Unit 2: 7.1, 7.2, 7.3, 7.4, 7.5

Unit 3: 12.2, 12.3, 12.4, 12.5

Reference books:-

1. N. Pisknov, Differential and Integral Calculus, Peace Publishers, Moscow

2. P.N. Wartikar and J.N. Wartikar, A Text Book of Applied Mathematics, Vol. I, Poona

[20]

Vidyarthi Griha Prakashan, Poona 30.

- 3. Tom M.Apostol, Calculus Vol I and II, Wiley Publication.
- 4. Mathematical Analysis by S.C. Malik and Savita Arora.

Paper - XVI: Programming in C (Elective-B)

Unit 1: Overview of C.	[4]
1.1 Introduction	
1.2 Importance of C	
1.3 Sample C programs	
1.4 Basic structure of C programs	
1.5 Programming style	
1.6 Executing a C program	
1.7 Points to remember	
Unit - 2: Constants, Variables and Data Types	[6]
2.1 Introduction	
2.2 Character Se	
t 2.3 C Token	
2.4 Constants	
2.5 Keywords and Identifiers	
2.6 Variables	
2.7 Data Types	
2.8 Declaration of variables	
2.0 Assigning values to variables	

2.10 Defining symbolic constants

Unit - 3: Operators and Expressions

- 3.1 Introduction
- 3.2 Arithmetic Operators
- 3.3 Relational Operators
- 3.4 Logical Operators
- 3.5 Assignment Operators
- 3.6 Increments and decrement operators
- 3.7 Conditional operators
- 3.8 Bit-wise operators
- 3.9 Special operators
- 3.10 Arithmetic expressions
- 3.11 Evaluation of expressions
- 3.12 Precedence of arithmetic operators
- 3.13 Some computational problems
- 3.14 Type conversions in expressions
- 3.15 Operators precedence and associativity
- 3.16 Mathematical functions

Unit - 4: Managing Input and Output Operators

- 4.1 Introduction
- 4.2 Reading a character
- 4.3 Writing a character
- 4.4 Formatted input
- 4.5 Formatted output

[4]

Unit - 5: Decision Making and Branching	[6]
5.1 Introduction	
5.2 Decision making with IF statement	
5.3 Simple IF statements	
5.4 The IFELSE Statement	
5.5 Nesting of IfELSE Statement	
5.6 The ELSE IF ladder	
5.7 The SWITCH Statement	
5.8 The? : Operator	
5.9 The GOTO statement	
Unit - 6: Decision Making and Looping	[4]
6.1 Introduction	
6.2 The WHILE Statement	
6.3 The DO Statement	
6.4 The FOR Statement	
6.5 Jumps in loops	
Unit - 7: Arrays	[5]
7.1 Introduction	
7.2 One dimensional arrays	
7.3 Two dimensional arrays	
7.4 Initializing two dimensional arrays	
7.5 Multidimensional arrays	
Unit - 8: User - defined Functions	[7]
8.1 Introduction	

- 8.2 Need for user defined functions
- 8.3 A multifunction program
- 8.4 The form of C Functions
- 8.5 Return values and their types

Recommended Book (Scope of Syllabus):

[I] Programs in C by E. Balgurusamy, MeGraw Hill, New-Delhi

Unit 1: 1.1- 1.7 Unit - 2: 2.1- 2.10 Unit - 3: 3.1- 3.16 Unit 4: 4.1-4.5

Unit 5: 5.1 - 5.9 Unit - 6: 6.1 - 6.5 Unit - 7: 7.1 - 7.5 Unit 8: 8.1 - 8.5

Reference Books:

1. Numerical Methods in Engineering & Science with Programs in C and C++ Nineth Edition by B.S. Grewal Khanna publishers New Delhi.

2. Numerical Analysis and Programming in C by Pundir and Pundir (Pragati Prakashan)

- 3. A Book on C, Macmillan, by Berry, R.E. and Meekings.
- 4. C Programming Language : An applied perspective, John Wiley & Sons
- 5. The C Programming Tutor, Prentice-Hall, by Wortman, L.A. and Sidebottom.
- 6. C made Easy, Osbone MeGraw-Hill by Schildt, H.C.

7. Let us C by Yashwant Kanetkar BPB Publications, New-Delhi.

8. Programming in C by Schaum's Outline Series, Tata McGraw Hill, EEE.

Numerical Technique Laboratory [NTL-III (A) to III (D)]

Note: Each assignment is of 1.5 periods [50+25 = 75 minutes]

NTL-III (A) (Algebra - II + Metric Spaces)

(Problems on the following topics)

Section - I: Algebra - II

Assignment-1: Rings and subrings, Integral domains and Fields

Assignment-2: Isomorphism and Characteristic.

Assignment-3: Homomorphisms of Rings. Ideals, Quotient Rings

Assignment-4: Subspaces, Liner Dependence, independence and basis

Assignment-5: Linear transformation and matrices, Kernel and range.

Assignment-6: Inverse and Composite, Inner Product Space

Section - II: Metric Spaces

Assignment-7: Metric Space-I (Examples on Metric spaces, open set, closed set, boundary set in Metric spaces)

Assignment-8: Metric Space-II (Examples on bounded set, Totally bounded set and Diameter of set in Metric spaces)

Assignment-9: Metric Space-III (Examples on Limit of metric space, Cauchy sequence in Metric spaces)

Assignment-10: Metric Space-IV (Contraction, Isometry, homeomorphism in Metric spaces)

Assignment-11: Metric Space-V (Examples on cover, open cover, Dense in Metric spaces)

Assignment-12: Metric Space-VI (Examples on completeness and compactness in Metric Spaces)

NTL-III (B) (Complex Analysis + Numerical Analysis)

(Problems on the following topics)

Section - I: Complex Analysis

Assignment-1: Find the regular (analytic) function of which function (real, Imaginary, u + v, u - v type.)

Assignment-2: Solving the complex integration Circle, Line and Parabola.

Assignment-3: Obtain the Taylor's and Laurent's series.

Assignment-4: Calculus of residue.

Assignment-5: Integration round the unit circle.

Assignment-6: Evaluation of integral $\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$.

Section- II: Numerical Analysis

Assignment-7: Finite Differences: Example on Forward, Backward and Central difference formulae, Differences of a Polynomial, Relation between operators, (Forward (Δ), Backward (∇), Central δ , Shift (E))

Assignment-8: Interpolation-I: Examples on Newton's forwards, Newton's backward difference formulae, Central difference formulae

Assignment-9: Interpolation-II: Examples on Gauss's forward and backward difference formulae, Stirling's formula, Lagrange's interpolation formula

Assignment-10: Numerical Differentiation: Examples on Numerical differentiation, formula for derivatives and maxima and minima of tabulated function.

Assignment-11: Numerical Integration: Examples on Numerical integration, Trapezoidal rule, Simpson's 1/3 Rule and Simpson's 3/8 th rule.

Assignment-12: Difference Equations: Examples on Formation of difference equations, Linear difference equation, finding to Complementary function, finding the Particular Integral, Difference equations reducible to linear form.

NTL-III(C) (Real Analysis + Graph Theory)

Section - I: Real Analysis

Assignment-1: Sets and Function (Numerical examples on domain, range, mapping (one – one, many – one, into, onto) inverse mapping, extension – restrictions of f and composite function)

Assignment-2: Sequence – I (nth term of sequence, subsequence of sequence, relation between $\in -\delta$ in limit of sequence, existence of limit, boundedness, monotonic)

Assignment-3: Sequence – II (Convergence, Divergence, Limit superior, Limit inferior)

Assignment-4: Series – I (Examples on convergence, divergence, absolute and conditional convergence)

Assignment-5: Series – II (Test for convergence Comparison test, ratio test, p- test, Geometric series, divergence)

Assignment-6: Series – III (Test for convergence Condensation test, Raabe's test, Logarithmic test, Cauchy's integral test)

Section – II: Graph Theory

Assignment-7: Operations on graph

Assignment-8: Adjacency and incidence matrix (with graphs)

Assignment-9: Spanning tree and Minimum spanning tree

Assignment-10: Infix/Prefix and postfix and their tree

Assignment-11: Conversion of decimal to binary/octal/Hexadecimal.

Assignment-12: Conversion of binary/octal/Hexadecimal to decimal

NTL-III (D) (Partial Differential Equation OR Mathematical Analysis

+ Integral Calculus OR Programming in C)

Section – I: Partial Differential Equations

Assignment-1: Solve linear differential equation of first order by arbitrary constant and arbitrary function, Lagrange's method.

Assignment-2: Non linear partial differential equation of order one by Charpit method.

Assignment-3: Non linear partial differential equation of standardF. and P.I. for Homogeneous linear partial differential equation with constant coefficient.

Assignment-5: Find C.F. and P.I. for Non-Homogeneous linear partial differential equation with constant coefficient.

Assignment-6: Find C.F. and P.I. for equation reducible to linear differential equation with constant coefficient.

OR

Section- I: Mathematical Analysis

Assignment-1: Limits, Continuous Functions.

Assignment-2: Functions Continuous on closed Intervals, Uniform continuity.

Assignment-3: Increasing and decreasing functions, continuous functions.

Assignment-4: Rolle's theorm, Lagrange's MVT & Cauchy's MVT, High Order derivatives.

Assignment-5: Exponential Functions, logarithmic functions, Trigonometric functions.

Assignment-6: Functional Equations, Functions of Bounded Variations, Vector - valued functions.

Section II: Integral Calculus

Assignment-7: Improper Integral - I

Assignment-8: Improper Integral - II

Assignment-9: Beta and Gamma function - I

Assignment-10: Beta and Gamma function - II

Assignment-11: Multiple integrals - I (change of order Change of Variable)

Assignment-12: Multiple integrals - II (Area and Volume)

OR

Section- II: Programming in C

Assignment No.7: Sample Programs – I: Addition, subtraction, multiplication and division. Area, Volume of a sphere, Temperature Conversion, Simple Interest Calculation, Compound Interest Calculation, Salary Calculation, Bonus and Commission.

Assignment No.8: Sample Programs – II: Star pattern, Reverse of a given number, Fibonacci sequence, Factorial ${}^{n}C_{r}$, ${}^{n}P_{r}$, Roots of the quadratic equation.

Assignment No.9: Sample Programs – III: Maximum and Minimum, Sum of the series 1+2+3+....+n, $1^2+2^2+3^2+...+n^2$, $1^3+2^3+3^3+....+n^3$, $1^2+3^2+...+(n-1)^2$, $2^2+4^2+6^2+...+(2n)^2$

Assignment No.10: Sample Programs - IV: Sine, Cosine, Exponential series

Assignment No.11: Sample Programs - V: Ascending and descending data. Matrix addition/Subtraction, Matrix multiplication.

Assignment No.12: Sample Programs – VI: Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8 th Rule.